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Zwiekszenie mocy laserdw potprzewodnikowych zwykle wigze sie z poszerzaniem
obszaru czynnego, w ktorym generowane jest promieniowanie. Prowadzi to jed-
nak do przejscia pracy z trybu jednomodowego do wielomodowego, co w wielu
zastosowaniach jest niepozgdane. Dlatego poszukuje sie rozwigzarn pozwalajgcych
na jednoczesne uzyskanie wysokiej mocy i stabilnej pracy w trybie pojedynczego
modu poprzecznego. Jednym z obiecujgcych kierunkow jest podejscie supersyme-
tryczne, wynikajgce z analogii pomiedzy réownaniami Schrodingera i Helmholtza,
ktore znalazto zastosowanie w optyce falowej i umozliwia skuteczne ttumienie
modow wyzszeqo rzedu.

W niniejszej pracy podejscie supersymetryczne zostato zastosowane w struktu-
rze bazujgcej na azotkowym laserze o emisji krawedziowej emitujgcym Swiatto
niebieskie o dtugosci fali 430nm. W pracy badany jest wplyw parametréw geo-
metrycznych struktury oraz parametrow warstwy czynnej na skuteczng dyskry-
minacje modow wyzszego rzedu w strukturze z dwoma falowodami grzbietowyms.
Do tej pory w literaturze przedstawiono podobne analizy dla laseréw arsenko-
wych i fosforkowych, natomiast podejscie supersymetryczne w przypadku laseréw
azotkowych nie zostato jeszcze doktadnie zbadane.

Otrzymane wyniki wskazujq, Ze zastosowanie podejscia supersymetrycznego
w azotkowych laserach o emisji krawedziowej umozliwia uzyskanie pracy w trybie
pojedynczego modu poprzecznego réwniez przy szerszym obszarze czynnym. Pa-
rametr zwany wzgledng separacjg modow, zastosowany do poréwnania badanych
laserow, osiggnat w supersymetrycznej strukturze wartosé okoto 3,5, co oznacza,
ze separacja modow jest ponad trzykrotnie wicksza niz w strukturze referencyjnej
z pojedynczym falowodem grzbietowym. Wynik ten wskazuje, ze struktury oparte
na podejsciu supersymetrycznym mogq stanowié szczegolnie korzystne rozwigza-
nie w projektowaniu przyrzgdow przeznaczonych do zastosowarn wymagajgcych
wyzszej mocy optyczne;j.

Stowa kluczowe: lasery potprzewodnikowe, symulacja komputerowa, model nume-
ryczny, potprzewodnikowe materiaty azotkowe, modelowanie zjawisk optycznych

1. WSTEP

Lasery azotkowe o duzej mocy, emitujace promieniowanie w postaci wiazki gaussow-
skiej o malej rozbieznosci, stanowig atrakcyjne zrodto swiatla do wielu zastosowari.
Wykorzystywane sa m.in. w chirurgii laserowej [1], obrébce materialéw [2] i druku
3D [3].
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Uzyskanie akcji laserowej na pojedynczym modzie poprzecznym w laserach o emi-
sji krawedziowej jest zazwyczaj mozliwe dzieki zastosowaniu waskiego falowodu grzbie-
towego [4] lub falowodu grzbietowego otrzymanego poprzez plytkie trawienie struk-
tury [5]. Efekt falowodowy w takich laserach wystepuje w kierunku poprzecznym,
poniewaz efektywny wspolczynnik zalamania w obszarze falowodu grzbietowego jest
wyzszy niz w obszarach z nim sgsiadujacych. Waski falowod grzbietowy ogranicza
mod podstawowy i jednocze$nie ttumi lub eliminuje mody wyzszego rzedu. Takie
rozwigzanie ma jednak swoje wady. Powierzchnia przez ktora prad jest wstrzyki-
wany do warstwy czynnej ze studniami kwantowymi jest wtedy niewielka, co ogra-
nicza objetos¢ obszaru czynnego i obniza moc optyczna lasera. Dodatkowo waski
obszar czynny przektada sie na wysoka gesto$¢ mocy cieplnej, przez co odprowa-
dzanie ciepla staje sie problematyczne. Sytuacja jest inna w przypadku ptytkiego
falowodu grzbietowego, ktory wprowadza jedynie niewielki skok wspotczynnika za-
tamania w kierunku poprzecznym. Pozwala to na tlumienie modéw wyzszego rzedu
réwniez w strukturach z szerszymi falowodami grzbietowymi, co sprzyja pracy jedno-
modowej i daje szanse uzyskania wickszej mocy optycznej. Z drugiej jednak strony,
stabszy efekt falowodowy przeklada sie na wyzsze wartosci pradu progowego. Obser-
wuje si¢ wtedy wzrost temperatury, ktéra wpltywa na wartosci wspolczynnikow zata-
mania uzytych materialow. Otrzymany w ten sposob rozklad tej wielkosci wzmacnia
efekt falowodowy i sprzyja powstawaniu modéw wyzszego rzedu. W efekcie praca
lasera staje si¢ wielomodowa [6].

