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PREFACE

The basic course of experimental physics is ussalbdivided into mechanics,
thermodynamics and molecular physics, electriaity magnetism, optics and atomic and
nuclear physics. Mechanics is the initial part@iirse of general physics, because the other
parts cannot be studied without description of orotind its causes. Mechanics contains
kinematicswhich describes motion of bodies considered itinetato the factors causing the
motion, dynamicswhich studies the laws of motion and the causedywing the motion and
changing it andtaticswhich deal with the state of equilibrium of thedies.

The dynamics of a single point-like particle isgiiMn Newtonian mechanics by the vector
equation:

dp_¢
dt
where p = nv is the momentum an# is the force. The above equation results from

experiment and cannot be derived from other egusitio laws. The above vector equation
can be written in the form of three scalar equation

%:FX
dt
dp,
—2 =F
dt Y
%:FZ
dt

In order to solve a mechanical problem and findtim¢ion resulting from the forcé acting

on a body we have to solve the above equationshwdain be sometimes a difficult task,
especially when we have to do with a constrainetdanoAnalytical mechanics offers handy
methods to solve many such mechanical problems.imtroductory course encompasses an
elementary understanding of analytical mechangse@ally the Lagrangian formulation of
dynamics of motion. The Hamiltonian formulation @pter 3) is necessary for the connection
between the Newtonian mechanics and quantum meshani

It will be assumed that students know and undedstia® basic concepts and mathematical
methods within the scope of the first year cowfsgasic physics, calculus and algebra. In
the first few lectures some basic mechanical caisospl be recalled.

Basic bibliography:
W.Rubinowicz, W.KrolikowskiMechanika Teoretyczn®WN Warszawa
G.W.Bak, Analytical Mechanics, Notes for students of SciemeTechnology
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1. BASIC CONCEPTS AND IDEAS

Length and time —Length measures the extension of bodies and timensasure of
duration of processes and phenomena. The defirofitbmese quantities is a philosophical
task to some extend and we shall assume in thetseds that the two physical quantities
are clear and well understood.

A point-like particle — a point of negligible size but possessing m#ks.concept of
point-like particle is usually an approximation.cBan approximation can be used to
describe the motion of the Earth around the Suhpiaves to be useless when we are to
describe the motion of a table-tennis ball.

A position of a point-like particle can be described in relationadrame of referenceby
its radius-vector, as shown in Fig.1.1. Position of a point-liketfude is given by a vector

Z
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Fig.1.1. Position of a point-like particle is degd in relation to a frame of reference by a

vectorr = ixl + iyl + T<z1 Selection of an appropriate frame of reference play a
significant (vital) role to find a comparatively gaway to solve a mechanical problem.

r=ix+ iyt (1.1)
in relation to a frame of reference consistinghwée mutually perpendicular coordinate axes.
Let us note that the above equation is written utitieassumption that:

* Physical space is three-dimensional. This assumptarks well in classical physics, but
is not valid in the theory of relativity.

» Itis possible to define the position of a poirkeliparticle accurately. This assumption is
not valid in microphysics using quantum descriptda micro-particles. According to the
(Heisenberg) uncertainty principle it is not possiio find accurately both the position
and the momentum of a particle.

As it results from the above short discussion assumption about 3D physical space has a
deep physical meaning.

Movement and trajectory are described by the time-dependence of the posigotor:

r=r(t) (1.2)
The radius-vector in Cartesian coordinates caniitéew in the form:
r(t) = ix(t) + jy(t) + ke(t) (1.3)



The equation (1.3) enables to write the parametyi@tions of trajectory:
X = X(t)
y=y() (1.4)
z=2z(t)

We assume that the functions (1.4) are differelgiabice.

Velocity of a point-like particle is given by:

- _dr _.
== =¥ 1.5
V=5 (1.5)
So we have:
"_ d T - ng e - o
v-a X +y(t)j+ zZ(k)=xi +y] + XK (1.6)

The distance covered by a particle is equal tdehgth of a trajectory curve and is given by:

o= st) = !J(g_g e W

Let us consider the expressigﬁ/dc (see Fig.1.2)dr is a vector tangent to trajectory if

|dF| approaches zero. The quanti%%c is therefore a unit vector tangent to trajeciairy

motion.

y ar =
dr dr unit vector tangent
‘ds to the trajectory

—

gt dr=T7

S

X

Fig.1.2. The vect01((jTr is tangent to the trajectory and this is a urdttor because the

length of the differential change of the positi@ctor di for the differential change of time
dt is equal to the differential length of the diste covered by a moving point.

The radius vector can be regarded as a compositihmctions, so we can write = F(s(t)).

Using the tangent vect(%L defined in Fig.1.2 we can write for the velocity:

V=—=——=1tv (1.8)



t is the unit vector tangent to the trajectory atpleint of movement and is the speed of a
moving particle, s is the length of curve covergdalparticle. It results from (1.8) that
velocity is tangent to trajectory for any curvilarenotion.

Acceleration of a particle is defined as:

d\7 d d = - d g g
d=—=—Wi +yj +XK)=Xi +y] + &K 1.9
el ( yi ) yi (1.9)
1.1.Tangential and normal acceleration
Let us assume we have to do with a curvilinear omofsee Fig.1.3).

A

normal acceleration tangential acceleration

S

Fig.1.3. Trajectory of a curvilinear motiop.is the radius of curvature of the trajectory of
motion at the point Pii and tare unit vectors normal and tangent to the curvéhatpoint
P.

The so-called Frenet formula:

a_n (1.10)

ds p
wheredsis the differential length of trajectory coveredl,/ds describes the change of
direction of the unit vectort which is inversely proportional to the radius afvaturep.
Let us calculate the acceleration of motion fordhevilinear motion depicted in Fig. 1.3.

—

a=ﬂ=i(d—sfj=i(vf)=vf+vd—t=
dt dt

dt dtldt
- , (1.11)
= Vf d_td_s = Vf + V_ N
ds dt Yo,
As shown above the tangential component of acdelars equal to:
a =V (1.12)
and the normal component of acceleration equals:
V2
a =— (1.13)
Yo,



In case of a uniform motion of a point in a cirthe normal acceleration is given by the well
known formula:

2

\'
a =— 1.14
R ( )

where R is the radius of the circle.

1.2.Radial and transversal velocity and acceleration
Let us suppose that we have to do with a planeanatescribed in a fixed frame of
reference (see Fig. 1.4). Let us assume that ettaiic moment the position of a moving point

is given by a radius-vectair. We want to find the components of the accelenadif the

point along the direction parallel to the radiustee i (the radial component) and parallel to
the direction perpendicular to the direction of thdius vectorr (the transversal
component). In order to solve the problem let westhe concept of complex plane. The
position of a point on a plane can be written as:

v A
direction parallel to
the position vector radial acceleration
& vector of acceleration
¥ P

transversal acceleration

1

1

1 direction perpendicular to
: the position vector

b i
|

0= X =

i
Fig.1.4. Radial and transversal components of aeion of a particle at the point P.

F=xi +vyj (1.15)
Using the complex plane we can write the positibthe point P as:
z=x+iy =re"’ (1.16)

wherei =+/—1 is the imaginary unit anglis the angle shown in Fig.1.4. Differentiating
(1.16) with respect to time we obtain:

z=te? +irge? =(r +irg)e”
2={r-rg? +i(2rp +rp)e?

Taking the real and imaginary parts of the abouegqgns we would get the x and y
components of acceleration respectively. In ordeafitain the radial and transversal
components of acceleration we must rotate the frafneference by the angigas shown in

(1.17)



¢
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Fig.1.5. In order to find the components of theteed@ in the “red” frame of reference we
must rotate the frame of reference by the amgle

Fig.1.5. The vectorv in the “black” frame of reference is given by:
vV, +iv, = Ve (1.18)
while the same vector in the “red” frame of reference is given by:
v, +iv, =ve¥? (1.19)
pr and  are the components parallel and perpendiculdreigosition vector respectively,

in other words they are radial and transversal aorapts of the vectorr’. This means that
in order to get the radial and transversal comptaneiwvelocity and acceleration we have to

multiply equations (1.17) by exgii. As a result we get:

Radial component Transversal component
velocity f ré
acceleration P —rg? 2rg+ré

1.3.Force and Motion, Newton’s Second Law

When we push a physical body we apply the forceunfbody to move a body. We feel a
certain strain in our body and we say we appliéat@e. In mechanics force is not meant
(understood) a physiological feeling but the phgkstause changing the state of motion of
bodies. Forces result from interaction betweendmdilThe change of motion is equivalent to
acceleration different from zero. As we know thiatien between force and acceleration is
given by the Newton’s Second Law:

—

ma=mr =F (1.20)
m is the inertial mass of a body. Using the sanwicddo accelerate bodies we obtain:
ma =ma,; = (mi +m, )§i+j
The inertial mass is an additive quantity, i.e.:
my,, =M +m, (1.21)
where m; is the mass of a body consisting of two bodiesiaés mand m kept together.
The equation (1.20) is equivalent to three scajaagons:
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(1.22)

y

2 2 3

z

Taking into account the relatioh= d%t we obtain assuming that m=constant:
®_g
dt
Equation (1.23) is more general form of equatia@@L Calculating the integral of (1.23) in
respect to time we obtain:

(1.23)

tdﬁ tﬁ
—dt=p-p, =| Fdt 1.24
[ dt=P-F j (1.24)

fo

t
The integralj Fdt is called the impulse of the forde.

to
INSERT: When the impulse of a force is equal to,zey change of momentum is
observed. This leads to the Law of Conservatidda@hentum. The impulse of a

force can be equal to zero if eithBr=0 or the time during which a force is
applied is equal to zero. In many practical caske time of application of a force is
so short that it can be assumed to be zero toitsteaipproximation. This is the case
of well known problem of a shell exploding at tighlest point of its trajectory.

