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PREFACE 
The basic course of experimental physics is usually subdivided into mechanics, 

thermodynamics and molecular physics, electricity and magnetism, optics and atomic and 
nuclear physics. Mechanics is the initial part of course of general physics, because the other 
parts cannot be studied without description of motion and its causes. Mechanics contains 
kinematics which describes motion of bodies considered irrelative to the factors causing the 
motion,  dynamics which studies the laws of motion and the causes producing the motion and 
changing it and statics which deal with the state of equilibrium of the bodies.  

The dynamics of a single point-like particle is given in Newtonian mechanics by the vector 
equation: 

   F
dt

pd =         

where vmp =  is the momentum and F  is the force. The above equation results from 
experiment and cannot be derived from other equations or laws. The above vector equation 
can be written in the form of three scalar equations: 

   x
x F

dt

dp
=  

 

   y
y F

dt

dp
=  

 

   z
z F

dt

dp =  

In order to solve a mechanical problem and find the motion resulting from the force F  acting 
on a body we have to solve the above equations which can be sometimes a difficult task, 
especially when we have to do with a constrained motion. Analytical mechanics offers handy 
methods to solve many such mechanical problems. This introductory course encompasses an 
elementary understanding of analytical mechanics, especially the Lagrangian formulation of 
dynamics of motion. The Hamiltonian formulation (Chapter 3) is necessary for the connection 
between the Newtonian mechanics and quantum mechanics.  

It will be assumed that students know and understand the basic concepts and mathematical 
methods within the scope of  the first year course of basic physics, calculus and algebra.  In 
the first few lectures some basic mechanical concepts will be recalled.  

Basic bibliography: 

W.Rubinowicz, W.Królikowski, Mechanika Teoretyczna, PWN Warszawa 

G.W.Bąk, Analytical Mechanics, Notes for students of Science and Technology 
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1. BASIC CONCEPTS AND IDEAS 
 

Length and time – Length measures the extension of bodies and time is a measure of 
duration of processes and phenomena. The definition of these quantities is a philosophical 
task to some extend and we shall assume in these lectures that the two physical quantities 
are clear and well understood.  

A point-like particle  – a point of negligible size but possessing mass. The concept of 
point-like particle is usually an approximation. Such an approximation can be used to 
describe the motion of the Earth around the Sun, but proves to be useless when we are to 
describe the motion of a table-tennis ball.  

A position of a point-like particle can be described in relation to a frame of reference by 
its radius-vector, as shown in Fig.1.1. Position of a point-like particle is given by a vector 

 
Fig.1.1. Position of a point-like particle is described in relation to a frame of reference by a 

vector 111 zkyjxir ++= . Selection of an appropriate frame of reference may play a 
significant (vital) role to find a comparatively easy way to solve a mechanical problem.  

111 zkyjxir ++=        (1.1) 

in relation to a frame of reference consisting of three mutually perpendicular coordinate axes.  

Let us note that the above equation is written under the assumption that: 

• Physical space is three-dimensional. This assumption works well in classical physics, but 
is not valid in the theory of relativity.  

• It is possible to define the position of a point-like particle accurately. This assumption is 
not valid in microphysics using quantum description of a micro-particles. According to the 
(Heisenberg) uncertainty principle it is not possible to find accurately both the position 
and the momentum of a particle.  

 
As it results from the above short discussion, the assumption about 3D physical space has a 
deep physical meaning.  

Movement and trajectory are described by the time-dependence of the position vector: 

)(trr =          (1.2) 

The radius-vector in Cartesian coordinates can be written in the form: 

)()()()( tzktyjtxitr ++=       (1.3) 
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The equation (1.3) enables to write the parametric equations of trajectory: 

)(

)(

)(

tzz

tyy

txx

=
=
=

         (1.4) 

We assume that the functions (1.4) are differentiable twice.  

Velocity of a point-like particle is given by: 

r
dt

rd
v &r==         (1.5) 

So we have: 

( ) kzjyixktzjtyitx
dt

d
v

r
&

r
&

r
& ++=++= )()()(     (1.6) 

The distance covered by a particle is equal to the length of a trajectory curve and is given by: 

∫ 






+






+






==
t

t

dt
dt

dz

dt

dy

dt

dx
tss

0

222

)(     (1.7) 

Let us consider the expression ds
rd
r

 (see Fig.1.2). rd
r

 is a vector tangent to trajectory if  

rd
r

 approaches zero. The quantity  ds
rd
r

 is therefore a unit vector  tangent to trajectory of 

motion. 

 

Fig.1.2. The  vector 
ds

rd
r

 is tangent to  the trajectory and this is a unit vector because the 

length of the differential change of the position vector rd
r

 for the differential change of time 
dt is equal to the differential length of  the distance covered by a moving point.  

The radius vector can be regarded as a composition of functions, so we can write ( )( )tsrr
rr = .  

Using the tangent vector 
ds

rd
r

 defined in Fig.1.2 we can write for the velocity: 

vt
dt

ds

ds

rd

dt

rd
v

r
rr

r ===        (1.8) 
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t
r

 is the unit vector tangent to the trajectory at the point of movement and v  is the speed of a 
moving particle, s is the length of curve covered by a particle. It results from (1.8) that 
velocity is tangent to trajectory for any curvilinear motion.  

Acceleration  of a particle is defined as: 

( ) kzjyixkzjyix
dt

d

dt

vd
a

r
&&

r
&&

r
&&

r
&

r
&

r
&

r
r ++=++==     (1.9) 

1.1. Tangential and normal acceleration 
Let us assume we have to do with a curvilinear motion (see Fig.1.3). 

 
Fig.1.3. Trajectory of  a curvilinear motion. ρ is the radius of curvature of the trajectory of 
motion at the point P. n

r
 and t

r
are unit vectors normal and tangent to the curve at the point 

P.  

The so-called Frenet formula: 

ρ
n

ds

td
rr

=          (1.10) 

where ds is the differential length of trajectory covered. dstd
r

 describes the change of 

direction of the unit vector  t
r

 which is inversely proportional to the radius of curvature ρ.  

Let us calculate the acceleration of motion for the curvilinear motion depicted in Fig. 1.3. 

( )

n
v

tv
dt

ds

ds

td
vtv

dt

td
vtvtv

dt

d
t

dt

ds

dt

d

dt

vd
a

rr
&

r
r
&

r
r
&

rr
r

r

ρ

2

+=+=

=+==






==
    (1.11) 

As shown above the tangential component of acceleration is equal to: 

 vat &=          (1.12) 

and the normal component of acceleration equals: 

 
ρ

2v
an =         (1.13) 
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In case of a uniform motion of a point in a circle the normal acceleration is given by the well 
known formula: 

 
R

v
an

2

=         (1.14) 

where R is the radius of the circle.  

 

1.2. Radial and transversal velocity and acceleration 
Let us suppose that we have to do with a plane motion described in a fixed frame of 

reference (see Fig. 1.4). Let us assume that at a certain moment the position of a moving point 

is given by a radius-vector r
r

.  We want to find the components of the acceleration of the 
point along the direction parallel to the radius-vector r

r
 (the radial component) and parallel to 

the direction perpendicular to the direction of the radius vector r
r

 (the transversal 
component). In order to solve the problem let us use the concept of complex plane. The 
position of a point on a plane can be written as: 

 
Fig.1.4. Radial and transversal components of acceleration of a particle at the point P.  

jyixr
rrr +=           (1.15) 

Using the complex plane we can write the position of the point P as: 
ϕireiyxz =+=         (1.16) 

where 1−=i  is the imaginary unit and φ is the angle shown in Fig.1.4. Differentiating 
(1.16) with respect to time we obtain: 

( )
( ){ } ϕ

ϕϕϕ

ϕϕϕ
ϕϕ

i

iii

errirrz

eirreirerz

&&&&&&&&&

&&&&&

++−=
+=+=

22
      (1.17) 

Taking the real and imaginary parts of the above equations we would get the x and y 
components of acceleration respectively. In order to obtain the radial and transversal 
components of acceleration we must rotate the frame of reference by the angle φ as shown in  
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Fig.1.5. In order to find the components of the vector v

r
 in the “red” frame of reference we 

must rotate the frame of reference by the angle φ. 