Aby obejsé¢ te ograniczenia i uzyskaé¢ prace jednomodows na modzie podstawo-
wym, w niniejszej pracy wykorzystano sprzezenie optyczne pomiedzy sasiednimi fa-
lowodami grzbietowymi — rozwigzanie znane jako podejscie supersymetryczne. Kon-
cepcja supersymetrii narodzita sie w fizyce czastek, pozniej byta rozwijana w mecha-
nice kwantowej, a dzieki analogii pomiedzy réwnaniami Schrédingera i Helmholtza
znalazta réwniez zastosowanie w optyce falowej [7], szczegolnie w uktadach sprzezo-
nych falowodéw [8], gdzie charakterystyka modowa zalezy od sposobu ich sprzezenia.
Klasycznym przyktadem dziatania supersymetrii jest tu para sprzezonych falowodow
o roznych parametrach, w ktorej wszystkie mody maja te same stale propagacji w obu
falowodach [9]. Wyjatek stanowi mod podstawowy w pierwszym z falowodow, ktory
nie posiada odpowiednika w drugim. W rezultacie wszystkie mody majace swoje
odpowiedniki propaguja sie w obu falowodach, a tylko mod podstawowy pozostaje
zlokalizowany w pierwszym falowodzie.

W niniejszej pracy podejscie supersymetryczne zostato zastosowane w azotkowym
laserze o emisji krawedziowej (rysunek 1), aby uzyskaé lepsze parametry pracy na
modzie podstawowym. Struktura takiego lasera, dalej nazywana DRW (ang. double-
ridge waveguide — struktura z podwdjnym falowodem grzbietowym), sktada sie
z dwoch falowodow: szerszego (A) 1 wezszego (B). Dla poréwnania analizowana jest
rowniez klasyczna struktura z pojedynczym falowodem grzbietowym, dalej nazywana
SRW (ang. single-ridge waveguide — struktura z pojedynczym falowodem grzbieto-
wym). Obszary znajdujace sie¢ pod falowodami grzbietowymi beda nazywane aper-
turami.

W strukturze DRW, jesli szerokosci falowodéw grzbietowych A i B zostang do-
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brane tak, aby mody wyzszego rzedu w A mialy te same wspolczynniki zalamania
co mody w B, wowczas ulegaja one sprzezeniu a ich rozktady rozpraszaja sie w obu
aperturach. Mod podstawowy, ktéry nie ma odpowiednika w falowodzie B, pozostaje
ograniczony do falowodu A. W pracy mody w strukturach SRW i DRW beda ozna-
czane odpowiednio TE;Q‘RW i TE?RW, przy czym ¢ = 0 bedzie stosowane dla modu
podstawowego, a liczby dodatnie dla ¢ beda stosowane dla modéw wyzszego rzedu.
Poniewaz badania opisane w pracy skupiaja sie gtéwnie na dyskryminacji modéw,
sposob ich numerowania nie ma wplywu na wyniki. Przyjeta zostala prosta zasada:
wyzsze mody beda porzadkowane malejaco wedlug czesci rzeczywistej efektywnego
wspotczynnika zatamania.