1.3.1. Conservation of momentum
If the impulse of a force equals zero then we Hava body:

P= P (1.25)
which just means that the momentum a body remainstant.

1.3.2. Conservation of energy, potential field

Let us assume that a point-like particle moves uttietime-dependent forde . The
Newton’s Law for such a body is of the form:

mv =F (1.26)

Multiplying (1.26) byv and taking into accounc%(vz): 2W we obtain:

— 2
%( ”;’ j = Fv (1.27)

=2
Denoting the kinetic energyrr;/— =T we get:

dT _ -
—=F 1.28
ot (1.28)

Calculating the integral of both sides of equa(ibr28) we obtain:



(dT [
J'Edt=T—TO =j Fudt (1.29)

to fo

F

—
AS; = [AX;,Ay,,AZi]

P

i
Y

Fig.1.6. Point-like particle moves along the cufveinder a time dependent foré«t) .

Let us consider the right-side part of equatio@9). Both the force and the velocity are
vectors and may be time-dependent (see Fig.1.@irnftagral can be rewritten in the form:

j Fvdt = j(vaX +Fy, + Fov, Jdt = lim i(Fx v, +F,v, +F,v, )Ati =
% t =)

(2.30)
n R f

lim Z(FX.AK +F, Ay, + FZ,A;): IFde+ Fdy+F,dz= J' FB

n=o0 I:1 i I 1

Po Ro
P P

The expressionj Fdx+Fdy+F,dz= j Fd&S is a curvilinear integradnd is equal to the
R R

work of the forceF at the curve C between the poingsaRd P.

1.3.2.1. Potential and conservative fields
Let us assume that there exist in a three-dimeakgpace such a scalar functidir, t)
that at any point of the space the force acting body is given by:
F = -gradV(r,t) (1.31)
The functionV [ t )is called the potential of the field. If the pdii@his time independent the
field is conservative. The work in a conservatinddfis equal to:

P P P
w=jﬁogz—jgrach§=—ja—de+a—de+a—de (1.32)

R : n OX oy 0z

MATHEMATICAL INSERTThe expressiorf, (X, ¥ 2dx+ f,(x, y 2dy+ f,(x, , yzdz

is the total differentialif there exists such a function U(x,y,z) that tikfving equations
are fulfilled:

10
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ox

%_L;: ) (1.33)
Thecurvilinear integral of the total differential iswen by:

Ttot.diff.:U(P)—U(PO) (1.34)

R

Taking into account the above property of the irdege get for a conservative field:

W =j Fs=-(V(F)-V(i,)=V(i,) -V (F) (1.35)
SO we get:
V() =V(T,) —T Fdb (1.36)

R
It results from equation (1.36) that the potensal relative quantity, i.e. in order to define
potential of a point in space we have to definepibiential of the reference poirj.

Combining ((1.36) and (1.26) we obtain the Law oh€ervation of Energy in a conservative
field:

V+T = Vpt+To = constant (1.37)

1.3.3. Conservation of Angular Momentum
Let us assume a point-like particle moves in a fécs (see Fig.1.7). The equation of
motion is:

d(nmv) _ -

=F 1.38
ot (1.38)
Multiplying (1.38) by x we get:
rxdm) e (1.39)
dt
Taking into account thai x mv =0 we obtain
di(r xmV) =T xF
dtj (1.40)
>~ =D
dt

11
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Fig.1.7. Motion of a point-like particle in 3D spa

=b

where J =F x nv is the angular momentum adl=F x F id the moment of the forcé
about the zero point of the reference frame. Aslte$rom the definition the vector of
angular momentum is perpendicular both to the fwsitectori and to the momentumv ,
i.e. the angular momentum is perpendicular to thegof motion. If for some reasons the
moment of force equals zero, the angular momensuiimie-independent. In other words we
have to do with a plane motion in such a case.

1.4.Central force
The central force is defined by the equation:

F=—F (1.41)

= |=

wherer is a position vector, r is its length % is a unit vector parallel to the position
vector (see Fig.1.8). The moment of a centrald@isout the zero of the frame of reference

T
F1=TF;: F>0
/!
) /
4
4 ’,’ .F.

PPtiae Fi=TF;: F<0
e -

Fig.1.8. Definition of central force.
is equal to:

—

D=rfx—F=0 (1.42)

= | =

so any motion in the field of central force is an@# phenomenon. We shall prove that if the
potential of field of a force depends only on teéedth of the position vector V=V(r) the field
of the force is a central one.

12



Assuming that we have to do with a conservativiel @ad that V=V(r) we get the
following expression for the force taking into agobthat V(r(x,y,z)) is a composition of
functions :

F =—gradV(r) =i A, j— [EARRLA
0X oy 0z
{rd_vmfd_vmgd_va_rj:

dr ox : dr oy dr 0z
(1.43)

dV X - y LK z _
\/X+ J\/z 2 2 \/2 2 2 |
y+z X +y +z X +y +z
dav 1 dVr
=—-—lix+jy+k
dr r( Jy ) drr

1.4.1. Binet’'s formula

As shown above, in the case of motion in a fieldexitral force the motion takes place in a
plane. This enables to describe such a motion patar coordinates. Our task is to find the
eqguation of motion of a point-like particle in alfi of central force using the polar
coordinates, i.e. we want to find the equatiorrajfetctory in the form r=rf).

The angular momentum is given'by
J =[F x mv| = mrv, = mr’p (1.44)

The equation of motion for a field of central foisan the form:

ma=F s (1.45)
r r
SO we obtain
mag =F, (1.46)

where ais the radial acceleration andi&the central force (the zero of the frame oérefice
is in the centre of the field). Taking into accothe formula for radial acceleration and
(1.44) we get the set of two equations:

wlr-187)=, aan
J=mr’g

In order to obtain trajectory of motion in the forar(¢) we have to eliminate time from the
set of equations. The radius vectocan be represented by the following composition of
functions r=rf(t)), so we obtain:

6
dro-drJ __J Ar (1.48)

[ =
dp” dgmr* m dg

! Because the movement is a plane one, we can esealar value of the angular momentum as we khatv t
the angular momentum is perpendicular to the ptdmeovement and it direction is constant.

13



o1 o(1
___id (fj b __ ¥ d(rj (1.49)
dpdt dgmr? m d¢#g mr® mi¥? d¢f '

r:d_rd_wzd_r J

1
2 2
_ DA = (1.50)

and finally we get

)
—Jzz il p Binet's formula (1.51)
mr? | d¢? r

Equation (1.51) is known as Binet’'s formula. Letuse the formula to solve the common

case of field of central force in which the radaice is of the formF, = —kiz.
r

EXAMPLE: The central force given iy = —kriz. The Binet’s equation is:

1
2
_J r),

mr® | d¢f

:—ki

2 SO we get:

1
r

a7 1
r) 1 _km , L1 )
+-=— let’'s now substitute- = x and we get:
dg#7 r J r
d¢’ J?

km
function X = ACOS(0+? is a solution of the above equation, so we obtain

J 2
r= km
2
Al
1+ cosp
km

The above equation can be recognized as theselBguatioh

1.5. Constrained motion of a point-like particle
Let us suppose that a motion of a point-like pbetis constrained (limited) to a surface of a

sphere, the centre of the sphere is at the zerd pbCartesian coordinates (see Fig.1.9).

Zr = L If e<1 we get the ellipse, if e=1 we get parapible>1 we get hyperbola.
1+elcosp

14



Fig.1.9. Point-like particle is constrained to
the surface of a sphere.

(x,y,2)

The coordinates of the point-like particle
have to satisfy the equation:

X*+y*+7°=R* (1.52)
The equation is called the equation of constraints.