Fig.1.5.  The vector  v
r

 in the “black” frame of reference is given by: 

 ϕi
yx veivv =+         (1.18) 

while the same vector v
r

 in the “red” frame of reference is given by: 

 )( ϕψ
ϕ

−=+ i
r veivv        (1.19) 

pr  and pφ
  are the components parallel and perpendicular to the position vector r

r
 respectively, 

in other words they are radial and transversal components of the vector  r
r

.  This means that 
in order to get the radial and transversal components of velocity and acceleration we have to 
multiply equations (1.17) by exp(iφ). As a result we get: 

 Radial component Transversal component 
velocity r&  ϕ&r  
acceleration 2ϕ&&& rr −  ϕϕ &&&& rr +2  

 
 
1.3. Force and Motion, Newton’s Second Law 

When we push a physical body we apply the force of our body to move a body. We feel a 
certain strain in our body and we say we applied a force. In mechanics force is not meant 
(understood) a physiological feeling but the physical cause changing the state of motion of 
bodies. Forces result from interaction between bodies.  The change of motion is equivalent to 
acceleration different from zero. As we know the relation between force and acceleration is 
given by the Newton’s Second Law: 

 Frmam
r

&&rr ==          (1.20) 

m is the inertial mass of a body. Using the same device to accelerate bodies we obtain: 

 ( ) jijijjii ammamam ++== rrr
       

The inertial mass is an additive quantity, i.e.: 

 2121 mmm +=+        (1.21) 

where mi+j is the mass of a body consisting of two bodies of mass mi and mj kept together. 

The equation (1.20) is equivalent to three scalar equations: 
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z

y

x

Fzm

Fym

Fxm

=

=
=

&&

&&

&&

        (1.22) 

Taking into account the relation dt
vdr
r

&&r =  we obtain assuming that m=constant: 

 F
dt

pd r
r

=         (1.23) 

Equation (1.23) is more general form of equation (1.20). Calculating the integral of (1.23) in 
respect to time we obtain: 

∫∫ =−=
t

t

t

t

dtFppdt
dt

pd

00

0

rrr
r

      (1.24) 

The integral ∫
t

t

dtF
0

r
 is called the impulse of the force F

r
.  

INSERT: When the impulse of a force is equal to zero, no change of momentum is 
observed. This leads to the Law of Conservation of Momentum. The impulse of a 

force can be equal to zero if either 0=F
r

  or the time during which a force is 
applied is equal to zero. In many practical cases  the time of application of a force is 
so short that it can be assumed to be zero to the first approximation. This is the case 
of well known problem of a shell exploding at the highest point of its trajectory.   

 

1.3.1. Conservation of momentum 
If the impulse of a force equals zero then we have for a body: 

 0pp
rr =         (1.25) 

which just means that the momentum a body remains constant. 

1.3.2. Conservation of energy, potential field 
Let us assume that a point-like particle moves under the time-dependent force F

r
. The 

Newton’s Law for such a body is of the form: 

 Fvm
r

&r =         (1.26) 

Multiplying (1.26) by v
r

 and taking into account ( ) vvv
dt

d &rrr
22 =  we obtain: 

 vF
vm

dt

d rr
r

=








2

2

       (1.27) 

Denoting the kinetic energy T
vm =
2

2r

  we get: 

 vF
dt

dT rr=         (1.28) 

Calculating the integral of both sides of equation (1.28) we obtain: 
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 ∫ ∫=−=
t

t

t

t

dtvFTTdt
dt

dT

0 0

0

rr
      (1.29) 

 

 
Fig.1.6. Point-like particle moves along  the curve C under a time dependent force )(tF

r
.  

Let us consider the right-side part of equation (1.29). Both the force and the velocity are 
vectors and may be time-dependent (see Fig.1.6). The integral can be rewritten in the form: 

( ) ( )

( ) ∫∫∑

∫ ∫ ∑

=++=∆+∆+∆

=∆++=++=

=∞⇒

=∞⇒

P

P

z

P

P

yx

n

i
iziyix

n

t

t

t

t

n

i
izzyyxx

n
zzyyxx

sdFdzFdyFdxFzFyFxF

tvFvFvFdtvFvFvFdtvF

iii

iiiiii

00

0 0

1

1

lim

lim

rr

rr

 (1.30) 

The expression  ∫∫ =++
P

P

z

P

P

yx sdFdzFdyFdxF
00

rr
 is a curvilinear integral and is equal to the 

work of the force F
r

 at the curve C between the points P0 and P.  

 

1.3.2.1. Potential and conservative fields 

Let us assume that there exist in a three-dimensional space such a scalar function ),( trV
r

 
that at any point of the space the force acting on a body is given by: 

 ),( trgradVF
rr

−=         (1.31) 

The function ),( trV
r

 is called the potential of the field. If the potential is time independent the 
field is conservative. The work in a conservative field is equal to: 

 ∫ ∫ ∫ ∂
∂+

∂
∂+

∂
∂−=−==

P

P

P

P

P

P

dz
z

V
dy

y

V
dx

x

V
sgradVdsdFW

0 0 0

rrr
   (1.32) 

MATHEMATICAL INSERT: The expression dzzyxfdyzyxfdxzyxf ),,(),,(),,( 321 ++  

is the total differential  if there exists such a function U(x,y,z) that the following equations  
are  fulfilled: 
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3

2

1

f
z

U

f
y

U

f
x

U

=
∂
∂

=
∂
∂

=
∂
∂

          (1.33) 

The curvilinear integral of the total differential is given by: 

 ∫ −=
P

P

PUPUdifftot
0

)()(.. 0        (1.34) 

Taking into account the above property of the integral we get for a conservative field: 

 ( )∫ −=−−== )()(()( 00 rVrVrVrVsdFW
rrrrrr

     (1.35) 

so we get: 

 ∫−=
P

P

sdFrVrV
0

)()( 0

rrrr
        (1.36) 

It results from equation (1.36) that the potential is a relative quantity, i.e. in order to define 
potential of a point in space we have to define the potential of the reference point 0r

r
. 

Combining ((1.36) and (1.26) we obtain the Law of Conservation of Energy in a conservative 
field: 

 V+T = V0+T0 = constant      (1.37) 

 

1.3.3. Conservation of Angular Momentum 
Let us assume a point-like particle moves in a 3D space (see Fig.1.7).  The equation of 

motion is: 

 F
dt

vmd r
r

=)(
        (1.38) 

Multiplying (1.38) by ×r
r

 we get: 

 
( )

Fr
dt

vmd
r

rr
r

r ×=×        (1.39) 

Taking into account that 0=× vmv
rr

 we obtain: 

 
( )

D
dt

Jd

Frvmr
dt

d

r
r

rrrr

=

×=×
       (1.40) 
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Fig.1.7. Motion of a point-like particle  in 3D space.  

where vmrJ
rrr

×=  is the angular momentum and FrD
rrr

×=  id the moment of the force F
r

 
about the zero point of the reference frame. As results from the definition the vector of 
angular momentum is perpendicular both to the position vector r

r
 and to the momentum vm

r
, 

i.e. the angular momentum is perpendicular to the plane of motion. If for some reasons the 
moment of force equals zero, the angular momentum is time-independent. In other words we 
have to do with a plane motion in such a case.   

 

1.4. Central force 
The central force is defined by the equation: 

 F
r

r
F

r
r

=         (1.41) 

where r
r

 is a position vector, r is its length so r
r
r

 is a unit vector parallel to the position 

vector (see Fig.1.8).  The moment of a central force about the zero of the frame of reference 

 

Fig.1.8. Definition of central force. 

is equal to: 

 0=×= F
r

r
rD

r
rr

       (1.42) 

so any motion in the field of central force is a plane phenomenon.  We shall prove that if the 
potential of field of a force depends only on the length of the position vector V=V(r) the field 
of the force is a central one. 
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Assuming that we have to do with a conservative field and that V=V(r) we get the 
following expression for the force taking into account that V(r(x,y,z)) is a composition of 
functions : 

( )
r

r

dr

dV
zkyjxi

rdr

dV

zyx

z
k

zyx

y
j

zyx

x
i

dr

dV

z

r

dr

dV
k

y

y

dr

dV
j

x

r

dr

dV
i

z

V
k

y

V
j

x

V
irgradVF

r
rrr

rrr

rrr

rrrr

−=++−=

=














++
+

++
+

++
−

=








∂
∂+

∂
∂+

∂
∂=

=








∂
∂+

∂
∂+

∂
∂−=−=

1

)(

222222222

 (1.43) 

1.4.1. Binet’s formula 
As shown above, in the case of motion in a field of central force the motion takes place in a 

plane. This enables to describe such a motion with polar coordinates. Our task is to find the 
equation of motion of a point-like particle in a field of central force using the polar 
coordinates, i.e. we want to find the equation of trajectory in the form r=r(φ).  