N

B \WZzmocnienie —— Si0,
mEmm— absorpcja ——— InGaN/GaN/AlGaN
1 Au

Rysunek 1. Schematyczne przedstawienie struktur laseréw krawedziowych
z pojedynczym (SRW) i podwojnym (DRW) falowodem grzbietowym, badanych
w niniejszej pracy, wraz z uktadem wspoétrzednych zastosowanym w analizie. Oznaczenia:
wp, wg — szerokosci falowodow A i B; dap — odlegtosé miedzy falowodami A i B
Zrédto: opracowanie wtasne.

W pracy badany jest wplyw szerokosci falowodu B, ktéry zapewnia skuteczng
dyskryminacje modéw wyzszego rzedu w strukturze DRW. Analizowany jest takze
wplyw czesci urojonej wspolczynnika zalamania w warstwie czynnej. Rozktad tej
wielkosci zalezy od wartosci wzmocnienia i absorpcji przyjetych w warstwach studni
kwantowych. Do tej pory w literaturze opisano podobne analizy dla laseré6w arsenko-
wych [10-12] i fosforkowych [13], natomiast podejécie supersymetryczne w przypadku
laseréw azotkowych nie zostalo jeszcze dokladnie zbadane. Materialy azotkowe wy-
rézniaja si¢ mniejszym kontrastem wspotczynnika zatamania niz materiaty arsenkowe
i fosforkowe, a takze krotsza dlugoscig fali emitowanego promieniowania.
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2. MODELOWANA STRUKTURA

Struktura wyjsciowa do badan teoretycznych stanowiagcych przedmiot niniejszej pracy
to polprzewodnikowy laser azotkowy o emisji krawedziowej typu ridge-waveguide
(z falowodem grzbietowym) z obszarem czynnym w postaci studni kwantowych In-
GaN/GaN generujacy promieniowanie o dtugosci fali 430 nm. Obecna technologia
umozliwia wytwarzanie takich struktur, czego potwierdzeniem sa zmierzone ekspe-
rymentalnie charakterystyka pradowo-napieciowa oraz charakterystyka wyjsciowej
mocy optycznej w funkcji pradu, ktore zostaly zaprezentowane w [14]. Modelowana
struktura wyjsciowa, schematycznie przedstawiona na rysunku 2, bazuje na struktu-
rze pojedynczego emitera przedstawionego w [14] zaprojektowanego do emisji pro-
mieniowania o dtugodci fali 430 nm i jest podobna do konstrukeji opisanych w [15-17],
ktore opracowano tak, by w temperaturze pokojowej generowaly $wiatto niebieskie
o dtugosci fali z przedziatu 442-450 nm.

J Au p-AlypusGaN
p-GaN
Si0, p-Aly—o45GaN
n-Aly i uGaN
9 x (p-Aly,12GaN/p-GaN)
n-AlpssGaN % p-Aly1,GaN
GaN
Tng043GaN GaN/
Tng 1,GaN/Ing osGaN
GaN
Tng 1,GaN/Ing osGaN
n-Algp2:GaN n-Ing 0;3GaN GaN
— n-GaN
n-Alggss—0GaN
n-GaN (podloze)

