
Getting Started with the HI-TECH C
Compiler for PIC10/12/16 MCUs,

Microchip PICDEMTM 2 PLUS Board
and MPLAB R© ICD 2

Document number: QSGM100

Copyright (C) 2010 Microchip Technology Inc.
All Rights Reserved. Printed in Australia.

Produced on: December 24, 2010

Australian Design Centre
45 Colebard Street West
Acacia Ridge QLD 4110

Australia

web: http://www.htsoft.com

http://www.htsoft.com

Chapter 1

Introduction

This guide is intended to introduce you to the HI-TECH C Compiler for PIC10/12/16 MCUs and
its use in the Microchip MPLAB IDE. Code will be produced for the Microchip PICDEM 2 PLUS
demo board, running a PIC16F877A MCU device. Programming will be performed via a Microchip
MPLAB ICD 2 in-circuit debugger. Code will be written to flash the 4 LEDs on the board.

This guide will illustrate the following points.

• Setting up MPLAB IDE projects to use the HI-TECH C compiler;

• Compiling for the Microchip MPLAB ICD 2 debugger;

• Becoming familiar with HI-TECH C source code and the HI-TECH C Compiler for PIC10/12/16
MCUs;

• Accessing special function registers;

• Writing interrupt code; and

• Defining code in more than one source file.

1.1 Before you Begin
The following chapters assume that you have already installed the Microchip MPLAB IDE.

Microchip use special drivers to communicate with the MPLAB ICD 2. Microchip have docu-
mentation relating to installation of the IDE and drivers.

You will also need to have installed the HI-TECH C Compiler for the PIC10/12/16 MCUs. You
can use the fully licensed, demo or Lite version of this compiler with this guide. The compiler should

2

Introduction Before you Begin

be installed after first installing MPLAB IDE. The compiler installer will automatically install the
Universal Toolsuite plugin for MPLAB IDE that allows the IDE to drive the compiler.

You will need to follow the Microchip documentation to set up the hardware connections from
your PC to the MPLAB ICD 2, and from the MPLAB ICD 2 to the PICDEM 2 board. Ensure that
the 16F877A device is installed in the PICDEM 2 board.

3

Chapter 2

Setting up a Project in MPLAB IDE

Begin by running MPLAB IDE.
The first step to using MPLAB IDE is to open a project. We don’t have an existing project to

open so we will need to create a new one. The easiest way to do that is use the Project Wizard in
MPLAB IDE. Select the Project Wizard menu item from the Project pull-down menu as illustrated
in Figure 2.1.

In the dialog that opens, click Next to move to the chip selection dialog. Select a PIC16F877A
device as shown in Figure 2.2 then click Next.

The next dialog is where you get to specify the toolsuite associated with the project. You are not
associating the project with any one particular compiler, but rather specifying that you will be using
one of the HI-TECH C compilers for Microchip devices. Once the project has been created, you

Figure 2.1: Initiating the MPLAB IDE Project Wizard

4

Setting up a Project in MPLAB IDE

Figure 2.2: Selecting the target device

Figure 2.3: Selecting the HI-TECH toolsuite

can specify the compiler version that you will use, and you can change the compiler version without
having to re-create the project. To use the HI-TECH Family of compilers you must select HI-TECH
Universal Toolsuite as the Active Toolsuite in this dialog, as shown in Figure 2.3.

Notice that the Toolsuite Contents area shows the generic name HI-TECH ANSI C
Compiler. Notice also the path shown in the Location area. This path is not important and
you do not need to edit it to point to the compiler location. The Universal Toolsuite determines the
location of the installed compilers via other means. Click Next.

In the next dialog you can specify the name and location of the project you are creating. Click
Next after deciding on something appropriate.

Lastly the Project Wizard is asking to see if you would like any existing files to be added to the
project. We are going to create a small amount of code from scratch so we do not wish to add any
files. Click Next to skip this dialog and show the project summary. If everything looks okay in the
summary click Finish and we are done.

Being the good engineers we are, we are going to create a small skeleton program and ensure that
we can compile that before getting too involved using the features of the PICDEM 2 PLUS board.
You should aim to do this every time you create a new project.