The angular momentum is given by1: 

 ϕ&rr 2mrmrvvmrJ ==×= ⊥       (1.44) 

The equation of motion for a field of central force is in the form: 

 
r

r
Fam r

r
r =   /

r

r
r

•       (1.45) 

so we obtain: 

 rr Fma =         (1.46) 

where ar is the radial acceleration and Fr is the central force (the zero of the frame of reference 
is in the centre of the field).  Taking into account the formula for radial acceleration and 
(1.44) we get the set of two equations: 

 
( )

ϕ
ϕ
&

&&&

2

2

mrJ

Frrm r

=

=−
       (1.47) 

In order to obtain trajectory of motion in the form r=r(φ) we have to eliminate time from the 
set of equations.  The radius vector r

r
 can be represented by the following composition of 

functions r=r(φ(t)), so we obtain: 

 
φφ

φ
φ d

r
d

m

J

mr

J

d

dr

d

dr
r










−===

1

2
&&      (1.48) 

                                                 
1 Because the movement is a plane one, we can use the scalar value of the angular momentum as we know that 
the angular momentum is perpendicular to the plane of movement and it direction is constant.   
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2

2

22

2

22

2

2

11

φφφ
φ

φ d
r

d

rm

J

mr

J

d
r

d

m

J

mr

J

d

rd

dt

d

d

rd
r










−=









−===
&&

&&   (1.49) 

 rF
rm

J

d
r

d

rm

J
m =



















−









−
32

2

2

2

22

2

1

φ
     (1.50) 

and finally we get 

 rF
rd

r
d

mr

J =



















+








− 1

1

2

2

2
2

φ
  Binet’s formula  (1.51) 

Equation (1.51) is known as Binet’s formula. Let us use the formula to solve the common 

case of field of central force in which the radial force is of the form 
2

1
r

kFr −= . 

EXAMPLE: The central force given by 
2

1
r

kFr −= .  The Binet’s equation is: 

  
22

2

2

2 11
1

r
k

rd
r

d

mr

J −=



















+









−
φ

    so we get: 

  
22

2

1
1

J

km

rd
r

d
=+










φ
 let’s now substitute x

r
=1

 and we get: 

  
22

2

J

km
x

d

xd =+
φ

   

  function 
2

cos
J

km
Ax += φ  is a solution of the above equation, so we obtain: 

  

φcos1
2

2

km

AJ
km

J

r

+
=  

  The above equation can be recognized as the ellipse equation2. 

 

 
1.5.  Constrained motion of a point-like particle 

Let us suppose that a motion of a point-like particle is constrained (limited) to a surface of a 
sphere, the centre of the sphere is at the zero point of Cartesian coordinates (see Fig.1.9).  

                                                 

2 
φcos1 ⋅+

=
e

p
r . If e<1 we get the ellipse, if e=1 we get parabola, if e>1 we get hyperbola. 
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Fig.1.9. Point-like particle is constrained to 
the surface of a sphere.  

 

The coordinates of the point-like particle 
have to satisfy the equation: 

 2222 Rzyx =++  (1.52) 

The equation is called the equation of constraints.  

EXAMPLE 1: Point-like particle moves on a surface of vertical cylinder. The radius of 
cylinder’s base increases linearly with time (see Fig.1.10). 

 
Fig.1.10. Particle on a surface of vertical cylinder. 

The coordinates (x,y,z) of the point remaining on the surface of such a cylinder have to 
satisfy the equation tyx 10

22 ρρ +=+ .   

EXAMPLE 2: A point-like particle moves inside of a sphere shown in Fig.1.9. 

In this case the equation of constraints becomes inequality of the form: 

02222 <−++ Rzyx  or  02222 ≤−++ Rzyx  depending on whether the points of the 
surface are available for the particle or not.  

EXAMPLE 3: A point-like particle moves at a circle in the xz plane (see Fig.1.11).  

 

Fig.1.11. Particle at a circle in the xz plane. 

Equations of constraints:  
( ) ( )

0

022
0

2
0

=
=−−+−

y

Rzzxx
 

 
EXAMPLE 4: Motion of a point-like particle is restricted to a surface of a sphere 
moving in space. The equation of constraints are  

 ( ) ( ) ( ) 02222 =−−+−+− Rctzbtyatx    
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In general a point-like particle or system of particles are not usually free to execute purely 
arbitrary motions. The motions are often required to satisfy certain geometrical conditions 
called constraints. If equations (or inequalities) of constraints can be written in the form  

 0),,,( =tzyxf    or    0),,,( ≤tzyxf   or   0),,,( ≥tzyxf     (1.53) 

such constraints are HOLONOMIC CONSTRAINTS. In some cases the equations of 
constraints contain time derivatives of coordinates, so the equations of constraints are of the 
form: 

 0),,,,,,( =tzyxzyxf &&&   or   0),,,,,,( ≤tzyxzyxf &&&   or  0),,,,,,( ≥tzyxzyxf &&&  (1.54) 

This kind of constraints are non-holonomic constraints.  

In cases where these geometrical conditions do not change with time, the constraints are 
said to be FIXED or SCLERONOMUS or STATIONARY. In cases where they depend on 
time, the constraints are said to be VARIABLE or RHEONOMUS or NON-STATIONARY.  

The constraints expressed by an equality are BILATERAL CONSTRAINTS, the constraints 
expressed by an inequality are UNILATERAL CONSTRAINTS. 

As we see, a constraint is a geometric or kinematic condition that limits the possibilities of 
motion. In such a case we say that a particle or a system of particles is subject to constraints 
given by equations (1.53) or (1.54). 

 

1.5.1. Constrain forces, work of constrain forces 
The equation of motion of a point-like particle restricted by some constraints reads: 

 RFFrm
rr

&&r +=           (1.55) 

where F
r

 is the applied force and RF
r

 is the constrained (reaction) force. It results from all 
experiments and observations that the constrained force is perpendicular to the surface of 
constraints provided that  friction is included in the applied forces.  If so, the constrain force 
for the case of motion on a surface given by equation f(x,y,z)=0 can be written as: 

 )( fgradFR ⋅= λ
r

         (1.56) 

If a motion of a point-like particle is restricted  on a curve given by two equations f1(x,y,z)=0  

 
Fig.1.12. The reaction forces resulting from interaction with the two surfaces are 
perpendicular to the surfaces. The total reaction force is a linear combination of the two 
reaction forces F1 and F2 (see equation (1.57). 

and f2(x,y,z)=0 (see Fig.1.12) the reaction force is given by: 

 )()( 2211 fgradfgradFR ⋅+⋅= λλ
r

        (1.57) 
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1.5.2. Work of reaction forces 
Work of a reaction force in case of motion at a surface defined as f(x,y,z,t)=0 is given by: 

 ( ) dtrfgradsdFW RR
&rrr

⋅=⋅= λ        (1.58) 

In case of fixed constraints we have: 

 ( ) rfgradz
z

f
y

y

f
x

x

f

dt

df &r&&& ⋅=
∂
∂+

∂
∂+

∂
∂==0      (1.59) 

Because the vector r&
r

 is perpendicular to grad(f), the work of reaction force in case of fixed 
constraints is equal to zero.  When we have to do with variable constraints: 

 ( )
t

f
rfgrad

t

f
z

z

f
y

y

f
x

x

f

dt

df

∂
∂+⋅=

∂
∂+

∂
∂+

∂
∂+

∂
∂== &r&&&0    (1.60)  

Because the derivative t
f

∂
∂   need not be zero, the work of reaction forces is not equal to zero 

in this case.  
 
1.5.3. Motion at a surface – equation of motion 
 Let us assume that a point-like particle moves at a surface f(x,y,z,t) under an applied 
force F

r
. The equations describing the motion are as follows: 

 
( )

0,,,( =
+=+=

tzyxf

fgradFFFrm R λ
rrr

&&r

      (1.61) 

Our aim is to eliminate λ (which can be function of time) from the above equations in order to 
obtain equation of motion in the form: 

 ),,( rrffunctionFrm
r&r

r
&&r +=        (1.62) 

The first derivative of f(x,y,z,t) is: 

 ( )
t

f
rfgrad

t

f
z

z

f
y

y

f
x

x

f

dt

df

∂
∂+⋅=

∂
∂+

∂
∂+

∂
∂+

∂
∂= &r&&&     (1.63) 

and the second one is as follows: 

 ( ) ( )
t

f

dt

d
fgrad

dt

d
rfgradr

dt

fd

∂
∂++= )(

2

2
&r&&r      (1.64) 

Combining (1.64) and (1.61) we get: 

 ( )fgradFrm λ+=
r

&&r             (1.65) 

where λ is given by: 

 
( ) ( )

( )( )2fgrad

fgradF
t

f

dt

d
fgrad

dt

d
rm

r
&r −









∂
∂+−

=λ      (1.66) 

The above equations are quite complex and though it is often possible to solve them in many 
practical cases using contemporary computer numerical methods, there exist better methods to 
solve motion of constrained systems. The methods will be a subject of  the future lectures. 

 



18 

1.5.4. Motion at a curve – equation of motion 
 In case of motion at a curve defined as an intersection of two surfaces f1(x,y,z,t) and 
f2(x,y,z,t) the set of equations of motion reads: 

 

( ) ( )
( )
( ) 0,,,

0,,,

2

1

2211

=
=

++=

tzyxf

tzyxf

fgradfgradFrm λλ
r

&&r

      (1.67) 

It is possible to eliminate λ1 and λ2 from the above set of equations in order to get the 
equation in the form: 

 ( )21,,, ffrrfunctionFrm
r&r

r
&&r +=       (1.68) 

but the equations obtained are so complex it does not pay to solve the problem in this way.  
However, it often is possible to get much useful information about a motion in the way 
presented below. We shall also get familiar with the so-called Γ special function. 