Rysunek 2. Schemat struktury lasera polprzewodnikowego o emisji krawedziowej typu
ridge-waveguide z obszarem czynnym InGaN/GaN. W celu lepszego uwidocznienia
szczegolow konstrukeji pokazano jedynie niewielka czesé podloza oraz ograniczono
szerokosé fragmentu struktury do 6 pm. Prawa cze$¢ rysunku, ukazujaca fragment
struktury obejmujacy warstwy o malej grubosci, przedstawiono w powiekszeniu, w innej
skali niz czesé lewa. Dla uproszczenia zapisu, na rysunku oraz w dalszej czesci pracy sktad
materialowy dla materialéw AlGaN oraz InGaN podawany jest wylacznie poprzez wartosé
okreslajaca zawartosé Al lub In. Zawartos¢ Ga réwna jest roznicy 1 1 zawartosci Al lub In
Zrédto: opracowanie wlasne.

Szczegoly budowy struktury wyjsciowej takie jak materialy z ktérych wykonano
warstwy, typ domieszkowania i koncentracja domieszki, grubosci warstw przedsta-
wiono w tabeli 1. W celu uzyskania falowodu grzbietowego wytrawiono warstwe pod-
kontaktowa wykonana z p-GaN i wykonana z p-Alg 045GaN czes¢ warstwy okladkowej
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Tabela 1. Szczegoly struktury lasera polprzewodnikowego o emisji krawedziowej typu
ridge-waveguide 7 obszarem czynnym InGalN/GaN. W tabeli pominigte zostaly grubosci
warstw znajdujacych si¢ po dolnej stronie podtoza, poniewaz obliczenia stanowiace przed-
miot niniejszej pracy skupiaja siec na modelowaniu zjawisk optycznych, co umozliwia ogra-
niczenie struktury od dotu tak, Ze jedynie niewielki fragment podloza jest uwzgledniany

w obliczeniach

Koncentracja
Element lasera Materiat domieszki Grubos¢ [nm)]
[1018 Cm_B]
kontakt metaliczny Au — 1000
izolacja tlenkowa Si09 — 200
warstwa podkontaktowa GalN:Mg 5,0 210
warstwa okladkowa Al 045GaN:Mg 5,0 550
warstwa okladkowa Alp—0,045GaN:Mg 2,0 — 5,0 100
. 9 x (GaN:Mg /
Wa.rstvlia bl(ikt}i]{%ca Alg12GaN: M) 40,0 38( (2,0 / 2,0)
ucieczke nosnikow Alg.12GaN:Mg) ,
warstwa dystansujaca GaN — 2,0
warstwa falowodowa Ing,043GaN — 65,0
bariera GaN — 4.0
studnia kwantowa Ing,12GaN / - 31 /13
(gleboka/plytka) Ing,06GaN ’ ’
bariera GaN — 5,0
studnia kwantowa Ing,12GaN / - 31/13
(gteboka/plytka) Ing,06GaN ’ ’
bariera GaN — 5,0
warstwa falowodowa Ing 043GaN:Si 2,0 50,0
warstwa dystansujaca GaN:Si 5,0 10,0
warstwa okladkowa Alp,068—0GaN:Si 5,0 350
warstwa okladkowa Alp 068 GaN:Si 5,0 800
warstwa buforowa Alp 023GaN:Si 5,0 2000
podloze GaN:Si 5,0 3 x 10°

Zrédto: opracowanie wltasne na podstawie [14].

typu p na gleboko$é 710 nm. W kierunku bocznym pozostawiona jest mesa o szero-
kosci 2,0 pm. Diugosé emitera opisanego w [14] to 900 nm, ale w prezentowanych tu
obliczeniach nie ma ona znaczenia, poniewaz dotycza one przypadku dwuwymiaro-
wego, ograniczonego do plaszczyzny przedstawionej na rysunku 2. Izolacja tlenkowa,
ktora pokrywa obszary odsloniete w wyniku trawienia, wykonana jest z amorficz-
nego SiO2 i ma grubo$é 200nm. W obliczeniach przyjeto, ze warstwa ta czeSciowo
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pokrywa falowo6d, zachodzac na niego na odlegltosé rowna swojej grubosci. W mode-
lowanej strukturze nad ta warstwa znajduje si¢ warstwa zlota o grubosci 1 pm, ktora
ma kontakt z warstwa podkontaktowa jedynie od gornej strony falowodu grzbieto-
wego.