EXAMPLE 1: Point-like particle moves on a surfateertical cylinder. The radius of
cylinder’s base increases linearly with time (ség. E10).

z

(xy,2)

p=pg+ pqt

Fig.1.10. Particle on a surface of vertical cylimde
The coordinates (x,y,z) of the point remainingtmgurface of such a cylinder have to

satisfy the equationx® + y* = g, + ot .
EXAMPLE 2: A point-like particle moves inside cfphere shown in Fig.1.9.
In this case the equation of constraints becomeguality of the form:

x> +y*+2°-R*<0 or x*+y’+27z°-R?<0 depending on whether the points of the
surface are available for the particle or not.

EXAMPLE 3: A point-like particle moves at a ciralethe xz plane (see Fig.1.11).

(X0,0,Z0)

Y

Fig.1.11. Particle at a circle in the xz plane.

—v ) V2 _p2_
Equations of constraintsz(x_ XO) +(Z 20) R°=0

y
EXAMPLE 4: Motion of a point-like particle is restied to a surface of a sphere

moving in space. The equation of constraints are

(x-at)* +(y-bt)* +(z-ct)’ -R®=0

15



In general a point-like particle or system of pees are not usually free to execute purely
arbitrary motions. The motions are often requieddtisfy certain geometrical conditions
called constraints. If equations (or inequalitiesgonstraints can be written in the form

f(x,y,zt)=0 or f(x,y,zt)s O0Oor f(x,y,zt)=0 (1.53)

such constraints are HOLONOMIC CONSTRAINTS. In sarases the equations of
constraints contain time derivatives of coordinasesthe equations of constraints are of the
form:

f X, v,zx y,zt)=0 or f X, v,zXx Vyzt)<0 or f(X,y,zX,V,2t)=>0(1.54)
This kind of constraints are non-holonomic constisi

In cases where these geometrical conditions daheotge with time, the constraints are
said to be FIXED or SCLERONOMUS or STATIONARY. lases where they depend on
time, the constraints are said to be VARIABLE orERBNOMUS or NON-STATIONARY.

The constraints expressed by an equality are BILRAE CONSTRAINTS, the constraints
expressed by an inequality are UNILATERAL CONSTRAIBI

As we see, a constraint is a geometric or kinentatnalition that limits the possibilities of
motion. In such a case we say that a particlesystem of particles is subject to constraints
given by equations (1.53) or (1.54).

1.5.1. Constrain forces, work of constrain forces
The equation of motion of a point-like particletreted by some constraints reads:

mr = F +Fy (1.55)

whereF is the applied force anﬁR is the constrained (reaction) force. It resultsrfrall

experiments and observations ttie constrained force is perpendicular to the sucaof
constraintsprovided thatfriction is included in the applied forceslf so, the constrain force
for the case of motion on a surface given by equd(x,y,z)=0 can be written as:

Fr = Agrad(f) (1.56)

If a motion of a point-like particle is restrictemh a curve given by two equationéxty,z)=0

F

curve of intersection of
the two surfaces

Fig.1.12. The reaction forces resulting from intetfan with the two surfaces are
perpendicular to the surfaces. The total reactiorcé is a linear combination of the two
reaction forces Fand F, (see equation (1.57).

and (x,y,z)=0 (see Fig.1.12) the reaction force is gibg:
F- = A, [grad(f,) + A, [yrad(f,) (1.57)

16



1.5.2. Work of reaction forces
Work of a reaction force in case of motion at dase defined as f(x,y,z,t)=0 is given by:

W, = F,, (15 = Agrad( f ) (Fdt (1.58)
In case of fixed constraints we have:
df of of of .
O=—=—x+—y+—z=qgrad(f )OI 1.59
at ox ay? ozt Y (t) (1.59)

Because the vectat is perpendicular to grad(f), the work of reactiorce in case of fixed
constraints is equal to zero. When we have to itto wariable constraints:
df _of . of . of . of of
=— = + +

O=—=—X+—y+—z+—=grad(f ) +— 1.60
dt ox oy’ oz o - 0rad(f)i + 2 (1.60)

Because the derivati\/%fét need not be zero, the work of reaction forcemisequal to zero
in this case.

1.5.3. Motion at a surface — equation of motion
Let us assume that a point-like particle moves surface f(x,y,z,t) under an applied

force F . The equations describing the motion are as falow
mr =F +F, = F + Agrad(f )

1.61
f(x,y,zt=0 ( )

Our aim is to eliminata (which can be function of time) from the above &tipns in order to
obtain equation of motion in the form:

mr = F + function(f ,F,F) (1.62)
The first derivative of f(x,y,z,t) is:

ﬂzﬂ>‘<+£y+iz+ﬂ:grad(f)[ﬁ'”+ﬂ (1.63)
dt ox ody~ 0z ot ot
and the second one is as follows:

d?f d d of

=rgrad(f)+r—(grad(f))+—— 1.64
a9 () rdt(glra () dt ot (1.64)

Combining (1.64) and (1.61) we get:
mr = F + Agrad(f) (1.65)

whereA is given by:

- n(?d grad(f )+d0fj— Fgrad(f)
A=

dt dt ot
(grad(f )}

The above equations are quite complex and thoughoften possible to solve them in many
practical cases using contemporary computer nualeriethods, there exist better methods to
solve motion of constrained systems. The methotdswia subject of the future lectures.

(1.66)
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1.5.4. Motion at a curve — equation of motion
In case of motion at a curve defined as an inttise of two surfaces (x,y,z,t) and
fa(x,y,z,t) the set of equations of motion reads:

mr = F + A,grad(f,)+ A,grad(f,)
f,(x,y,zt)=0 (1.67)
f,(x,y,zt)=0
It is possible to eliminat®; andA, from the above set of equations in order to get th
eqguation in the form:
mi' = F + functiorf 7, f,, f,) (1.68)

but the equations obtained are so complex it doepay to solve the problem in this way.
However, it often is possible to get much useftbimation about a motion in the way
presented below. We shall also get familiar with $l-called” special function.

Let us multiply the equation of motion by a unigctort tangent to the trajectory:

—

=FOd+F. 0
. +0

Ql

(1.69)

;x ;x 3

I I .

where a, is a tangent acceleratioR, is a tangent component of a force appliﬁg[ﬁ = 0
because the reaction force is perpendicular torépectory. As a consequence we get:

ms=F, (1.70)

s is the distance covered by a patrticle, the distamequal to the length of curve between the
initial and the final points of motion. Let us ube above equation to solve a problem of
mathematical pendulum for the amplitude angle etpmal2 (see Fig.1.13).

Fig.1.13. Mathematical pendulum. The amplitude ofiom is equal ta72.
The tangent component of force is given by:

F, =-mgsina (1.72)
So we get:
s = —-mgsing (1.72)

Using simple geometrical relatiorss=la and$=14& we obtain:
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c‘?:—l—sina multiplying by /la (1.73)

aa = —Igc'rsina (2.74)
Taking into account tha%%(c’rz)= ad and d(ccci)tsa) =-sina [é&r we get:

gl
Integrating the above equation we obtain:

%dz =|gcosa+C (1.76)
C is a constant. Becauge= Whena=0 the constant C=0, so we get:

%dz =|gcosa (1.77)

Rearranging the equation we obtain:

E_ _\/? (1.78)

Separating the variabl@s the above equation we get:

da__ |29 (1.79)
cosa I

Integrating the above equation between the angesl®/'2 we get:

\/W j dt _\/:— (1.80)

The integral at the left side of the above equati@amnot be expressed by algebraic or

trigonometricfunctions. In order to calculate the left-side grd we have to use co-calléd
function.

1.5.4.1. Gammafunction and Beta function
The definition of Gamma function is as follows:

F(p)= T xPe ™ dx (1.81)

Let us prove the following theorem:
F(p+1)=pr(p) (1.82)

Using the definition (1.81) we obtain(p +1) = j xPedx
0

Calculating the integral by integration by pane get:
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M(p+1) =-x"e™

‘S’—pTxp‘l(— e Jax= p[x"le™dx=pr(p)  (1.83)
0

Fig.1.14. Gamma function in the range betweerbj-and (0,43.

w2

Forp=1Ir(@) = je‘xdle, for p=2I'(2)=1T1(1)=1, for p=3r(3)=2-1=2, and in general:
0

(n+1)=n! (1.84)
The shape of Gamma function in the range of p J45,5hown in Fig.1.14.
The definition of Beta function is as follows:

2
B(p.a) =2 [ (sin6)*"*(cost)*"dé (1.85)
0
The relation between Gamma function and Beta fands given by:
r(p)r(a)
Blp.a)=—""" (1.86)
r(p+aq)
For p=1/2 and g=1/4 Beta function is equal to:
2 -1
ﬁ(l,lj: j (cosa)?da:I 29 (1.87)
2 4) 4\ |
So we obtain:
s o)
T]29_ gLl \2)\4 (1.88)
4\ | 24 [3)
r=
4

Taking into account that:

® Wikipedia
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F(% =1.7724538509

F(i = 36256099082

I_(— =1.2254167024

we obtain the following relation:

TO 7.4163\/% (1.89)

1.6. D’Alembert principle
D’Alembert principle is another form of equatiooismotion, very useful for our further
considerations. We shall consider three variousas motion of a point-like particle.