Let us multiply the equation of motion by a unity vector t
r

 tangent to the trajectory: 

 

tt

tt

R

Fam

Fam

tFtFtam

=
+=

⋅+⋅=⋅

r

r

rrrrrr

0                (1.69) 

where ta  is a tangent acceleration, tF  is a tangent component of a force applied. 0=⋅ tFR

rr
 

because the reaction force is perpendicular to the trajectory. As a consequence we get: 

 tFsm =&&          (1.70) 

s is the distance covered by a particle, the distance is equal to the length of curve between the 
initial and the final points of motion. Let us use the above equation to solve a problem of 
mathematical pendulum for the amplitude angle equal to π/2 (see Fig.1.13). 

 

Fig.1.13. Mathematical pendulum. The amplitude of motion is equal to π/2. 

The tangent component of force is given by: 

 αsinmgFt −=        (1.71) 

So we get: 

 αsinmgsm −=&&        (1.72) 

Using simple geometrical relations αls =  and α&&&& ls =  we obtain: 



19 

 αα sin
l

g−=&&   multiplying by α&⋅/     (1.73) 

 αααα sin&&&&
l

g−=        (1.74) 

Taking into account that ( ) ααα &&&& =2

2

1

dt

d
 and 

( ) ααα
&⋅−= sin

cos

dt

d
 we get: 

 ( ) ( )
dt

d

l

g

dt

d αα cos

2

1 2 −=&       (1.75) 

Integrating the above equation we obtain: 

 C
l

g += αα cos
2

1 2
&        (1.76) 

C is a constant. Because 0=α&   when α=0 the constant C=0, so we get: 

 αα cos
2

1 2

l

g=&        (1.77) 

Rearranging  the equation we obtain: 

 αα
cos

2

l

g

dt

d =        (1.78) 

Separating the variables in the above equation we get: 

 dt
l

gd 2

cos
=

α
α

       (1.79) 

Integrating the above equation between the angles 0 and π/2 we get: 

 ∫ ∫ ==
2/

0

4/

0 4

22

cos

π

α
α T T

l

g
dt

l

gd
     (1.80) 

The integral at the left side of the above equation cannot be expressed by algebraic or 
trigonometric functions. In order to calculate the left-side integral we have to use co-called Γ-
function.  

 

1.5.4.1. Gamma     function and Beta function 
The definition of Gamma function is as follows: 

 ∫
∞

−−=Γ
0

1)( dxexp xp        (1.81) 

Let us prove the following theorem: 

 )()1( ppp Γ=+Γ        (1.82) 

Using the definition (1.81) we obtain ∫
∞

−=+Γ
0

)1( dxexp xp .       

Calculating the integral by integration by parts  we  get:   
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( )∫ ∫
∞

−−−−∞− Γ==−−−=+Γ
0

11
0 )()1( ppdxexpdxexpexp xpxpxp  (1.83) 

 

 

 
 
 
 
 
 
 
 

Fig.1.14. Gamma  function in the range between (-5,5) and (0,4)3. 

 

For p=1 ∫ ==Γ −
2/

0

1)1(
π

dxe x , for p=2 Γ(2)=1·Γ(1)=1, for p=3 Γ(3)=2·1=2, and in general: 

 Γ(n+1)=n!        (1.84) 

The shape of Gamma function in the range of p (-5,5) is shown in Fig.1.14.   

The definition of Beta function is as follows: 

 ( ) ( )∫
−−=

2/

0

1212 cossin2),(
π

θθθβ dqp qp      (1.85) 

The relation between Gamma function and Beta function is given by: 

 ( )
)(

)()(
,

qp

qp
qp

+Γ
ΓΓ=β        (1.86) 

For p=1/2 and q=1/4 Beta function is equal to: 

 ( )
l

gT
d

2

4
cos

4

1
,

2

1 2/

0

2

1

==







∫

−π

ααβ      (1.87) 

So we obtain: 

 








Γ








Γ






Γ
=







=

4
3

4

1

2

1

4
1

,
2
12

4
β

l

gT
     (1.88) 

Taking into account that: 

                                                 
3 Wikipedia 
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2254167024.1
4
3

6256099082.3
4
1

7724538509.1
2
1

=






Γ

=






Γ

=






Γ

 

we obtain the following relation: 

 
g

l
T 4163.7≅        (1.89) 

 

1.6. D’Alembert principle 
D’Alembert principle is another form of  equations of motion, very useful for our further 

considerations. We shall consider three various cases of motion of a point-like particle. 

1.6.1. Free point-like particle  
D’Alembert principle for a free point-like particle reads: 

 ( ) 0=− rrmF
r&&r

r
δ        (1.90) 

where r
rδ is an arbitrary vector. We shall prove that such a form of equation of motion is 

equivalent to the Newton’s second law: 

 rmF &&r
r

=         (1.91) 

I: If rmF &&r
r

=   then 0=− rmF &&r
r

 so multiplying by arbitrary vector r
rδ  we obtain 

0)( =− rrmF
r&&r

r
δ .  

II: If  ( ) 0=− rrmF
r&&r

r
δ  for arbitrary r

rδ , this can be true only if  0=− rmF &&r
r

 which leads to the 
Newton’s second law. 

 

1.6.2. Point-like particle on a surface 
The Newton’s equation of motion in this case is of the form: 

 
( )

( ) 0, =
+=

trf

fgradFrm
r

r
&&r λ

       (1.92) 

We shall show that the above equations are equivalent to d’Alembert principle for such a case 
given in the form: 

 

( )
( )

( ) 0

0,

0

=⋅
=

=−

rfgrad

trf

rrmF

r

r

r&&r
r

δ

δ
       (1.93) 

In this case the vector r
rδ  is not arbitrary, it satisfies the additional condition  

( ) 0=⋅ rfgrad
rδ . 

I: If we multiply the equation ( )fgradFrm λ+=
r

&&r  by r
rδ  satisfying the condition 

( ) 0=⋅ rfgrad
rδ  we obtain immediately (1.93) 
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II: Let us multiply the third equation of (1.93) by an arbitrary (for the time being) λ and let us 
add the result to the first equation of (1.93). We get: 

 ( )( ) 0=−+ rrmfgradF
r&&r

r
δλ        (1.94) 

Now let us analyse the condition ( ) 0=⋅ rfgrad
rδ . It can be rewritten in the form: 

 0=
∂
∂+

∂
∂+

∂
∂

z
z

f
y

y

f
x

x

f δδδ       (1.95) 

Vector grad(f) cannot be equal to zero which means that at least one of its components is 

different from zero. Let us assume that 0≠
∂
∂
x

f
. The x-component of  r

rδ  can be written as: 

 

x

f

z
z

f
y

y

f

x

∂
∂










∂
∂+

∂
∂−

=
δδ

δ       (1.96) 

It results from (1.96) that the components δy and δz remain independent and arbitrary, but the 
x-component δx does depend on the other two. Let us rewrite (1.94) in the form: 

 0=






 −
∂
∂++







 −
∂
∂++







 −
∂
∂+ zzm

z

f
Zyym

y

f
Yxxm

x

f
X δλδλδλ &&&&&&     (1.97) 

X,Y and Z are components of the force F
r

.  The coefficient λ has been assumed to be 
arbitrary so far. Let us take such a value of λ for which the following expression is satisfied: 

 0=−
∂
∂+ xm
x

f
X &&λ         (1.98) 

This just means that  the λ is given by 

x

f
Xxm

∂
∂
−=
&&λ . It is possible because we assumed that  

0≠
∂
∂
x

f
. If so, (1.97) is reduced to the form: 

 0=






 −
∂
∂++







 −
∂
∂+ zzm

z

f
Zyym

y

f
Y δλδλ &&&&     (1.99) 

The above equation has to be satisfied for arbitrary values of δy and δz. This is possible only 
when  

0=−
∂
∂+ ym
y

f
Y &&λ        (1.100) 

and 

0=−
∂
∂+ zm
z

f
Z &&λ        (1.101) 

Equations (1.98), (1.100) and (1.101) are equivalent to (1.92).  
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1.6.3. Point-like particle at a curve 
The equations of motion are as follows: 

 

( ) ( )
( )
( ) 0,

0,

2

1

2211

=
=

++=

trf

trf

fgradfgradFrm

r

r

r
&&r λλ

     (1.102) 

( ) 0,1 =trf
r

 and ( ) 0,2 =trf
r

 are equations of  two surfaces intersecting along a curve defined 
in this way. The two functions are independent of each other to avoid two parallel surfaces 
which do not intersect. We shall prove that the equations (1.102) are equivalent to d’Alembert 
principle written in the form: 

 

( )
( )
( )

( )
( ) 0

0

0,

0,

0

2

1

2

1

=⋅
=⋅

=
=

=−

rfgrad

rfgrad

trf

trf

rrmF

r

r

r

r

r&&r
r

δ
δ

δ

       (1.103) 

I: If we multiply the first equation of (1.102) by r
rδ  satisfying the conditions ( ) 01 =⋅ rfgrad

rδ  

and ( ) 02 =⋅ rfgrad
rδ  we get the first equation of (1.103). 