In MPLAB IDE, select the New menu item from the File menu, or use any of MPLAB IDE’s
short cuts methods to create a new file. In the empty file window that opens, copy the code shown in
Figure 2.4, and paste it into the window. (If your PDF browser does not co-operate in this aim, you
may need to type the code in — rest assured there is not much code that we need for this guide.)

5

Setting up a Project in MPLAB IDE

Figure 2.4: A small test program to ensure everything is setup

#include <htc.h>

void main(void)
{
}

This is all we need to create a complete C program. It will not do very much at all, apart from
start and end almost immediately, however every program you write will need a function called
main. The include file called htc.h is not actually needed since we have no code inside main,
however you will need it for virtually every file you write, and so we will put it in now to help make
this a habit.

Let’s now save the file and add it to our project. Click the Save menu item under the File
menu. I suggest you save the file in the same directory as the project file so everything is together.
(If you can’t remember where you saved the project, click on the Project menu and then place
the your mouse pointer on the Close menu item. This will open a side menu that will show you the
full path to the project that is currently open. Do not click on the side menu item as that will actually
close this project.) As this is a C source file, make sure you use the extension .c with the file name.
Next right-click in the editor window that contains our code and select Add to Project, about
three quarters the way down this menu.

To ensure that the file was correctly added, click the View menu, and select Project. This
will open a window which shows an overview of the project. In this window you will see several
folder icons. Under the Source Files icon you should see the name of the file listed next to a
file icon. If you close the editor window containing our code, you can re-open it by double-clicking
the file icon associated with the file in the Project window.

Select the Project menu. About half way down is a menu item Build Options.... If
you place your mouse pointer over this menu item a side menu will appear that has an entry showing
the name of file you added to the project and another called Project. Click on the Project
item. A dialog will open, as shown in Figure 2.5. This is the dialog that contains the options for
the compiler. This dialog is managed by the toolsuite that you have selected — in this case, the
HI-TECH Universal Toolsuite.

We must confirm in the project settings that the correct compiler is associated with this project.
Select the Driver tab of the Build Options dialog. That will show settings similar to those
shown in Figure 2.6. At the top is shown a list of Available Drivers. You may only have

6

Setting up a Project in MPLAB IDE

Figure 2.5: The Build Options dialog

one HI-TECH C compiler supporting Microchip installed, in which case you will see its name only
listed. However if you have other HI-TECH C compilers supporting Microchip installed they will
all be listed in this dialog. You may have two different versions of the same compiler installed, for
instance. Select the compiler you wish to use and if it is not already, click the Move up button to
place it at the top of the list.1 If you are not sure which compiler you wish to use, select it in the
list, then look at the information in the area marked Selected driver information and
supported chips. This area gives information about the compiler and shows in the scrollable
list those chips that the compiler supports. You do not need to select the device you are using from
this list — the list merely indicates the supported devices. The target device was specified when
we created the project and can be changed via a different MPLAB dialog. Click OK when you have
moved the appropriate driver to the top of the compiler list.

We should, at this point, also change one option that we will need if you intend to debug code
on the MPLAB ICD 2 later on in this guide.2 Select the the Linker tab of the Build Options

1If you want the real explanation, the compiler that is executed is the first one in the list that can compile for the device
you have selected. So it doesn’t actually have to be at the top. But to be absolutely sure, we will place it at the top of the list.

2This option is not required if you only intend to use the MPLAB ICD 2 as a programmer. When used as a debugger, the
MPLAB ICD 2 allows the setting breakpoints and examination of variable contents etc.

7

Setting up a Project in MPLAB IDE

Figure 2.6: Driver settings in the Build Options dialog

dialog. We need to tell the compiler that we are going to be using the MPLAB ICD 2 debugger. This
is necessary as the MPLAB ICD 2 uses memory resources that might otherwise be used by ordinary
program code. Select MPLAB ICD 2 from the Debugger combo box widget. Click the OK button
to leave the Build Options dialog.

At this point it would be appropriate to save the project. Select the Save Project menu item
from the Project menu.