Obszar czynny modelowanego lasera jest niedomieszkowany (patrz: tabela 1) i zo-
stal wykonany w postaci dwoch studni kwantowych wykonanych z InGaN rozdzielo-
nych barierami wykonanymi z GaN. Na kazda ze studni skladaja sie dwie warstwy
Ing,06GaN o grubosci 1,3nm i Ing12GaN o grubosci 3,1 nm. Calkowita grubosé¢ ob-
szaru czynnego to 22,8 nm, ale niedomieszkowany obszar nie ogranicza sie jedynie
do obszaru czynnego. Zaliczaja sie do niego jeszcze dwie warstwy znajdujace sie nad
gbrng barierg: warstwa falowodowa o grubosci 65 nm wykonana z Ing g43GaN i cienka
(2nm) warstwa utworzona z GaN. W pracy [14] gorna warstwa falowodowa jest do-
mieszkowana, ale istnieja tez prace [16-18], gdzie warstwy tej sie nie domieszkuje, aby
unikngé strat optycznych spowodowanych duza absorpcja promieniowania typowa
dla materiatéw azotkowych typu p [19,20]. Dopiero 67 nm nad obszarem czynnym
znajduje sie pierwsza warstwa typu p, ktéra wraz z kilkunastoma kolejnymi cienkimi
(2nm) naprzemiennie utozonymi warstwami p-Alg 12GaN i p-GaN tworzy obszar na-
zywany warstwa blokujaca ucieczke nosnikéw z obszaru czynnego do warstw typu p.
Obszar ten sasiaduje od gory ze wcze$niej wspomniana warstwa oktadkows typu p.
Po przeciwnej stronie obszaru czynnego znajduje sie warstwa falowodowa wykonana
z Ing043GaN typu n o grubosci 50 nm. Kolejne warstwy to: wykonana z n-GaN war-
stwa dystansujaca, warstwa okladkowa typu n (czes$¢ tej warstwy ma zmienny sklad
materiatlowy umozliwiajacy ptynne przejscie od n-AlggesGaN do n-GaN), warstwa
buforowa wykonana z n-Alg g23GaN i podloze utworzone z n-GaN.

W pracy [14], gdzie badania skupiaja si¢ na modelowaniu zagadnien cieplnych,
nie zostaly podane koncentracje domieszkowania. Do obliczen bedacych przedmiotem
niniejszej pracy, przyjeto, ze koncentracja domieszki donorowej wynosi 5 x 108 cm ™3
[16]. Jedynym wyjatkiem jest dolna warstwa falowodowa, dla ktorej zalozona zostata
koncentracja 2x10'® cm ™3 z uwagi na to, ze warstwa ta sasiaduje z obszarem czynnym
i wprowadzenie domieszki o wiekszej koncentracji domieszki moze przektadaé sie na
stosunkowo duze straty optyczne w tej warstwie. Dla warstwy podkontaktowej i gor-
nej warstwy okltadkowej przyjeto koncentracje domieszki wynoszaca 5 x 10 cm 3.
Duzo wyzsza koncentracja domieszki wynoszaca 4 x 10 cm™—2 [17] zostata przyjeta
dla warstwy blokujacej ucieczke nosnikéow. W przypadku goérnej warstwy okladko-
wej o zmiennym skladzie materialowym zaltozono, ze wartos$¢ koncentracji domieszki
zinienia sie w sposob ciagly od 2 x 10'® cm™3 do 5 x 108 cm 3.