1.6.1. Free point-like particle
D’Alembert principle for a free point-like particleads:

(F-mi)a =0 (1.90)

where & is an arbitrary vector. We shall prove that such a form of equatiooton is
equivalent to the Newton’s second law:

F=mr (1.91)

I If F=mr thenF -mr =0 so multiplying by arbitrary vectodf we obtain

II: If (lf —m?)&” =0 for arbitrary dr , this can be true only iff —mr =0 which leads to the
Newton'’s second law.

1.6.2. Point-like particle on a surface
The Newton’s equation of motion in this case ishaf form:

F =F + Agrad(f)
f(F,t)=0

We shall show that the above equations are equitveded’ Alembert principle for such a case
given in the form:

(1.92)

(IE —m?)&* =0
f(F,t)=0 (1.93)
grad(f)@& =0

In this case the vectak” is not arbitrary, it satisfies the additional cdimh
grad(f )& =0.

I: If we multiply the equatiomr = F +/]grad(f) by & satisfying the condition
grad(f )BY =0 we obtain immediately (1.93)
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II: Let us multiply the third equation of (1.93) lay arbitrary (for the time being)and let us
add the result to the first equation of (1.93). Y&

(F + Agrad(f)-mf )& =0 (1.94)
Now let us analyse the conditiagrad(f )(& =0. It can be rewritten in the form:

of of of

—X+—+—x=0 1.95

0x ay ¥ 0z ( )

Vector grad(f) cannot be equal to zero which mehatat least one of its components is

. f :
different from zero. Let us assume tt%ﬁ;t 0. The x-component ofd can be written as:
X

of of

R0
_ oy 0z
X= o (1.96)

ox
It results from (1.96) that the componedysanddz remain independent and arbitrary, but the
x-componendx does depend on the other two. Let us rewritedjli®the form:

(xmﬂ—m‘xjdw Y+Aﬂ—my oy+(z+/1ﬂ—mzj5z:o (1.97)
0x oy 0z

X,Y and Z are components of the forBe The coefficienh has been assumed to be
arbitrary so far. Let us take such a valua &r which the following expression is satisfied:

x+19 k=0 (1.98)
0X
This just means that theis given byA =m><a_;xl It is possible because we assumed that
ox

% #0. If so, (1.97) is reduced to the form:

Y+/]i—rry 5)/+(Z+/1i—rrtjdz:0 (1.99)
ay 0z

The above equation has to be satisfied for arlgitralues oy anddz. This is possible only
when

Y+/1ﬂ—rry:o (1.100)
oy
and
z+29% =0 (1.101)
0z

Equations (1.98), (1.100) and (1.101) are equivate(l.92).
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1.6.3. Point-like particle at a curve
The equations of motion are as follows:
mr = F + A grad(f,)+ A,grad(f,)
f.(F,t)=0 (1.102)
f(F.t)=0
f,(F,t)=0 and f,(F,t)=0 are equations of two surfaces intersecting atoogrve defined

in this way. The two functions are independentaxfreother to avoid two parallel surfaces
which do not intersect. We shall prove that theagigns (1.102) are equivalent to d’Alembert
principle written in the form:

(* e )i

=0
t)=0 (1.103)
gra d(f, )D’f
grad(f,) &

I: If we multiply the first equation of (1.102) byr satisfying the conditiongrad(fl)ﬂf =0
and grad(f,) & =0 we get the first equation of (1.103).

II: Let us multiply the last two equations of (13)My arbitrary (for the time being)
coefficientsA; andA, and let us add them to the first one of (1.103g. y¥t:

(F + Agrad(f,)+ A,grad(f,)-mi )& =0 (1.104)
Equation (1.104) can be written in the form:

(xul%uz‘;fx j@u(vu g‘; Az%—wj@+

(1.105)
+[Z+/1 af1+/] of, rrﬁjdzzo
0z

9z

MATHEMATICAL INSERT:

Dependent and independent functions
Let us consider a set of m functions of n varialhlg;,...,%),..., fu(Xq,...,%). Let us
assume that values of one of the functigrs .f.,%) is uniquely specified by the other
functions:

fiXe, ... %)= df,... 1 fivt, . B
The function;fis dependent on the other functions. If none efftinctions composing
the set of functions is dependent on the othleesfunctions are independent.
EXAMPLE: For the functions:

£ (% %,) = X% = X

F(%,00%,) = XX + X,

(%) = (07 + 2062+ 52) = (62 =) =%, 0,7 = . f
The following identity is satisfied:

f3 = f12 - fle + f22
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System of independent functions

Let us assume that there exist m functions of lbkes f(x,...,%), ..., f(X1,..., %)
and n>m. If there exists a different from zero daieant of m degree in the Jacobi

matrix

EAN A

ox, o0x,  Ox,

of, of, o,

X ox, | ox, (1.106)
of, of,  of,

o ox, | ox,

the system of m functions is indepentiéftte convert theorem is also true. Let us
note that the system of two functioi{g,¥,z) and4(x,y,z) is to be independent to
define a curve.

The two last equations of (1.103) are conditiongtviimit the values of the vectak . Let
write them in the form:

af

d/ 152 0

ax

o, (1.107)
Zd/ 2& O

ax

The matrix of coefficients of the above set of doures is:

o of, o

ox oy oz

of, of, of, (1.108)

ox oy oz

Functions f and § are independent. This implies that it is possiblextract from the matrix
determinant different from zero. Let us assume tii@anon-zero determinat is:

o o
ox oay
of, o, £0 (1.109)
ox oy

If so, the foIIowing set of equations can be solved
af

l p— —_—
ax d/ az
(1.110)
af 2 d/ __of,
ax az

The solution of the above set of equation can beemrin general as:

* The necessary and sufficient condition for m fioret of n variables,xy, ..., Xy),...,fm(X1,...,X,) to be
independent is that it is possible to find a défarfrom zero determinant of m degree in the Jagwttiix of the
system.
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ox=function®z)

oy=function®z)
i.e. bothdx anddy are dependent adz. The only independent component of the veetois
0z.

We choose such valuesXf andA; in the first two components of (1.105) so that the
following two equations are satisfied:

of, o,

/‘1 a +/126_: nx — X
X X (1.111)
of, . of, .
A—+A—==nmy-Y
oy oy

It is possible because the determinant of the abevef equations is determinat of inverse of
the matrix (1.109) which is not equal to zero. Semains from (1.105):
(Z +)Il%+)12%— rrﬁjdzzo (1.112)
0z 0z
for arbitrary values of the componeéa. It can be possible only when the expressiohen t
bracket is zero, so finally we obtain:
of of,

mx = X +/‘10—1+A26—
X X

my=y+1 %4y (1.113)

ay "oy
ne=272+ Ali + AZ %
0z 0z
The above set of equations is equivalent to thatsmu (1.102).

1.7. Displacements real, possible and virtual
Real displacement results from solution of equatioihmotion for a given case. It is given

by:
dr = rdt (1.112)

Possible displacement is a displacement permes&ioimissible) by constraints. For variable
constraints a possible displaceméit is given by:

Af =o=iAx+@Ay+iAz+ﬂm = grad(f ) (AF I A (1.113)
0x oy 0z ot ot
For fixed constraints the possible displacement is:
0=@Ax+ﬂAy+iAz= grad(f ) Ar (1.114)

0x oy 0z

A real displacement is one of the possible displea#s.

The most important for our further consideratiothis definition of virtual displacemerat .
It is defined as:

grad(f )& =0 (1.115)
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According to the above definition virtual displacemhis perpendicular to grad f, i.e. tangent
to the surface of constraints, but in case of Weiaonstraints the constrains are assumed to
be stopped for a moment.

1.8. Constrained system of point-like particles,ixtual displacement of constrained
system
Let us consider the limits of motion of two poiikd particles connected with a stiff rod. If
the length of this rod i the equation describing the constrains are:
(% =% +(y, v ) +(z-z) -1?=0 (1.116)
If the two points were connected with a thread,dbvestraints would be unilateral and would
be described by:
(% =x) +(y, - ) +(z-2) -1?<0 (1.117)
EXAMPLE 1: Two point-like particles are connectdthva stiff rod and move on the
Xy plane at a circle. The length of the rod ik tadius of the circle is R, its centre is
at the zero of frame of reference.
(=% ) +(y, =) +(z-2z) -1*=0
X +y +z R =0
X22+y22+222_R2 :O
z=0
z,=0
EXAMPLE 2: Two point-like particles are connectdthva stiff rod. Point O of this

rod divides it into two segments in relation 2:1das fixed at the zero point of
Cartesian frame of reference. The rod can rotegelfy around point O.