Now let’s compile our small test code to ensure that MPLAB IDE and HI-TECH C are properly
installed. Select Rebuild from the Project menu, or choose any of MPLAB IDE’s short cuts
to build the project — you can, for instance, click on the toolbar button that shows the HI-TECH
“ball and stick” logo, as shown in the centre of Figure 2.7. You will notice that the Project menu
has two items: Build and Rebuild. MPLAB IDE uses a two-pass compilation process — one to
generate intermediate files from all the source files; the other to perform the code generation and link
steps. The Build menu item action only processes those source files that have changed since the
last build, then performs the code generation and link step. Rebuiding a project will always process
every source file in the project, regardless of whether they have changed. If in doubt, use Rebuild.
The HI-TECH Build buttons are linked to the Build menu item.

The program should now be compiled. You will see a window open showing content similar to

8

Setting up a Project in MPLAB IDE

Figure 2.7: The HI-TECH build buttons

Figure 2.8: The Output window

that shown in Figure 2.8. This shows the steps both MPLAB IDE and the compiler took to build
the project. The lines starting with Executing: show the command lines passed to the compiler
command-line driver, PICC, that were used to actually build. Note that there are two commands:
one for the only source file the project contains; the other for the code generation and link step.
As more files are added to the project, more command lines will be issued by MPLAB IDE. The
command lines to the compiler driver are necessarily quite long.

The compiler has produced a memory summary and there is no message indicating that the build
failed, so we have successfully compiled the project.

If there are errors they will be printed in Build tab of this window. You can double-click each
error message and MPLAB IDE will show you the offending line of code, where possible. If you do
get errors, check that the program is what is contained in this document.

9

Chapter 3

Coding

Now that we have a project that can be compiled, we can now concentrate on developing a simple
application. We will write code that flashes the four LEDs on the PICDEM 2 PLUS board. We shall
have the LEDs count up in binary and initially use a software delay loop to slow down the flashing
so that we can actually see the LEDs blink.

We will now flesh out our simple program. We will add:

• a macro that sets up the PIC R© MCU’s configuration bits;

• a function that initializes the IO port that is connected to the LEDs; and

• code to our main function that writes a incrementing value to the LEDs

The new complete program is shown below in Figure 3.1. It also includes the htc.h header file,
and has a main function, although this function now actually contains some code. You can either
replace the entire contents of the C source file we have already created with the content of the figure
below, or just copy in the bits that have changed.

Save the file and then build the file as we have done previously. Again, in the Output window you
should see the memory summary produced by the compiler.

Ensure at this point that you have the MPLAB ICD 2 correctly connected to your PC, that you
have the MPLAB ICD 2 connected to the PICDEM 2 PLUS board, and that power is applied to
the development board. From the Debugger menu, select Tool, and from the side menu, select
MPLAB ICD 2. This tells MPLAB IDE that we will be using the MPLAB ICD 2 as the debugger.
Depending on the MPLAB configuration, it may auto-connect to the MPLAB ICD 2. The Output
window will be displayed and the connection status shown in the MPLAB ICD 2 tab. If connection

10

Coding

Figure 3.1: Code to flash the LEDs
#include <htc.h>
__CONFIG(XT & WDTDIS & PWRTDIS & BORDIS & LVPEN & WRTEN &

DEBUGEN & DUNPROT & UNPROTECT);
void init(void)
{

// port directions: 1=input, 0=output
TRISB = 0b00000000;

}
char counter;
void main(void)
{

counter = 0;
init();
while (1){

PORTB = counter;
_delay(10000);
counter++;

}
}

11

Coding

is not automatically established, select Connect from the Debugger menu. Once connection has
been established, you should see a message similar to the following appear in the Output window.

Connecting to MPLAB ICD 2
...Connected
Setting Vdd source to MPLAB ICD 2
Target Device PIC16F877A found, revision = b4
...Reading ICD Product ID
Running ICD Self Test
...Passed
MPLAB ICD 2 Ready

You can then program the device by selecting the Program menu item in the Debugger menu.
After the program has been downloaded, you should see the message:

...Programming succeeded

You can now run the code by selecting the Run menu item from the Debugger menu. You will
quickly want to learn the keyboard or toolbar shortcut for the debugger commands. You should see
the four LEDs slowly counting up in binary. Feel free to experiment with setting breakpoints and
watching the contents of variables when you run the program. Refer to the Microchip documentation
and on-line help for more details.