II: Let us multiply the last two equations of (1.103) by arbitrary (for the time being) 
coefficients λ1 and λ2 and let us add them to the first one of (1.103). We get: 

( ) ( )( ) 02211 =−++ rrmfgradfgradF
r&&r

r
δλλ     (1.104) 

Equation (1.104) can be written in the form: 

02
2

1
1

2
2

1
1

2
2

1
1

=






 −
∂
∂+

∂
∂++

+






 −
∂
∂+

∂
∂++







 −
∂
∂+

∂
∂+

zzm
z

f

z

f
Z

yym
y

f

y

f
Yxxm

x

f

x

f
X

δλλ

δλλδλλ

&&

&&&&

  (1.105) 

MATHEMATICAL INSERT: 
 Dependent and independent functions 
 Let us consider a set of m functions of n variables f1(x1,…,xn),…, fm(x1,…,xn). Let us 
 assume that values of one of the functions fj(x1,…,xn) is uniquely specified by the  other 
 functions: 
  fj(x1,…,xn)=φ(f1,…,fj-1,fj+1,…,fm) 
 The function fj is dependent on the other functions. If none of the functions composing 
 the set of functions is dependent on the others, the functions are independent.  
 EXAMPLE: For the functions: 

  

( )
( )
( ) ( )( ) ( ) ( )23

2
2132

2
1

2
3

2
2

2
113

23112

32111

11,...,

,...,

,...,

xxxxxxxxxxxf

xxxxxf

xxxxxf

n

n

n

−−−−++=

+=
−=

 

 The following identity is satisfied: 

  2
221

2
13 fffff +−=  
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 System of independent functions. 
Let us assume that there exist m functions of n variables f1(x1,…,xn), …, fm(x1,…,xn) 
and n>m. If there exists a different from zero determinant of m degree in the Jacobi 
matrix  































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

n

mmm

n

n

x

f

x

f

x

f

x

f

x

f

x

f
x

f

x

f

x

f

...

............

...

...

21

2

2

2

1

2

1

2

1

1

1

       (1.106) 

the system of m functions is independent4. The convert theorem is also true. Let us 
note that the system of two functions f1(x,y,z) and f2(x,y,z) is to be independent to 
define a curve. 

The two last equations of (1.103) are conditions which limit the values of the vector r
rδ . Let 

write them in the form: 

 
0

0

222

111

=
∂
∂+

∂
∂+

∂
∂

=
∂
∂+

∂
∂+

∂
∂

z
z

f
y

y

f
x

x

f

z
z

f
y

y

f
x

x

f

δδδ

δδδ
      (1.107) 

The matrix of coefficients of the above set of equations is: 

 



















∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

z

f

y

f

x

f
z

f

y

f

x

f

222

111

       (1.108) 

Functions f1 and f2 are independent. This implies that it is possible to extract from the matrix 
determinant different from zero. Let us assume that the non-zero determinat is: 

 0
22

11

≠

∂
∂

∂
∂

∂
∂

∂
∂

y

f

x

f
y

f

x

f

        (1.109) 

If so, the following set of equations can be solved: 

 
z

z

f
y

y

f
x

x

f

z
z

f
y

y

f
x

x

f

δδδ

δδδ

∂
∂−=

∂
∂+

∂
∂

∂
∂−=

∂
∂+

∂
∂

222

111

       (1.110) 

The solution of the above set of equation can be written in general as: 

                                                 
4 The necessary and sufficient condition for m functions of n variables f1(x1,…,xn),…,fm(x1,…,xn) to be 
independent is that it is possible to find a different from zero determinant of m degree in the Jacobi matrix of the 
system.  
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δx=function(δz) 
δy=function(δz) 

i.e. both δx and δy are dependent on δz. The only independent component of the vector r
rδ  is 

δz.  

We choose such values of λ1 and λ2 in the first two components of (1.105) so that the 
following two equations are satisfied: 

 
Yym

y

f

y

f

Xxm
x

f

x

f

−=
∂
∂+

∂
∂

−=
∂
∂+

∂
∂

&&

&&

2
2

1
1

2
2

1
1

λλ

λλ
      (1.111) 

It is possible because the determinant of the above set of equations is determinat of inverse of 
the matrix (1.109) which is not equal to zero. So it remains from (1.105): 

 02
2

1
1 =







 −
∂
∂+

∂
∂+ zzm

z

f

z

f
Z δλλ &&      (1.112) 

for arbitrary values of the component δz. It can be possible only when the expression in the 
bracket is zero, so finally we obtain: 

 

z

f

z

f
Zzm

y

f

y

f
Yym

x

f

x

f
Xxm

∂
∂+

∂
∂+=
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∂+
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∂
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1
1

2
2
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1
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λλ
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λλ

&&
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&&

      (1.113) 

The above set of equations is equivalent to the equation (1.102).  

 

1.7. Displacements real, possible and virtual 
Real displacement results from solution of equations of motion for a given case. It is given 

by: 

 dtrrd &rr =          (1.112) 

Possible displacement  is a displacement permissible (admissible) by constraints. For  variable 
constraints a possible displacement r

r∆  is given by: 
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For fixed constraints the possible displacement is: 

 ( ) rfgradz
z

f
y

y

f
x

x

f r∆⋅=∆
∂
∂+∆

∂
∂+∆

∂
∂=0     (1.114) 

A real displacement is one of the possible displacements. 

The most important for our further consideration is the definition of virtual displacement r
rδ . 

It is defined as: 

 ( ) 0=⋅ rfgrad
rδ        (1.115) 
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According to the above definition virtual displacement is perpendicular to grad f, i.e. tangent 
to the surface of constraints, but in case of variable constraints the constrains are assumed to 
be stopped for a moment. 

 

1.8.  Constrained system of point-like particles, virtual displacement of constrained     
        system 

Let us consider the limits of motion of two point-like particles connected with a stiff rod. If 
the length of this rod is l, the equation describing the constrains are: 

 ( ) ( ) ( ) 022
12

2
12

2
12 =−−+−+− lzzyyxx     (1.116) 

If the two points were connected with a thread, the constraints would be unilateral and would 
be described by: 

 ( ) ( ) ( ) 022
12

2
12

2
12 ≤−−+−+− lzzyyxx     (1.117) 

EXAMPLE 1: Two point-like particles are connected with a stiff rod and move on the 
xy plane at a circle. The length of the rod is l, the radius of the circle is R, its centre is 
at the zero of frame of reference. 
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EXAMPLE 2: Two point-like particles are connected with a stiff rod. Point O of this 
rod divides it into two segments in relation 2:1 and is fixed at the zero point of 
Cartesian  frame of reference. The rod can rotate freely around point O.   
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In general equations of constrains for a system of n point-like particles are: 

 ( ) 0,,..., 21 =trrrf nk

rrr
       (1.118) 

for bilateral constraints and: 

 ( ) 0,,..., 21 ≤trrr nk

rrrφ        (1.119) 

for unilateral constraints. k=1,…,p is a number of equations (or inequalities). 

 

1.9. Degrees of freedom 
The number of independent coordinates necessary to define position of a free single point-

like particle is 3. When motion of such a particle is restricted by 1 equation of constraints (for 
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instance 02222 =−++ Rzyx ) then one of the three coordinates can be calculated if the other 
two are known, so the number of coordinates necessary to define position of a particle is 
reduced by one.  

For two free point-like particles the number of coordinates necessary to define position of 
the system is 6 and in general, the number of coordinates necessary to define position of a 
system of n free point-like particles is 3n. Each equation of constraints reduces the number of 
coordinates by one, so the number of degrees of freedom is given by: 

 pnf −= 3         (1.120) 

where p is the number of equations of constraints.  

1.10. Virtual displacement of a system of point-like particles 
For 2 point-like particles moving at a surface ( ) 0,, 21 =trrf

rr
  their virtual displacement 1r

rδ  

and 2r
rδ  is defined as (see Fig.1.15): 

 ( ) ( ) 02211 =+ rfgradrfgrad
rr δδ      (1.121) 

where gradi is defined as: 

 
iii

i z
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x
igrad

∂
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∂
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∂
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rrr
      (1.121a) 

 

Fig.1.15. Gradients at two different points are perpendicular to the surface 
( ) 0,, 21 =trrf

rr
. The virtual displacements 1r

rδ  and 2r
rδ   have to be perpendicular to the 

gradients, i.e. they are tangent to the surface.  