(% =% ) +(y,-w.f +(z,-z) -12=0

2
><f+yf+Zf-[%j =0
21\’
x2+v.2+ 2_(_) -
2 y2 22 3

In general equations of constrains for a system mdint-like particles are:

f, (F.F,..F,,t)=0 (1.118)
for bilateral constraints and:
a(F,f,,..F,,t)<0 (1.119)

for unilateral constraints. k=1,...,p is a numbeeq@iations (or inequalities).

1.9. Degrees of freedom
The number of independent coordinates necessagfitoe position of a free single point-
like particle is 3. When motion of such a partideestricted by 1 equation of constraints (for
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instancex® + y* +z° - R* = ( then one of the three coordinates can be catmliifithe other
two are known, so the number of coordinates necgssaefine position of a particle is
reduced by one.

For two free point-like particles the number of mdinates necessary to define position of
the system is 6 and in general, the number of ¢oates necessary to define position of a
system of n free point-like particles is 3n. Eaghation of constraints reduces the number of
coordinates by one, so the number of degrees edéma is given by:

f=3n-p (1.120)
where p is the number of equations of constraints.

1.10. Virtual displacement of a system of point-lig particles
For 2 point-like particles moving at a surfatéﬂ,fz,t) =0 their virtual displacemendr;

and &y, is defined as (see Fig.1.15):

grad,(f )a, + grad,(f )&, =0 (1.121)
where gradis defined as:
grad, :iﬁiﬂ?iﬂzi (1.121a)
ox 0y, 0z

Fig.1.15. Gradients at two different points are pemdicular to the surface
f (rj, fz,t) =0. The virtual displacement@; and &, have to be perpendicular to the
gradients, i.e. they are tangent to the surface.

For motion at a curve defined by equations of tmdaxes fl(fl,Fz,t) =0 and fz(ﬂ,FZ,t) =0

the virtual displacement is defined as:
gradl(fl)&i + gradz(fl)d:z =0

(1.122)

gradl(fz)d:l + gradz(fz)d:z =0

It results from the above equations that the twoponents of the virtual displacemed
and &, are perpendicular to both surfaces with respecotodinates of the two points.

For n point-like particles restricted by constraigiven by p equation$, (Fl,...Fn,t) =0,
k=1,...,p, the virtual displacement is defined by fiblowing p equations:

Zn:gradi(fk)lei =0 for k=1,...,p (1.123)
i=1
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1.11. Configuration space
Let us assume we have a system of n point-likeges, their position in space is

defined by n radius-vectoms =[x, y;,z], i=1,...,n. Let us define the following relation

between the coordinates, % z] and new coordinates of a 3n-dimensional space
corresponding to the previous ones:

X =X
Yi=%
4 =X
(1.124)

which can be written in general form:
XY 4 = X Xg0: %y (1.125)

A point of 3n-dimensional space xz[x,,...,Xsq] is defined in this way. This point represents
position of the whole system and is often called@esentative point.

An identical transformation of coordinates of fad®lds:
XY, Z = Xy X Xy (1.126)

The new 3n-dimensional space is called a configanmapace. In order to make easier to

write equations of motions in a configuration spamefollowing correspondence between
mass of the i-point and the mass correspondingriserutive coordinates of configuration
space:

m=my_, =Ny, =My (1.127)

Having defined the configuration space we can witden the position, the equations of
motion and the virtual displacement in the way shawthe table below.

Position F= [>§ Y Za] X=[X1,X2,...,Xar]; X represents
i=1..n all components of radius
vector
Equations of motion m' F mx, = X,
=1..n j=1...3n
Constraints f P, r.,t)=0 f xt)=0
peeolt) f=3n-p bet) f=3n-p
k=1... k=1..,p
Virtual displacementofa | & = [é)g , 5yi . | SX=[OX1,8X2, .. ,OX3r]
free system of point-like part.; =1..n The values obx; are
0x;,dy;,0z; are unrestricted unrestricted, j=1,...,3n
Virtual displacement of a n 3, of
constrained system of point ; grad (f, )&, =0 Z_; axk &; =0
like particles = k=1,...p
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1.12. Laws of motion of constrained systems
For a single point-like particle the equationsraftion can be written in the form:
1. CONTRAINTS> REACTION_FORCES IfR
2. mr =F +F, where the reaction forc&, = Agrad(f )
3. Definition of the virtual displacemenigrad(f )(& =0 leads to the conclusion that the

work on the virtual displacementW = F [&F =0.

For a system of point-like particles restricteddbyumber of equations of constraints the
equations of motion are as follows:

1. CONTRAINTS=> REACTION_FORCES IfR or in the configuration spac)éRi

2. mr, =F +F; orin the configuration spacen %, = X + Xq
3. The total work of reaction forces on the vittdigplacements is equal to zero:

no_ 3n
ZFR [&x; :ZxRid(j =0 (1.128)
1 =1

The first two points are quite obvious, the second just results from the Newton’s Second
Law. The third point does not result from the Newsga_aws directly and cannot be derived
from the Newton’s Laws. It has been tested for mame constrained systems and the final
results justify acceptance of this point.

1.13. D’Alembert principle of a system in configuréion space
Equations of motion of a system of n point-liketjgdes can be written in the form:
m % = X, +Xg
f(xt)=0 for k=1,....p (1.129)

3n

D Xg & =0

j=1
Let us multiply the first equation by the compotseof the virtual displacement defined by
3n afk

; =0 (the table below) and let us summarise the restttsrespect to the index j.
i=1 0X;

3n 3n 3n
DMK =D X 5K+ X K, (1.130)
=1 j=1 j=1

The last component of the above equation is zéework on the virtual displacement), so
we get:

3n

Z(X,- _mjxi)d(i =0

j=1

f,(xt)=0 k=1,...,p (1.131)
Iy 5 =
Z:6x. % =0

J

The above set of equationsdi®\lembert principle The principle states that the sum of
virtual works of applied and inertial forces, agtion a system subject to constraints given by
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a set of equationg(k,t)=0, is zero (k=1,...,p). The principle will be&iostarting point to
obtain Lagrange equations of the first kind andsideond kind.

1.14. Principle of virtual work

Let us suppose that a system of n point-like pasics in equilibrium. This implies that
both x; = %; =0 for all coordinates. In consequence of that tidethbert principle

becomes:
3n
D X, =0
j=1
f,(xt)=0 for k=1,...,p (1.132)

z%d(] =0
0X;
A system is in equilibrium if the virtual work opplied forces is zero.

The necessary and sufficient condition for stadjgikbrium of a system subject to fixed
constraints is that the virtual work of the appliedces, for virtual displacements
consistent with the constraints, be zero.
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2. LAGRANGE EQUATIONS
2.1. Lagrange equations of the first kind
Let us assume we have a system of n point-likegbes, their motion is restricted by
p equations of constraints. The equations of matfasuch a system in a configuration space
can be written as:

m,.xj :Xj+X

R
" for k=1,..., 1.133
{ (x1)=0 P (1.133)

It may be supposed that the constraint forcgsake dependent on the equations of constraints
fk(x,t). Let us try to express the constrained foretsg on the particles by the functions
fk(x,t). We shall use the methodladgrange multipliers Let us start from the d’Alembert
principle for a system of n point-like particles:

3n

Z(X,- —mj)d(j =0

=1

f (xt)=0

3n

Z of, & =0

= 0X;
Let us multiply each of the last equations by aajt for the time being coefficient, then
perform the summation over the index k:

P P

DA Z "d( ZZ)Ik axké( =0 (1.134)

k=1 j=1 k=1

Now let us add the result to the first equation’@lembert principle. We obtain:

3n
> X, +Z/‘ i—mx ;=0 (1.135)
=1 k=1 OX]
. of " :
The p equatlonszli&j =0 are conditions for the components of the displaaddx;.
i= 9%
They may be written in the form:
of of
1 +—L 5, +. + 1 =
5<1 ox, X, s,
..................................................... (1.136)
Ay o v o5 2
0x, 0X, N

The matrix of the above set of equations is thekliavatrix of p independent functions
f1(x,1),....fo(x,t). As we know there exists a determinant ofgeo different from zero in the
Jacobi matrix of independent functions (p is thenbar of equations of constraints). Let the
first p columns of the Jacobi form the determirgifferent from zero. Let us rewrite the
equations (1.136) as follows:
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LU L PRI
d(l X, axp P, S
..................................................... (1.136a)
Ay oy o o Oy g Oy o
0x, ax2 axp > SR 0X,

The first p components of the virtual displacem®ntan be calculated if the remaining 3n-p
components are known, so the first p componenthefdisplacemerlx are not arbitrary any
longer. The equations (1.135) can be rewrittethénform:

zp:(x +Z/1 ——mxj& + Z[X +Z" _'mx]&izo (1130

i=1 j=p+l

Because the first p elements of the above equatiotain dependent components of the
virtual displacemendxy, we shall try tanake them zero by choosing such values of the
coefficientsAy for which each of the equations below is satisf@ j=1,...,p.