12

Chapter 4

Understanding the Code

Now that you have LEDs flashing on your board, let’s look at the code we are running in more detail.
Both the __CONFIG macro, and the contents of the function init, in this example, were based

on code that was generated using a graphical peripheral initialization tool called C-Wiz available in
HI-TIDE, HI-TECH’s multi-platform IDE. (The output of C-Wiz is actually a lot more verbose than
the code shown here — it produces many comments that explain what the code is doing.) This code
can, alternatively, be written by hand assuming you are familiar with the datasheets for the Microchip
device you intend to use. Note that the output of Visual Initializer, the peripheral initialization tool
available in MPLAB IDE, produces assembly code and hence cannot directly be used by HI-TECH
C without modification.

The statement that begins with __CONFIG, after the header file include directive, is a special
macro that is defined by the code included with htc.h. (And from that you should note that the
htc.h file must be included first before you try to use the macro.) This macro takes one argument.
The argument represents a value that will be programmed into the configuration bits of the device
you are using. These bits control the fundamental operation of the PIC MCU, like whether the
watchdog timer will be enabled, what the source of the MCU clock will be, and whether code is
protected, etc.

Special macros representing the states of the configuration bits are defined in the code included
by htc.h, and which are shown in the compiler manual in the appendices. Even though C-Wiz
could have worked out the final value that is required, it leaves the expression in a human-readable
form so it is clear as to what the functionality of the macro will be.

The code in the function init sets up the peripherals we intend to use. In this case, we only
used one peripheral: port B. The statement in this function ensures that the port behaves as we want it
to — specifically that port bits 0 through to 3 are outputs; the remainder are inputs. (C-Wiz actually
generates a couple of extra statements, but they are not necessary in this example, and have been

13

Understanding the Code

omitted.) You will notice that the compiler allows you to enter constant as binary values using the
prefix 0b.

You will notice in the function init, and in the function main, that there are statements that
write to variables called TRISB and PORTB. If you are familiar with the 16F877A device, you will
realize that it has special function registers (SFRs) with the same name. Accessing these variables
does indeed access the SFRs. Here is how this works.

In the code included with htc.h, are definitions for all the SFRs that a particular device has.
These definitions are for what we call absolute variables, which use a special construct to place the
variable over the top of the memory-mapped SFR. The definition for PORTB, for example, on this
device looks like:

static volatile unsigned char PORTB @ 0x06;

which defined PORTB as an unsigned char variable that will be placed at address 6, which is
the same address used by the register with the same name. Apart from being placed at a partic-
ular address, PORTB is an ordinary C variable and since you know already how to use variables
in expressions and statements, you do not need to learn any special syntax to access SFRs. The
volatile keyword, along with static, has a standard meaning in the ANSI C language — en-
sure you know what it means as it is very important in the embedded programming world. We look
at the volatile qualifier later in this guide.

The other special code in this program is the use of a delay. Notice in the main function there is
a call to what looks like a function called _delay (note the leading underscore character), however
you will not find the definition of this function in the program we have just compiled. This is a
special identifier for an in-line function that is expanded by the compiler.

The argument to this function is the number of instruction cycles that will be executed, thus
forming a delay. So in the code we have just executed, a delay of 10000 instruction cycles is placed
in the counting loop. Without this delay the LEDs would flash so fast that their switching would not
be apparent to the human eye.

14

Chapter 5

Going a Little Bit Further

Let’s make our program a little more advanced and introduce interrupt functions in the process.
What we will do is remove the in-line delay routine, and use timer 1 on the 16F877A device to

delay for us. We will also have the code spread into two C source files and have these files share a
variable.

Edit you existing C source file so that your init function looks like that shown in Figure 5.1.
This code ensures that the port is set up as before, but also enabled timer 1. This timer has also

been configured so that it will trigger an interrupt when it overflows.
Also modify your main function so it looks like that shown in Figure 5.2.
You can see in main that the delay loop was removed, and the increment of the counter was

removed. We have used another macro which is defined when you include htc.h that enables
interrupts, ei. Although the init function configures the timer to use interrupts, it does not actually

Figure 5.1: Our new init function

void init(void)
{

PIE1 = 0b00000001;
INTCON = 0b01000000;
OPTION = 0b10000000;
TRISB = 0b00000000;
T1CON = 0b00110101;

}

15

Going a Little Bit Further

Figure 5.2: Our new main function

#include <htc.h>
volatile char counter;
void main(void) {

counter = 0;
init();
ei();
while (1){

PORTB = counter;
}

}

enable the interrupts. Enabling interrupts before everything is setup can be disastrous, so the actual
command to enable these must be placed at the appropriate place by the programmer.