3. MODEL NUMERYCZNY I PARAMETRY MATERIALOWE

Zjawiska optyczne w strukturach badanych w niniejszej pracy modelowane sa przy
uzyciu metody admitancyjnej fal ptaskich [21]. Metoda ta umozliwia obliczenie efek-
tywnych wspoétczynnikow zalamania $wiatta dla poszczegélnych modéw promienio-
wania i odpowiadajace im przestrzenne rozktady tych modéw.

Wszystkie obliczenia, ktore zostaly wykonane w ramach badan opisanych w ni-
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niejszej pracy zostaly przeprowadzone dla 150 fal ptaskich. Wartosé ta zostata okre-
$lona na podstawie wstepnych obliczenn wykonanych dla struktury z jednym falowo-
dem grzbietowym o szerokosci 5,5 pm. Szerokos$é ta jest prawie trzykrotnie wieksza
niz w przypadku struktury wyjsciowej, jednak majac na uwadze gltéwna cze$é¢ ob-
liczen, ktora dotyczy struktury z dwoma falowodami grzbietowymi i jej optymali-
zacji, zdecydowano by wybor liczby fal ptaskich zostal dokonany w oparciu o war-
tosé lacznej szerokosci falowodow, ktorej mozna sie spodziewaé dla struktury zbli-
zonej do optymalnej. W celu uproszczenia sposobu generowania plikéw wsadowych
do obliczen, liczba fal ptaskich dla glownych obliczeni nie zalezy od lacznej szero-
kosci okna obliczeniowego. Przez okno to rozumiany jest tutaj dwuwymiarowy ob-
szar struktury lasera rézniacy sie od tego ukazanego na rysunku 2 jedynie tym, ze
dolna krawedz tego obszaru przypada na miejsce styku warstwy buforowej i podtoza.
W kierunku poziomym rozmiar okna obliczeniowego zalezy od szerokosci falowodu
grzbietowego (w przypadku struktury z jednym falowodem) lub od lacznej szero-
kosci dwoch falowoddw grzbietowych i szerokosci przerwy miedzy tymi falowodami
(w przypadku struktury z dwoma falowodami). Na szerokos¢ okna obliczeniowego

Tabela 2. Wartosci wspolczynnika zalamania i wspolezynnika absorpcji obliczone dla
materiatow skladajacych sie na modelowane w niniejszej pracy struktury. Wszystkie wartosci
podano dla dlugosci fali 430 nm i temperatury 300 K. W przypadku warstw niedomieszko-
wanych, gdzie wystepuje nieintencjonalna domieszka, nie uwzgledniono jej przy wyznaczeniu
parametréw, poniewaz koncentracja takiej domieszki jest bardzo mata (~ 1x 107 cm™=3) [23].
Dla InGaN tworzacego studnie kwantowe przyjmowane sa rézne wartoéci wzmocnienia gow
i absorpcji aqw, zaleznie od potozenia wzdtuz osi x (patrz: rys. 1)

Materiat Wspoétczynnik zalamania Wspétczynnik absorpcji [em™?]
Au 1,4763 5,2998 x 10%
SiO9 1,4672 2,0457 x 1072
GaN:Mg 2,4689 5
Al().(]45GaNZMg 2,4512 5
A10ﬁ0_045GaN:Mg 274709 — 2,45].2 25
GaN:Mg/Alg12GaN:Mg 40,0 40
In0A043GaN 2,5277 0

Ing 12GaN 2,7491 gow lub aqw
Ing.g6GaN 2,5518 gow lub aqw
GaN 2,4766 0
In0A043GaN:Si 2,5180 2
GaN:Si 2,4669 5
AIOIOGSAOGaN:Si 2,4412 — 2,4669 5
Al()ﬂ@gG&NlSi 2,4412 5
Alo,oQgG&N:Si 2,4578 5
GaN:Si 2,4669 5