X, +Z/1 ——mx =0 (1.138)

In other words we ask if the following set of eqaas forA4,..., A, can be solved:

of of of
A2+ A, 2+ 44— =mX —
............................................................. (1.139)
of of f o
/11 X1+A26—Xi +Apa—X’;=mep_xp
Yes, it can be solved (!) because the matrix offaments
o o, o,
x T ox
o, of, O,
ox, 0X,  0X, (1.140)

of, of, of,
ox, 0x, 0x,

is the transpose of the matrix of set (1.136a)aAssult it remains from (1.135):
3n f
DX, +Z/1 —£-m%; o, =0 (1.141)
j=p+1 i OX;

The above set of equations has to be satisfiedtharary ox; for j=p+1,...,3n. This can be
possible only for the sum in brackets equal to zevove have:

of,

m;X; —X + > A K
Z OX for j=1,...3n and k=1,...,p (1.142)

f (xt)=0
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The above system of 3n+p equations for 3n+p unksd®n coordinates and\p
3n
coefficients) is the system of Lagrange equatidrikefirst kind. The expressioEAk %
=L j
represents the constrain forces.

EXAMPLE: Let us find the motion of a point-like f&e on side-surface of a
vertical cylinder. The radius of the cylinder baskanges ag= o+ oit.

Fig.2.1. Cylindrical coordinates describe positioha point with the radiug, the
angle gand the coordinate z. The position of a pointia tylindrical coordinates is given by
r=pn,+a,.
The relation between the versors of Cartesian dmates and cylindrical coordinates
are given by:
n, =n,cosp +n, sing
n, =-N,sing +n, cosp
n, =n,
The versorgi,and fi, change their direction in time, the versiy is constant. The
velocity of a point-like particle in the cylindatcoordinates is given by:
V=P =pi,+ 0, + 7,
Taking into account thaﬁp =¢n, we get:
r= /N, + pgn, + @,

so the cylindrical components of velocity are:

vV, =p
Vv, = pg
V,=2

In the same way we can calculate the cylindricadrdinates of acceleration:
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8, = %di( 2¢)
a, =z

Lagrange equations are as follows:

m(p - pp?)=0+ A
%%@ﬁ

n¢ = -mg

P =P+ ot

And finally we get:
const

(po + p1t)

_oot®
Z—_7+Zot+zo

$=] dt

P=p,+pt

2.2. Lagrange equations of the second kind
Let us consider the example of a plane mathemataadulum (Fig.2.2).

AZ

X
Co.

Fig.2.2. Mathematical pendulum. Its position cardescribed both by the Cartesian
coordinates x,z and by the angte

The motion of such a plane pendulum is restrictedduations of constraints:
x*+7°-17=0
y=0
The number of degrees of freedom of such a pendidwegual to f=3-2=1. The position of
the system can be given either by one of the xgzdioates or by the angle The Cartesian
coordinates are related to the anglaey:

(2.11)
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x=1Ising (2.12)
z=-lcosp '

Let us note that when we substitute (2.12) to (Pwld obtain identity

12sin® p+1%cos p=1?
The above simple example candeneralized toa system of n point-like particles. Let a
system of point-like particles be subject to camstis given by equationg(k,t), k=1,...,p.
The number of degrees of freedom is equal to f=3repus suppose that there exist f
parameters q=[g}...,Gsn-d Which define the position of the system in spdtso, there have
to exist equations:

x; =x(a,t) for j=1,...,3n (2.13)
If the relations (2.13) substituted to the equatiohconstraints give as a result the following
identity:

f.(Xg,t)t)=0 (2.14)
the parameters g={q..,(] arethe generalized coordinate®f the system of point-like
particles. In consequence of the identity (2.9 obtain:

gi =0 fork=1,...,p andI=1,...,3n (2.15)
q
We shall prove the following two identities, impamt for our further considerations:
ox; _ 0Xx;
=1 (2.16)
dq,  Oq
oX. oX.
9% _d 9% (2.17)
oq, dtag,

Because each configuration coordinate is in gerienation of all generalized coordinates
and time y=x;(qy, ...,0n-pt) we have:

foX, oX.
X, = —Jg+—L 2.18
, Zl 2. a*+— (2.18)

Differentiating (2.18) with respect tq for fixed | we get:

0x; _ 0Xx;

=70 (2.19)

dq,  0q

: - .d 0X;
S0 (2.16) is proved. The derlvatl\aeta is equal to:
|

dox, & 0%, 9%

— o= O + (2.20)

dtagq, 1= 099,0q, otaq,
Differentiating (2.18) with respect to fixed @ve get:

o 9°x. X, 9Q 9°x.

X oy TH 04 O (2.21)

aq 0q,0q dq, 0q, | g0t

The quantitiesy, and g, are independent which means tﬂ%q =0, so the second
|

component is equal to zero. If so, the equatiorZ)j2and (2.21) become identical and
relation (2.17) is proved.
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2.2.1. D’'Alembert Principle in generalized coordites
The Cartesian coordinates are a function of f=38eperalized coordinates (and

sometimes of timex; = X; (ql,qz,...,qf ,t). Components of the virtual displacement at adfixe

moment of time can be expressed as follows:
f

&; = Iz;a—qlé‘q' (2.22)

From mathematical point of view the equation (2.82) variant (at a fixed time) of Cartesian
coordinates The f-dimensional vectdg=[5q.,30p....,5¢] is a generalized virtual
displacement. As we know, a virtual displacemer8nrdimensional configuration space has
to satisfy the p following conditions:
3n
%d(j =0 for k=1,2,....p (2.23)
=1 0%,
Let us find the conditions to be satisfied by comgrts of a generalized virtual displacement.
3n afk 3n af 3n af 6x
Tk x = Ly = o =
~ox, Z_;ax] ;aq, ' ,Z;(lz_;ax aqlJ '
f

Zk&r

710G,
According to equation (2.15) all derivativg%q =0. This means that equations (2.24) are
I

(2.24)

no restricting conditions on the generalized virtligplacement. When motion of a system is
described in f-dimensional generalized space, &seription of such a motion becomes
similar to description of motion of a free system.

Derivation of Lagrange equations

The d’Alembert principle in a configuration spaseof the form:
3n

Z(X mx)d< =0

j=1

f(xt)=0
>k o, X, =0
0X;
fOX.
Let us substitutex; = Zﬁdq, in the first equation of d’Alembert principle. Viget:
iz 0g,
3n . 3n ) a
Z(X,— _mixi)d(j :Z(X,- —-mX, )Z ' &q, ZZ(X -m X, )6 X =
= = =0 =1 j=1 q
f 3 a ) 3n a )
z( XjA—ij&AJdm =0
=\= 09 = oq
Definition:
3n 6X.
Q =ZX16—' (2.25)
j=1 qI

® The term ,variant” is used to underline that tiagiables gp,...,q are also functions of time representing a
trajectory of a point-like particle in f-dimensidrgeneralized space. Reader can find the detadsyrtextbook
on calculus of variations.
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We get:

f 3n . axl
2.[Q -2 m% - % =0 (2.26)
=1 i=1 q

Let us focus on the second component of the abgwaten. For a start let us calculate:
d 3n 3n ) d aX]-
—>ym m X, —— (2.26)
dt,Z:;“aqI ;“a ,Z;J‘dtaqI

so we have:

o Ax da o & dox
Zmrxr___ mjxj—’-ijX;
e og  dtiH oq = dt dq

d 3n ] 6x 3n ) aX d 3n 1 6x 3n 1 6x
m;X; = z mX; ——= m, -~ z i
T dt =t g, = oq, T dt S 204 ‘I 2 aq,

P mjxj P mj>‘<j
d & 2 3n 2 d 0 & m x.2 g & m. x.2

wZ g & g digx 2 s 2
The expressioni ' is the kinetic energy of the system. Denotingghergy with T
we obtain: -

imj X, % :%Z—g‘g—: (2.27)

j=1 . | |

and finally we get:

! doT ot
IZ:;,(Q' atoq aqudq (2.28)

The above equation has to be satisfied for arlgitralues components of the generalized
virtual displacemendq. This is possible only when for all values of I=1f we have:

—2 % =9 forI-1,... f (2.29)

Lagrange equations for a potential field

If motion of a system of point-like particles takglace in a potential field,
components of forces are given by:
oV (x,t)

X. =- 2.30
™ (2.30)
The generalized forces are as follows:

& Vv 0x; _ oV

Q= X —L=- L= (2.31)

| ; ! 6q| Zax dq, daq,

where the potential V is expressed by the gene@imordinates V(x,t)=V(x(q,t),t)=V(q,t).
The Lagrange equations can be written as:
Ea_T —a_T = _6_V =1,..., f (232)
dtog dq  0oq
Rearranging the above equation we get:
doT __V)—a(T ~V) =0 I=1,....f (2.33)
dt 0dq aq,
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The expression T-V is denoted Bsand called the Lagrangian function (or just Lagran).
Finally we get for a system of point-like particle®ving in a potential field:

Gk ok (2.34)
dtag aq

The general solutions of f Lagrange equations eawiitten in the form:
g =q(t.C....C,;) 1=1,...f=3n-p (2.34a)

where G,...Cys are 2f constants dependent on initial conditions.

