Clear filters
  • K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Péter R. Surján, Springer Berlin Heidelberg, ISBN:978-36-624982-4-8,978-36-624982-5-5, pp. 219-227, September 2015
  • K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Theor. Chem. Acc. 134(10), 118, 2015
  • E. Pastorczak, K. Pernal, ERPA–APSG: a computationally efficient geminal-based method for accurate description of chemical systems, Phys. Chem. Chem. Phys. 17(14), 8622-8626, 2015
  • K. Pernal, K. Giesbertz, Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT), Density-Functional Methods for Excited States, Springer International Publishing, ISBN:978-33-192208-0-2,978-33-192208-1-9, pp. 125-183, 2015
  • K. Pernal, Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation, J. Chem. Theory Comput. 10(10), 4332-4341, 2014
  • K. Pernal, K. Chatterjee, P. Kowalski, Erratum: “How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches” [J. Chem. Phys. 140, 014101 (2014)], J. Chem. Phys. 140(18), 189901, 2014
  • E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, J. Chem. Phys. 140(18), 18A514, 2014
  • K. Pernal, K. Chatterjee, P. Kowalski, How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches, J. Chem. Phys. 140(1), 014101, 2014
  • E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, The Journal of Chemical Physics 140(18), 2014
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
  • K. Pernal, The equivalence of the Piris Natural Orbital Functional 5 (PNOF5) and the antisymmetrized product of strongly orthogonal geminal theory, Comput. Theor. Chem. 1003, 127-129, 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Range-separated ensemble variational method of obtaining excitation energies of molecules , 15th International Conference on Density Functional Theory and its Applications, Durham, UK, 09-13 Sep 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
  • K. Chatterjee, K. Pernal, Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices, J. Chem. Phys. 137(20), 204109, 2012
  • K. Pernal, Excitation energies from range-separated time-dependent density and density matrix functional theory, J. Chem. Phys. 136(18), 184105, 2012
  • D. R. Rohr, K. Pernal, Open-shell reduced density matrix functional theory, J. Chem. Phys. 135(7), 074104, 2011
  • D. R. Rohr, J. Toulouse, K. Pernal, Combining density-functional theory and density-matrix-functional theory, Phys. Rev. A 82(5), 052502, 2010
  • K. Pernal, Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas, Phys. Rev. A 81(5), 052511, 2010
  • K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless Density Functional Theory, Phys. Rev. Lett. 103(26), 263201, 2009
  • R. Podeszwa, K. Pernal, K. Patkowski, K. Szalewicz, Extension of the Hartree−Fock Plus Dispersion Method by First-Order Correlation Effects, J. Phys. Chem. Lett. 1(2), 550-555, 2009