For motion at a curve defined by equations of two surfaces  ( ) 0,, 211 =trrf
rr

  and ( ) 0,, 212 =trrf
rr

 
the virtual displacement is defined as: 

 
( ) ( )
( ) ( ) 0

0

222121

212111

=+
=+

rfgradrfgrad

rfgradrfgrad
rr

rr

δδ
δδ

     (1.122) 

It results from the above equations that the two components of the virtual displacement  1r
rδ  

and 2r
rδ  are perpendicular to both surfaces with respect to coordinates of the two points.  

For n point-like particles restricted by constraints given by p equations ( ) 0,,...1 =trrf nk

rr
, 

k=1,…,p, the virtual displacement is defined by the following p equations: 

 ( )∑
=

=⋅
n

i
iki rfgrad

1

0
rδ   for k=1,…,p    (1.123) 
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1.11. Configuration space  
 Let us assume we have a system of n point-like particles, their position in space is 
defined by n radius-vectors [ ]iiii zyxr ,,=r

, i=1,…,n. Let us define the following relation 

between the coordinates [xi,yi,zi] and new coordinates of a 3n-dimensional space 
corresponding to the previous ones: 
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−

        (1.124) 

which can be written in general form: 

 iiiiii xxxzyx 31323 ,,,, −−⇒       (1.125) 

A point of 3n-dimensional space x=[x1,x2,…,x3n] is defined in this way. This point represents 
position of the whole system and is often called a representative point.  

An identical transformation of coordinates of forces holds: 

 iiiiii XXXZYX 31323 ,,,, −−⇒       (1.126) 

The new 3n-dimensional space is called a configuration space.  In order to make easier to 
write equations of motions in a configuration space the following correspondence between 
mass of the i-point and the mass corresponding to consecutive coordinates of configuration 
space: 

 iiii mmmm 31323 ==⇒ −−       (1.127) 

Having defined the configuration space we can write down the position, the equations of 
motion and the virtual displacement in the way shown in the table below. 

Position [ ]
ni

zyxr iiii

,...,1

,,

=
=r

 
x=[x1,x2,…,x3n]; x represents 
all components of radius 
vector 

Equations of motion 
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Frm iii

,...,1=
=

r
&&r

 
nj

Xxm jjj

3,...,1=

=&&
 

Constraints ( )
pk

trrf nk

,...,1

0,,...,1

=
=rr

     f=3n-p 
( )
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txf f

,...,1

0,

=

=
   f=3n-p 

Virtual displacement of a 
free system of point-like part. 

[ ]
ni

zyxr iiii

,...,1

,,

=
= δδδδr

 

δxi,δyi,δzi are unrestricted 

δx=[δx1,δx2,…,δx3n] 
The values of δxj are 
unrestricted, j=1,…,3n 

Virtual displacement of a 
constrained system of point-
like particles 
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=⋅
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i
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0
rδ  

 i=1,…,n 

0
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=
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k x
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f δ  

k=1,…,p 
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1.12. Laws of motion of constrained systems 
 For a single point-like particle the equations of motion can be written in the form: 

1. FORCESREACTIONCONTRAINTS _⇒   RF
r

 

2. RFFrm
rr

&&r +=   where the reaction force  ( )fgradFR λ=
r

  

3. Definition of the virtual displacement   ( ) 0=⋅ rfgrad
rδ  leads to the conclusion that the 

work on the virtual displacement is 0=⋅= rFW R

rr
δ .  

For a system of point-like particles restricted by a number of equations of constraints the 
equations of motion are as follows: 

1. FORCESREACTIONCONTRAINTS _⇒    
iRF   or in the configuration space 

jRX  

2. 
iRiii FFrm

rr
&&r +=  or in the configuration space  

jRjjj XXxm +=&&  

3. The total work of  reaction forces on the virtual displacements is equal to zero: 

 ∑ ∑
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==⋅
n n

j
jRiR xXrF

ji
1

3

1

0δδr
r

      (1.128) 

The first two points are quite obvious, the second one just results from the Newton’s Second 
Law. The third point does not result from the Newton’s Laws directly and cannot be derived 
from the Newton’s Laws. It has been tested for numerous constrained systems and the final 
results justify acceptance of this point.  

 
1.13. D’Alembert principle of a system in configuration space 

Equations of motion of a system of n point-like particles can be written in the form: 
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  for k=1,…,p     (1.129) 

Let us multiply the first equation by  the components of the virtual displacement  defined by 

∑
=

=
∂
∂n

j
j

j

k x
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f3

1

0δ  (the table below) and let us summarise the results with respect to  the index j. 
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The last component of the above equation is zero (the work on the virtual displacement), so 
we get: 
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The above set of equations is d’Alembert principle. The principle states that the sum of 
virtual works of applied and inertial forces, acting on a system subject to constraints given by 
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a set of equations fk(x,t)=0, is zero (k=1,…,p). The principle will be our starting point to 
obtain Lagrange equations of the first kind and the second kind. 

 

1.14. Principle of virtual work 
Let us suppose that a system of n point-like particles is in equilibrium. This implies that 

both 0== jj xx &&&  for all coordinates. In consequence of that the d’Alembert principle 

becomes: 
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δ

 for k=1,…,p     (1.132) 

A system is in equilibrium if the virtual work of applied forces is zero. 

The necessary and sufficient condition for static equilibrium of a system subject to fixed 
constraints is that the virtual work of the applied forces, for virtual displacements 
consistent with the constraints, be zero.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



31 

2. LAGRANGE EQUATIONS 
….. 

2.1. Lagrange equations of the first kind 
 Let us assume we have a system of n point-like particles, their motion is restricted by 
p equations of constraints. The equations of motion of such a system in a configuration space 
can be written as: 

 
( ) 0, =

+=
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XXxm
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Rjjj j
&&

   for k=1,…,p     (1.133) 

It may be supposed that the constraint forces XRj are dependent on the equations of constraints 
fk(x,t). Let us try to express the constrained forces acting on the particles by the functions 
fk(x,t). We shall use the method of Lagrange multipliers. Let us start from the d’Alembert 
principle for a system of n point-like particles: 
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Let us multiply each of the last equations by arbitrary for  the time being coefficient λk, then 
perform the summation over the index k: 
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Now let us add the result to the first equation of d’Alembert principle. We obtain: 
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The p equations  ∑
=

=
∂
∂n
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0δ  are conditions for the components of the displacement δxj. 

They may be written in the form: 
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     (1.136) 

The matrix of the above set of equations is the Jacobi matrix of p independent functions 
f1(x,t),…,fp(x,t). As we know there exists a determinant of p order  different from zero in the 
Jacobi matrix of independent functions (p is the number of equations of constraints). Let the 
first p columns of the Jacobi form the determinant different from zero. Let us rewrite the 
equations (1.136) as follows: 
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The first p components of the virtual displacement δx can be calculated if the remaining 3n-p 
components are known, so the first p components of  the displacement δx are not arbitrary any 
longer.  The equations (1.135) can be rewritten in the form: 
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Because the first p elements of the above equation contain dependent components of the 
virtual displacement δxk,  we shall try to make them zero  by choosing such values of the 
coefficients λk for which each of  the equations below is satisfied for j=1,…,p.   
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In other words we ask if the following set of equations for λ1,…,λp can be solved: 
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Yes, it can be solved (!) because the matrix of coefficients 
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is the transpose of the matrix of set (1.136a). As a result it remains from (1.135): 
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The above set of equations has to be satisfied for arbitrary δxj for j=p+1,…,3n. This can be 
possible only for the sum in brackets equal to zero, so we have: 
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The above system of 3n+p equations for 3n+p unknowns (3n coordinates and p λk 

coefficients) is the system of Lagrange equations of the first kind. The expression ∑
= ∂

∂n

j j

k
k x

f3

1

λ  

represents the constrain forces.  

EXAMPLE: Let us find the motion of a point-like particle on side-surface of a 
vertical cylinder. The radius of the cylinder base  changes as ρ=ρ0+ρ1t.   

 
 Fig.2.1. Cylindrical coordinates describe position of a point with the radius ρ, the 

angle φ and the coordinate z. The position of a point in the cylindrical coordinates is given by 

znznr
rrr += ρρ . 

 The relation between the versors of Cartesian coordinates and cylindrical coordinates 
 are given by: 
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 The versors ρn
r

and ϕn
r

change their direction in time, the versor zn
r

 is constant. The 

 velocity of a point-like particle in the cylindrical coordinates is given by: 

 znznnrv
r
&&rr

&&rr ++== ρρ ρρ  

 Taking into account that  ϕρ ϕnn
r
&&r =  we get: 

 znznnr
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&&r ++= ϕρ ϕρρ  

 so the cylindrical components of velocity are: 
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 In the same way we can calculate the cylindrical coordinates of acceleration: 
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 Lagrange equations are as follows: 

 

( )
( )

t

mgzm

dt

d
m

m

10

2

2

0
1

0

ρρρ

ϕρ
ρ

λϕρρ

+=
−=

=

+=−

&&

&

&&&

 

 And finally we get: 
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2.2. Lagrange equations of the second kind 

 Let us consider the example of a plane mathematical pendulum (Fig.2.2). 