2.3. Invariants of Lagrange equations
The expressioﬁi’%q = p, defines the I-component of generalized momentéiso,|
|

the Lagrange equations can be written in the form:

___ ———t=——=Q (2.35)
dt dgq  oq oq,
So we get:
dp
P 2.36
ot Q (2.36)

The above equation resembles the second Newtowsllet us find the relation between the
generalized momentum and the “ordinary” momentui@antesian coordinates in a potential
field. The Lagrange function can be written as:
L=L(a,q.t)= L(xa.t) {a,q.t)t) (2.37)
so the components of generalized momentum can ittenvas:
oL _ & oL 0x; _i aL 0x;

P =o =25 : (2.38)
! aq| =1 aXj aq| =1 aXj aql
Taking into account that:
_ 3n
oL _ G(T' V) _ 0 Sy =mx, = p, (2.39)
0X; 0X; 0X; =1 2 ‘
We get:
S 0X.
P=2 P o (2.40)
; ' g,

As we see the relation between the componentsr@rgézed momentum and the
components of ordinary momentum is similar to #latron between the generalized force
and “ordinary” force defined by equation (2.25).

2.3.1. Cyclic coordinates
Let us remind the Lagrange equations in the form:

dp _ oL
dt 0q
Let us assume that the Lagrange functlixﬂq,q,t)6 does not depend on one of the generalized

coordinates g Such a generalized coordinate is called a cgdardinate. In consequence:
dp, _ oL _

dt  daq,

(2.41)

=  p,=const (2.42)

® Let us remember thd :[q,...qu represents all f=3n-p generalized coordinats; ldﬂ,...,qf] represents
all f generalized components of speed.
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As we see the component of generalized momenturesgynding to a cyclic coordinate is
constant in time.

Symmetry in Physics

We say that a system is symmetrical when thert®sguch a transformation of the
system which transforms it to itself. For instaifae system transfers to itself after reflection
across a plane we say that the system possesa symmetry. If a physical structure
transforms into itself when rotated round an axéssay it possess an axis of symmetry.
Transformation into itself leads to conclusion ttieg physical properties of a system are
independent of the transformation. Because the amecal properties of a physical system are
defined by its Lagrangian it is obvious that Lagjian must be independent of any
transformation which transforms a system into itdelother words any symmetry should be
reflected by independence of Lagrange functioroafes parameter describing the symmetry.
There are three main symmetries of physical spaddime which are of crucial importance
for analytical mechanics, namely translational syatrgnof space (Lagrange function is
independent of point of space), rotational symmg@tagrange function is independent of
rotation around some axis) and translational symmettime (Lagrange function is not
explicit function of time) .

2.3.1.1. Lagrange function is independent of positiin space (space is homogeneous)

For a homogeneous space the Lagrange functionmbdepend on a radius vector,
i.e. the Lagrange function does not depend on Siartecoordinates x,y, and z. In other words
we have to do with translational symmetry of hommegmis physical space. If so, for a point-
like particle the Lagrange function is of the form:

L=T-V,=L(x y,z,t):g(x%y%zz) (2.43)

The coordinates x,y and z are cyclic coordinateshe components of momentum
corresponding to the coordinates remain constantveShave:

%= = dp, =0= p, =const
0x dt
d
%=O:>ﬁ=0:> p, = const (2.44)
oy dt
oL

—=O:>%:O:> p, = const
0z dt

CONCLUSION: Law of conservation of momentum resirten translational symmetry of
homogeneous physical space.

2.3.1.2. Lagrange function is independent of rotati in space (space is isotropic)

Let us calculate the Lagrange function of a fremplike particle using spherical
coordinates (see Fig.2.3).
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Fig.2.3. Position of a point is given by lengthradiius vector r and two anglegand 6.

The relation between Cartesian coordinates andispheoordinates are given by:
X =rsingdcosg

y =rsingsing (2.45)
z=rcosd

The kinetic energy of a point-like particle is tefare given by:
T=g(>'<2+y2+22)=g(r'2+r26'?2+r25in26¢2) (2.46)

Let us note that the kinetic energy depends ondfitbree spherical coordinates r aéhdnd
is independent of the third coordingiel et us assume that the potential energy is also
independent of the angie We therefore have:

ng(r'z+r292+rzsin29¢f)—v(r,9) (2.47)

The Lagrange function is independent of rotatiosiad the z-axis. We say that the physical
space is isotropic with respect to these rotatidhs. anglepis a cyclic coordinate, so the
generalized momentum corresponding to the aqpgdeconstant.

P, = g—; =mr’sin* @p=mrf, @=myr, =J, (2.47)

As we see conservation of angular momentum reBuolts isotropy of physical space.

2.3.1.3. Lagrange function is not explicit functioaf time
Let us multiply Lagrange equations

o} _oL 106 i (2.48)
dq | =1 .
by ¢ and summarize over |. We obtain:
! oL
pg ——¢q |=0 (2.49)
;[ PG~ 5, .j
Let us calculate the derivative:
d, . . .
5(RG)= R4+ g (2.50)

Using (2.50) we get:

“(d oL “(d oL L
L S| S B ot e | S . 551
Z(dt(nql) a[s! aqlqj Z(dt(nq.) 2 —aqlqu (2.51)
The total time derivative of Lagrangian is as falf

D
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db _ a—Lq a—Lq oL 2.52
dat  4\ag " Tag ) et (2:52)
Taking into account (2.52) we get from (2.51):
Ld dL oL
“(nc =0 2.53
2R =g 5 (2.53)
Rearranging (2.53) we obtain:
oL
=- 2.54
(Z nG - j 5 (2.54)
Let us denoteG = z ng — L. We get:
=1
4G _ oL (2.55)
dt ot

It results that if Lagrange function is not exgliinction of time, i.e. if 0L/dt =0 the

guantity G remains constant in time. We shall shtitat under some assumptions G is total
energy of a system.
THEOREM: If the configuration coordinates as fuonos of generalized coordinates are not

explicit functions of time, i.e. ik; = X; (q) and we have to do with motion in a potential field
i.e. V=V(q,t), then function G is the total enemgjya system, i.eG=T+V.

In order to prove the above theorem, we shall adeepadditional theorems.

f o f
AUXILIARY THEOREM 1: If x, =x(q) then T =" a,qq,, i.e. the kinetic energy is

1=1 k=1
a bilinear form of generalized speeds.

3n m.
The kinetic energy of a system of n point-like s is given byl = 27‘ ij . Taking into

j=1

f
account thatx, z qI we get:
|:l
f

3n a f 3n a a
Z ZX |Z g Zzzm %% 4, (2.56)
= 2 1509 aqk Simic 2 0q aC]k
Because the result of summatlon is independer&qﬂemce of summation, we obtain:
3 m; 0%; 0x;
T= 44 (2.57)
BHES o EEa
m; 0X; 0X;
The sum(z 0)(; o j depends on the indexes | and k, so it can be ddrashy.
I k
AUXILIARY THEOREM 2: If f(X 1,...,Xn) is @ homogeneous polynomial of degree m then
L of
—Xx =mf 2.58
2 ox (2.58)
The G function can be written as:
S Lo
G=>pG-L=>_—qg-L (2.59)
=1 1=1 a(q|

41



L=T-V(q,t), so the derivative‘l‘ = a—T SO we get:
dg,  0q,

f
G=Zg—gq,—L=2T—T+V=T +V (2.60)
1=1 |

f
because T is a homogeneous function of degree Zga-ryql =2T.
=1 |

2.4. The action principle

We derived the Lagrange’s equations from Newtexsations of motion. This is not
the only way to get the Lagrange’s equations. Th&gons can be obtained in another, very
general way. In order to show this alternative waget the Lagrange’s equations we must
get familiar with some concepts of calculus of &aans.

2.4.1. Functions and functionals
A function is a relation between a set of inpand a set of permissible outputs
assuming that each input is related to exactlyartput. The input to a function is called an

r Y 4 I

set of inputs set of permissible

(arguments) ::> outputs (values)

output

Fig.2.4. FUNCTION: relation between a set of inpatsl a set of permissible outputs. Each
input related to one output.