Note also we have qualified the variable counter as volatile. This keyword tells the com-
piler that the contents of this variable may change, even though the function main (or any of the
functions called by main) do not write to it. However the interrupt routine writes to it, and interrupts
are not predictable and can occur at any time during execution of the main-line code. In other words,
its value could change unexpected as far as the main-line code is concerned. With the volatile
keyword in place, the compiler may access and store this variable differently so that the content
of the variable is always accurately used in expressions. You should also use this qualifier for any
variables that map over hardware registers that can be written to by the hardware. This is the case
for the absolute variables we define in the code included by htc.h that map over the SFRs.

We need one more thing: the code to execute when an interrupt occurs. HI-TECH C allows you
to create a special interrupt function that will be automatically linked in to the interrupt vector. In
this example, we are going to place this function in a separate file to allow us to see how multiple
files can be used in a project, although this is not a requirement.

In MPLAB IDE, create a new source file by selecting the New menu item from the File menu.
Once open, paste in the code shown in Figure 5.3.

This code defines a function called my_isr. Notice the interrupt qualifier that actually tells
the compiler that this function is to be linked to the interrupt vector. As there is only one interrupt
vector on a 16F877A device, there is no other information required by the compiler. The function
can have any valid C identifier as its name — you don’t need to be as uncreative as I am.

The initialization of the timer in the init function will start timer 1 counting – and as slowly as
possible. Once it overflows, an interrupt will be generated and we will end up executing code from
our interrupt function. In this function, we need to increment the counter that contains the value we

16

Going a Little Bit Further

Figure 5.3: Our interrupt function

#include <htc.h>
extern volatile char counter;
void interrupt my_isr(void){

if((TMR1IE)&&(TMR1IF)){
counter++;
TMR1IF=0;

}
}

will write to the LEDs in the main function.
But there is one slight catch, though. Although the PIC midrange devices only have one interrupt

vector (hence one interrupt function) there are many sources of interrupt. So we must first ensure that
the reason we are in the interrupt routine is because of the timer overflowing. This is the reason for
the if statement inside the interrupt function. It checks to ensure that both the timer 1 interrupt flag,
TMR1IF, (which means that timer 1 has overflowed) and that the timer 1 interrupt enable, TMR1IE,
is set before incrementing the counter. You must remember that timers may continue to count and
overflow even if you have disabled the interrupt associated with them. Typically you have more than
one interrupt source in your programs so you need to ensure that you know which source triggered
the interrupt.

Notice also in the interrupt function that the timer 1 interrupt flag that was set when the inter-
rupt was generated is cleared. The PIC MCU datasheet indicates that this flag must be cleared by
software.

Remember that the variable called counter was defined in our first source file, but we are
incrementing it in this source file. We need to tell the compiler that the variable counter, that we
are accessing here, is defined in another file. We do this by placing the declaration:

extern volatile char counter;

towards the top of the file, before counter is actually used. The compiler will know from this what
type the variable is, but will not actually define memory for it. It is the extern keyword that
indicates this statement is a declaration. You will notice it looks identical to the definition in our first
source file, but for the extern added to the front.

Take note of the terminology being used here: a definition indicates the type of a variable and
ensures memory is allocated for the variable; a declaration only indicates the type of a variable.
There can only be one definition for a variable, but you can have as many declarations as you want,
in as many files as you want.

17

Going a Little Bit Further

Notice also that the interrupt routine is kept as small as possible. All we do is update the counter.
The writing of the counter to the LEDs is performed back in our main function. It is desirable
to have small interrupt functions as this leads to better performance in systems that must respond
rapidly to events.

Compile the program, and download it to the MPLAB ICD 2 as you did in the previous example.
When you run the program, it should result in the same LEDs flashing, although their speed may be
a little different.

18

	Introduction
	Before you Begin

	Setting up a Project in MPLAB IDE
	Coding
	Understanding the Code
	Going a Little Bit Further