 

Fig.2.2. Mathematical pendulum. Its position can be described both by the Cartesian 
coordinates x,z and by the angle φ.  

 

The motion of such a plane pendulum is restricted by equations of constraints: 

 
0

0222

=
=−+

y

lzx
        (2.11) 

The number of degrees of freedom of such a pendulum is equal to f=3-2=1. The position of 
the system can be given either by one of the x,z coordinates or by the angle φ. The Cartesian 
coordinates are related to the angle φ by: 
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         (2.12) 

Let us note that when we substitute (2.12) to (2.11) we obtain identity : 
 22222 cossin lll ≡+ φφ  
The above simple example can be generalized to a system of n point-like particles. Let a 
system of point-like particles be subject to constraints given by equations fk(x,t), k=1,…,p. 
The number of degrees of freedom is equal to f=3n-p. Let us suppose that there exist f 
parameters q=[q1,…,q3n-p] which define the position of the system in space. If so, there have 
to exist  equations: 
 ( )tqxx jj ,=    for j=1,…,3n     (2.13) 

If the relations (2.13) substituted to the equations of constraints give as a result the following 
identity:  
 ( )( ) 0,, ≡ttgxf k         (2.14) 

the parameters q=[q1,…,qf] are the generalized coordinates of the system of point-like 
particles.  In consequence of the identity (2.14)  we obtain: 
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We shall prove the following two identities, important for our further considerations: 
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Because each configuration coordinate is in general function of all generalized coordinates 
and time xj=xj(q1,…,q3n-p,t) we have: 
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Differentiating (2.18) with respect to lq&  for fixed l  we get: 
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so (2.16) is proved.  The derivative 
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Differentiating (2.18) with respect to fixed ql  we get: 
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The quantities lq&  and lq  are independent which means that 0=∂
∂

l

s
q

q& , so the second 

component is equal to zero. If so, the equations (2.20) and (2.21) become identical and 
relation (2.17) is proved.  
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2.2.1. D’Alembert Principle in generalized coordinates 
 The Cartesian coordinates are a function of f=3n-p generalized coordinates (and 
sometimes of time) ( )tqqqxx fjj ,,...,, 21= . Components of  the virtual displacement at a fixed 

moment of time can be expressed as follows: 
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From mathematical point of view the equation (2.22) is a variant (at a fixed time) of Cartesian 
coordinates5.  The f-dimensional vector δq=[δq1,δq2,…,δqf] is a generalized virtual 
displacement. As we know, a virtual displacement in 3n-dimensional configuration space has 
to satisfy the p following conditions: 
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Let us find the conditions to be satisfied by components of a generalized virtual displacement.  
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According to equation (2.15) all derivatives 0=∂
∂

l

k
q

f . This means that equations (2.24) are 

no restricting conditions on the generalized virtual displacement. When motion of a system is 
described in f-dimensional generalized space, the description of such a motion becomes 
similar to description of motion of a free system.  
 
Derivation of Lagrange equations 
The d’Alembert principle in a configuration space is of the form: 
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Let us substitute l
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 in the first equation of d’Alembert principle. We get: 
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5 The term „variant” is used to underline that the variables q1,q2,…,qf are also functions of time representing a 
trajectory of a point-like particle in f-dimensional generalized space. Reader can find the details in any textbook 
on calculus of variations.    



37 

We get: 
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Let us focus on the second component of the above equation. For a start let us calculate: 
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so we have: 
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The expression  ∑
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is the  kinetic energy of the system. Denoting the energy with T 

we obtain: 
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and finally we get: 
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The above equation has to be satisfied for arbitrary values components of the generalized 
virtual displacement δql. This is possible only when for all values of l=1,…,f we have: 
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Lagrange equations for a potential field 
 If motion of a system of point-like particles takes place in a potential field, 
components of forces are given by: 
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The generalized forces are as follows: 
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where the potential V is expressed by the generalized coordinates V(x,t)=V(x(q,t),t)=V(q,t). 
The Lagrange equations can be written as: 
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Rearranging the above equation we get: 
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The expression T-V is denoted as L  and called the Lagrangian function (or just Lagrangian). 
Finally we get for a system of point-like particles moving in a potential field: 
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The general solutions of f Lagrange equations can be written in the form: 
 ( )fll CCtqq 21,...,,=  l=1,…,f=3n-p      (2.34a) 

where C1,…C2f are 2f constants dependent on initial conditions.  
 
2.3. Invariants of Lagrange equations 

 The expression l
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 defines the l-component of generalized momentum. If so, 

the Lagrange equations can be written in the form: 
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So we get: 
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The above equation resembles the second Newton’s Law. Let us find the relation between the 
generalized momentum and the “ordinary” momentum in Cartesian coordinates in a potential 
field. The Lagrange function can be written as: 
 ( ) ( ) ( )( )ttqqxtqxLtqqLL ,,,,,,, &&& ==       (2.37) 
so the components of generalized momentum can be written as: 
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Taking into account that: 
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We get: 
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As we see the relation between the components of generalized momentum and the 
components of ordinary momentum is similar to the relation between the generalized force 
and “ordinary” force defined by equation (2.25). 
 
2.3.1. Cyclic coordinates 
 Let us remind the Lagrange equations in the form: 

 
l

l

q

L

dt

dp

∂
∂=          (2.41) 

Let us assume that the Lagrange function ( )tqqL ,, & 6 does not depend on one of the generalized 
coordinates qs. Such a generalized coordinate is called a cyclic coordinate. In consequence: 
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6 Let us remember that [ ]fqqq ,...,1=  represents all f=3n-p generalized coordinates, [ ]fqqq &&& ,...,1=   represents 

all f generalized components of speed. 
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As we see the component of generalized momentum corresponding to a cyclic coordinate is 
constant in time.  
 
Symmetry in Physics 
 We say that a system is symmetrical when there exists such a transformation of the 
system which transforms it to itself. For instance if a system transfers to itself after reflection 
across a plane we say that the system posses a mirror symmetry. If a physical structure 
transforms into itself when rotated round an axis we say it possess an axis of symmetry. 
Transformation into itself leads to conclusion that the physical properties of a system are 
independent of the transformation. Because the mechanical properties of a physical system are 
defined by its Lagrangian it is obvious that Lagrangian must be independent of any 
transformation which transforms a system into itself. In other words any symmetry should be 
reflected by independence of Lagrange function of some parameter describing the symmetry.  
There are three main symmetries of physical space and time which are of crucial importance 
for analytical mechanics, namely translational symmetry of space (Lagrange function is 
independent of point of space), rotational symmetry (Lagrange function is independent of 
rotation around some axis) and translational symmetry in time (Lagrange function is not 
explicit function of time) .  
 
2.3.1.1. Lagrange function is independent of position in space (space is homogeneous) 
 For a homogeneous space the Lagrange function does not depend on a radius vector, 
i.e. the Lagrange function does not depend on Cartesian coordinates x,y, and z. In other words 
we have to do with translational symmetry of homogeneous physical space. If so, for a point-
like particle the Lagrange function is of the form: 
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The coordinates x,y and z are cyclic coordinates, so the components of momentum 
corresponding to the coordinates remain constant. So we have: 
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CONCLUSION: Law of conservation of momentum results from translational symmetry of 
homogeneous physical space.  
 
2.3.1.2. Lagrange function is independent of rotation in space (space is isotropic)  
 Let us calculate the Lagrange function of a free point-like particle using spherical 
coordinates (see Fig.2.3).  
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Fig.2.3. Position of a point is given by length of radius vector r and two angles φ and θ. 

 
The relation between Cartesian coordinates and spherical coordinates are given by: 
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The kinetic energy of a point-like particle is therefore given by: 
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Let us note that the kinetic energy depends on two of three spherical coordinates r and θ and 
is independent of the third coordinate φ. Let us assume that the potential energy is also 
independent of the angle φ. We therefore have: 
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The Lagrange function is independent of rotations around the z-axis. We say that the physical 
space is isotropic with respect to these rotations. The angle φ is a cyclic coordinate, so the 
generalized momentum corresponding to the angle φ is constant.  
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As we see conservation of angular momentum results from isotropy of physical space.  
 
2.3.1.3. Lagrange function is not explicit function of  time  
    Let us multiply Lagrange equations  

 
l

l q

L
p

∂
∂=&    ∑

=

⋅
n

l
lq

3

1

/ &      (2.48) 

by lq&  and summarize over l. We obtain: 
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Let us calculate the derivative: 
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Using (2.50) we get: 
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The total time derivative of Lagrangian is as follows: 
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Taking into account (2.52) we get from (2.51): 
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Rearranging (2.53) we obtain: 
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Let us denote ∑
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It results that if Lagrange function is not explicit function of time, i.e. if  0=∂∂ tL  the 
quantity G remains constant in time. We shall show that under some assumptions G is total 
energy of a system. 
THEOREM: If the configuration coordinates as functions of generalized coordinates are not 
explicit functions of time, i.e. if ( )qxx jj =  and we have to do with motion in a potential field, 

i.e. V=V(q,t), then function G is the total energy of a system, i.e.  G=T+V. 
 