¢ N 7 N

set of arguments: set of outputs:

FUNCTIONAL

functions numbers

\, v . v
Fig.2.5. In case of functional arguments are fumasi.

argument and the output is called the value oftioncin case of functions both the set of
arguments and the set of values are numbers.

When the set of arguments is a set of functiond,aaset of values is a set of numbers
we have to do with a functional. Definite integral

FLE00]= [ f(9dx (2.61)

is a good example of a functional. We often usesgibrackets in order to emphasis the fact
that functional F is a function of functions.
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2.4.2. The action principle
Let us suppose we have a system of point-likaghastsubject to holonomic
constraints. Let the number of degrees of freederf¥Bn-p, so a motion of the system is
given by f generalized coordinategty(f=1,...,f). The Lagrange function of such ateys is
given by L(q(t),4(t),t). The action for such a motion is defined:
t
I[a()] = [ L(alt), aft). it (2.62)
to
The action is a functional, the set of argumengsfanctions g(t),...q(t). Among many
functions describing possible motion between twedipoint of timedand t, one set of
functions grefers to the path actually taken between thegamts. For this set of functions
the functional I[g(t)] has its minimum.

t
I[q(t)] = I L(q(t), ¢(t), t)dt.. hasits..min..= . q(t).correspondo.real.motion

to

It results from detailed considerations of calcudfisariations that the functional (2.62) has
its minimum for Lagrange functions satisfying thegkange equations:
doL odL _

dtog oq
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3. PHASE SPACE, HAMILTON'S EQUATIONS

Position of a system of n point-like particles3id space can be defined by their 3n
configuration coordinates »or by f=3n-p generalized coordinatestpwever, in order to
define STATE of a system to be able to foresedatelopment in time, we have to add
velocities of all particles at a certain pointiofi¢. Instead of velocities momenta of particles
can be also taken. The set of coordinates (or géned coordinates in case of restricted
system) and momenta of all points form so-calleasphspace. Phase space is very important
concept of both mechanics and statistical physicgion of a system in phase space can be
found by solving Hamilton’s equations.

Phase coordinates{g) and Hamilton’s equations lead to the Hamiltonian
formulation of mechanics. Hamilton’s equations, wisempared to Lagrange’s equations,
do not present much, if any, advantage when isé&uo solve problems of Newtonian
mechanics. However, Hamilton’s formulation of mewka is necessary to build and study
guantum mechanics.

3.1.Hamilton’s equations
f

The functionG = z ng — L defined previously is a function of coordinates,
=1
velocities, momenta and sometimes it can be explioction of time. Let us write the
function in the form:

G:Zf: Qv - L (3.1)

MATHEMATICAL INSERT: Let us take 3n functiojig:x..,q,t) describing the
relations between 3n configuration coordinates 8nep generalized coordinates. In
general the functions can be explicit functionsirok, though we are interested in the
case XQi...,q) first of all. The differential (variation) of thieinctions is:

L) 0X
X = L +—Ldt 3.2
, .21: 2 a, P (3.2)
Symbolsdinstead of d are used to emphasize that variatplase functions of time.
The expression (3.2) is called the variation ofrdmates xwith variation of time.
When we want to have a variation of coordinatdsixa fixed point of time we get:

N
&; = ;a—z:éq (3.3)

The above expression is called a variation;afithout variation of timé

f

Let us calculate the variation of functio@ = z v —L. We get:
1=1

. J oL . oL . )
BG=dy Ay~ =2 d(pv) -2 | &+~ |=
B =1 EAL oV

f f

(now +vidp) - (ndy +pdv)=> (v - ndy)=2 (a4 - pdy)  (3.4)

f
1=1 =1 1=1

" Variational calculus is an important part of neattatics, useful for so called variational principté
mechanics. The calculus of variations deals withstudy of extremum values of functions (calledcfionals)
depending on another function. Reader can find ni@xtypooks on variational calculus. For the pugsosf this
lecture we will use some simple analogies betwharctions and functionals.
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So far we used the function G as a function ofegalized coordinatesg,, generalized
velocities g, =v;, generalized momentp =0L/d¢ and sometimes time t. Let us note that it
should be possible to replace the components adrgéred velocities;, by components of
generalized momenta, using the definitions of generalized momenty dL/dg, °.
Replacing the velocities by momenta we get:

G(av.p.t)=H(a.p.t) (3.5)
The function H(q,p,t) is called Hamilton’s functidret us calculate the variation of
Hamilton’s function without variation of time:

oH oH

H=) | —ax +—dhj (3.6)
Z(aq | ap

Let us compare the variations (3.4) and (3.6). Tdreyvariations of G and H, i.e. they are

variations of the same function though written gdilifferent sets of variables. Subtracting
(3.4) from (3.6) we get:

H _d—:OZZ(g_Z+p|J&1|+Z(g_:_Q|J@| (3.7)

The equation (3.7) have to be satisfied for arbjtiariations ofdg and dp; and this is
possible only when:

(3.8)

The above equations are Hamilton’s equations.

® The replacement is possible in practice if we s@ine the set of f=3n-p equationy = 6L/0q, for f variables
V,. However, even if we cannot solve the set of #qna we shall assume that there exist singe-valued

functions P = [ (Vl,...,vf).
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4. INTEGRALS OF MOTION, POISSON’'S BRACKETS

Consider a system on n point-like particles suliigtiolonomic constraints given by p
equations with f=3n-p degrees of freedom. Let ssiae that there exists a relation of the
type:

F(ql,...,qf o NN o B ,t) =C(const) (4.2)
which is satisfied by any solution of Lagrange dopunes. Then (4.1) is callegl first integral
of motion ora constant of motion Any relation of the type:

F(ql,...,qf ,t) =C(const) (4.2)
is called a second integral of motion. Second iatisgare not as important for mechanical
considerations as first integrals of motion.

Let us suppose that we have s distinct first iratksgof motion F,...,F. Then any
function G(R,...,F) = const is also a first integral of motion, biog function G is not
independent of functions,F-..,F..

The integration of Lagrange equations is conslagriacilitated by the application of
first integrals, because:

(1) first integrals offer information on physical natusf a system

(i) in some cases first integrals express the consenvat fundamental physical
guantities such as linear and angular momentaggner

Poisson’s brackets are a way to find additional fintegrals of motion if two of them is
known.

4.1.Poisson’s brackets

Suppose we have two functions of generalized ¢oatels and momenta defined in
the phase space F(q,p,t) and G(q,p,t). Poissoatkbt of functions F and G is defined as:

e0=3 e on o v 3
Properties of Poisson’s brackets:

(F,G)=—(G,F) (4.4)
(F.F)=0 (4.5)
(F,+F,.G)=(F,G)+(F,.G) (4.6)
(F F,,.G)=F(F,,G)+F,(F,G) 4.7)

o=(5e) (=5 @9
(Fl,(Fz,Fg))+(F2,(F3,F1))+(Fs,(Fl,Fz))=0 (4.9)

PROOF (4.7): simple

PROOF (4.8): simple
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4.1.1. Equation of motion for physical quantity F(gt)
Let us calculate the time derivative of functiop,t):

dF oOF . oF oF
=Y g e g [+ 4.10
dt (6Q.q' on Hj 419

Using Hamilton’s equations we get:

dF _o(9FOH oF OH) oF @.11)
dt =\ 0qg, dp,  0p, dq ot
so finally we get:
dF oF
F.H 412
o T FH) (4.12)
For F=H we obtain:
A _m)eH - (4.13)

dt ot ot
It results from (4.13) that the Hamilton functiocanconly be explicit function of time.

4.1.2. Poisson-Jacobi theorem

Let us assume that we have two first integralmofion R(q,p,t) and &q,p,t).
According to Poisson-Jacobi theorem Poisson’s letagkthe two functions (f)=const.

Let us start from equation (4.9) taking=H (Hamilton’s function):
(Fl’ (Fz’ H ))+ (Fz’ (H , Fl))+ (H ’(Fl’ Fz)) =0 (4.14)
Let us calculate the total time derivative of fuaos kR, F, using (4.12). We get:
dF, oF, dF, _oF, _ _0F,

—2=(F,H F,,H 4.1
dt ( ) ot ( ) dt ot ot (4.15)
dF, (F H) oFF, ——»p (H Fl) oF, _dF _oF (4.16)
dt ot ot dt ot
d(F.F,) o(F.F,)
e (RR)IH) = (4.17)
Rearranging (4.17) we get:
o(F,F,) d(F,F,)
H,(F,F,))=—t2l -2 4.1
(H.(RF)) == " (4.18)
Substituting (4.15), (4.16) and (4.18) to (4.14)ol¢ain:
(Fl,—‘;—':t) (F aa—'ij (aali Fj (Fl,aa'?j:d('zfz) (4.19)
and finally:
d(F.F) _, (4.20)
dt
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