In order to prove the above theorem, we shall accept two additional theorems.  
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Because the result of summation is independent of sequence of summation, we obtain: 
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 depends on the indexes l and k, so it can be denoted as alk. 

 
AUXILIARY THEOREM 2: If f(x 1,…,xn) is a homogeneous polynomial of degree m then  
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The G function can be written as: 
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L=T-V(q,t), so the derivative 
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because T is a homogeneous function of degree 2, so ∑
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2.4. The action principle 
 We derived the Lagrange’s equations from Newton’s equations of motion. This is not 
the only way to get the Lagrange’s equations. The equations can be obtained in another, very 
general way. In order to show this alternative way to get the Lagrange’s equations we must 
get familiar with some concepts of calculus of variations. 
 
2.4.1. Functions and functionals 
 A function  is a relation between a set of inputs and a set of permissible outputs 
assuming that each input is related to exactly one output. The input to a function is called an  
 

 
Fig.2.4. FUNCTION: relation between a set of inputs and a set of permissible outputs. Each 

input related to one output. 
 

 
Fig.2.5. In case of functional arguments are functions. 

 
argument and the output is called the value of function. In case of functions both the set of 
arguments and the set of values are numbers.    
 When the set of arguments is a set of functions, and a set of values is a set of numbers 
we have to do with a functional. Definite integral 
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is a good example of a functional. We often use square brackets in order to emphasis the fact 
that functional F is a function of functions.  
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2.4.2. The action principle 
 Let us suppose we have a system of point-like particles subject to holonomic 
constraints. Let the number of degrees of freedom be f=3n-p, so a motion of the system is 
given by f generalized coordinates ql(t) (f=1,…,f).  The Lagrange function of such a system is 
given by ( ) ( )( )ttqtqL ,, & . The action for such a motion is defined: 

 ( ) ( )( )dtttqtqLtqI
t

t
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The action is a functional, the set of arguments are functions q1(t),…qf(t). Among many 
functions describing possible motion between two fixed point of time t0 and t, one set of 
functions qf refers to the path actually taken between the two points.  For this set of functions 
the functional I[q(t)] has its minimum.  
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It results from detailed considerations of calculus of variations that the functional (2.62) has 
its minimum for Lagrange functions satisfying the Lagrange equations: 
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3. PHASE SPACE, HAMILTON’S EQUATIONS 
 Position of a system of n point-like particles in 3D space can be defined by their 3n 
configuration coordinates xj  or by f=3n-p generalized coordinates ql. However, in order to 
define STATE of a system to be able to foresee its development in time, we have to add 
velocities of all particles at a certain point of time. Instead of velocities momenta of particles 
can be also taken. The set of coordinates (or generalized coordinates in case of restricted 
system) and momenta of all points form so-called phase space. Phase space is very important 
concept of both mechanics and statistical physics. Motion of a system in phase space can be 
found by solving Hamilton’s equations.   
 Phase coordinates (ql,pl) and Hamilton’s equations lead to the Hamiltonian 
formulation of mechanics. Hamilton’s equations, when compared to Lagrange’s equations,  
do not present much, if any, advantage when it is used to solve problems of Newtonian 
mechanics. However, Hamilton’s formulation of mechanics is necessary to build and study 
quantum mechanics. 
 
3.1. Hamilton’s equations 

 The function ∑
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&  defined previously is a function of  coordinates, 

velocities, momenta and sometimes it can be explicit function of time. Let us write the 
function in the form: 
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MATHEMATICAL INSERT: Let us take 3n functions xj(q1,…,qf,t) describing the 
relations between 3n configuration coordinates and 3n-p generalized coordinates. In  
general the functions can be explicit functions of time, though we are interested in the 
case  xj(q1,…,qf) first of all. The differential (variation) of the functions is: 
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Symbols δ instead of d are used to emphasize that variables ql are functions of time. 
The expression (3.2) is called the variation of coordinates xj with variation of time. 
When we want to have a variation of coordinates xj for a fixed point of time we get: 
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The above expression is called a variation of xj without variation of time7.  
  

Let us calculate the variation of  function  ∑
=
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l
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. We get: 
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7 Variational calculus  is an important part of mathematics, useful for so called variational principles of 
mechanics. The calculus of variations deals with the study of extremum values of functions (called functionals) 
depending on another function. Reader can find many textbooks on variational calculus.  For the purposes of this 
lecture we will use some simple analogies between  functions and functionals.  
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So far we used the function G as a function of  generalized coordinates lq , generalized 

velocities ll vq =& , generalized momenta ll qLp &∂∂=  and sometimes time t. Let us note that it 

should be possible to replace the components of generalized velocities lv  by components of 

generalized momenta lp  using the definitions of generalized momentum ll qLp &∂∂= 8.  

Replacing the velocities by momenta we get: 
 ( ) ( )tpqHtpvqG ,,,,, ⇒        (3.5) 
The function H(q,p,t) is called Hamilton’s function. Let us calculate the variation of 
Hamilton’s function without variation of time: 
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Let us compare the variations (3.4) and (3.6). They are variations of G and H, i.e. they are 
variations of the same function though written using different sets of variables. Subtracting 
(3.4) from (3.6) we get: 
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The equation (3.7) have to be satisfied for arbitrary variations of δql and δpl  and this is 
possible only when: 
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The above equations are Hamilton’s equations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
  
 
 
 

                                                 
8 The replacement is possible in practice if we can solve the set of f=3n-p equations ll qLp &∂∂= for f variables 

lv .  However, even if we cannot solve the set of equations we shall assume that there exist singe-valued 

functions ( )fll vvpp ,...,1= . 
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4. INTEGRALS OF MOTION, POISSON’S BRACKETS 
 Consider a system on n point-like particles subject to holonomic constraints given by p 
equations with f=3n-p degrees of freedom. Let us assume that there exists a relation of the 
type: 
 ( ) .)(,,...,,,..., 11 constCtqqqqF ff =&&       (4.1) 

which is satisfied by any solution of Lagrange equations. Then (4.1) is called a first integral 
of motion or a constant of motion.  Any relation of the type: 
 ( ) .)(,,...,1 constCtqqF f =        (4.2) 

is called a second integral of motion. Second integrals are not as important for mechanical 
considerations as first integrals of motion. 
 Let us suppose that we have s distinct first integrals of motion F1,…,Fs. Then any 
function G(F1,…,Fs) = const is also a first integral of motion, but the function G is not 
independent of functions F1,…,Fs.   

 The integration of Lagrange equations is considerably facilitated by the application of 
first integrals, because: 

(i) first integrals offer information on physical nature of a system  

(ii)  in some cases first integrals express the conservation of fundamental physical 
quantities such as linear and angular momenta, energy. 

Poisson’s brackets are a way to find additional first integrals of motion if two of them is 
known. 

 

4.1. Poisson’s brackets 

 Suppose we have two functions of generalized coordinates and momenta defined in 
the phase space F(q,p,t) and G(q,p,t). Poisson’s bracket of functions F and G is defined as: 
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Properties of Poisson’s brackets: 

 ( ) ( )FGGF ,, −=         (4.4) 

 ( ) 0, =FF          (4.5) 

 ( ) ( ) ( )GFGFGFF ,,, 2121 +=+       (4.6) 

 ( ) ( ) ( )GFFGFFGFF ,,, 122121 +=       (4.7) 
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 ( )( ) ( )( ) ( )( ) 0,,,,,, 213132321 =++ FFFFFFFFF      (4.9) 

 

PROOF (4.7): simple  

 

PROOF (4.8): simple 
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4.1.1. Equation of motion for physical quantity F(q,p,t) 

 Let us calculate the time derivative of function F)q,p,t): 
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Using Hamilton’s equations we get: 
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so finally we get: 
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For F=H we obtain: 
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It results from (4.13) that the Hamilton function can only be explicit function of time.  

 

4.1.2. Poisson-Jacobi theorem 

 Let us assume that we have two first integrals of motion F1(q,p,t) and F2(q,p,t). 
According to Poisson-Jacobi theorem Poisson’s bracket of the two functions (F1,F2)=const.  

Let us start from equation (4.9) taking F3=H (Hamilton’s function): 

 ( )( ) ( )( ) ( )( ) 0,,,,,, 211221 =++ FFHFHFHFF      (4.14) 

Let us calculate the total time derivative of functions F1,  F2 using (4.12). We get: 
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Rearranging (4.17) we get: 
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Substituting (4.15), (4.16) and (4.18) to (4.14) we obtain: 
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and finally: 
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