Zradto: opracowanie wtasne.
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sktada sie takze 30 pm, ktére wynika z tacznej szerokosci obszaréw potozonych obok
falowodow grzbietowych. Do obszaréw tych wnikaja cze$ciowo mody promieniowania
wyznaczane przez model optyczny i ich pominiecie przelozyloby sie na przyjecie wa-
runkoéw brzegowych (w postaci tzw. idealnie dopasowanych warstw o duzej absorpcji
promieniowania [22]) w nieodpowiednim miejscu, co skutkowatoby uzyskaniem bled-
nych rozwiazaii. Wstepne obliczenia pokazaly, ze 150 fal ptaskich to minimalna ich
liczba powyzej ktorej obserwuje sie jedynie znikome zmiany w wartosci czesci urojonej
efektywnych wspolczynnikow zalamania swiatta powiazanych z modami promienio-
wania wyznaczonymi dla struktury wybranej do wstepnych obliczen.

Wyznaczone dla temperatury pokojowej (300 K) parametry materialowe (wspol-
czynnik absorpcji promieniowania i rzeczywista czes$¢ wspotczynnika zatamania zwana
w dalszej czeSci niniejszej pracy wspolczynnikiem zalamania) stosowane w oblicze-
niach zamieszczone zostaly w tabeli 2.

W celu wyznaczenia wspoétczynnikéw zalamania w materiatach azotkowych przy-
jeto, ze punktem wyjscia beda nastepujace zaleznosci, ktére umozliwiaja wyznaczenie
tej wielkosci dla materialu GaN w 298 K [24] dla energii fotonu E (w €V) z roz-
nych zakresow (ponizej podano réwniez odpowiadajace im zakresy dla dlugosci fali
A) [25,26]:

nR.can(F) = 0,013914 E* — 0,096422 E® + 0,27318 E? — 0,27725 F 42,3535, (1)
1,000eV < E < 2,138eV (580 nm < A < 1240nm),

nR.can(E) = 0,1152 B3 — 0,7955 B2 + 1,959 F + 0,68, 2)
2,138eV < F < 3,163eV  (392nm < A < 580 nm),

nr.can (E) = 18,2202 B3 — 174,6974 E 4 558,535 E — 593,164, (3)
3,163eV < E < 3,351V (370nm < A < 392nm),

nRr,Gan(E) = 33,63905 E? — 353,1446 E* 4 1235,0168 E — 1436,09, 4)
3,351eV < F < 3,532eV  (351lnm < A < 370 nm),

nRr.can(F) = —0,72116 E3 + 8,8092 E? — 35,8878 E + 51, 335, (5)
3,632eV < F < 4,100eV  (302nm < A < 351 nm),

ni.can (E) = 0,351664 B — 6,06337 B3 + 39,2317 E2 — 112,865 F + 124,358, (6)
4,100eV < E < 4,500eV (276 nm < A < 302nm).

W celu wykorzystania zaleznosci (1)—(6) do obliczenia wspolczynnika zalamania
dla Al,GaN oraz In,GaN nalezy zmodyfikowaé¢ wartosé¢ energii tak, aby uwzglednic
roznice pomiedzy przerwa energetyczna GaN oraz materialu potrojnego [27]. Dodat-
kowo mozna tez uwzgledni¢ zmiany wspolczynnika zalamania wraz z temperatura,
a takze te wynikajace z roznych koncentracji nosnikéw. Zaleznosci na wspotczynniki
zalamania w materiatach azotkowych GaN, AlGaN i InGaN mozna wtedy zapisaé
w nastepujacy sposob:
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nR,GaN(E> T7 N) = nR,GaN(E + AE(E7 Ta N))7 (7)
nR,AlGaN('Ta Ea Ta N) = nR,GaN(E + AE(Iv E? Ta N))7 (8)
nR,InGaN(% E> T7 N) = nR,GaN(E + AE(% E7 T7 N))a (9)
gdzie:
AE(E,T,N) = E+ AE(T) + AE(N), 10

) = (10)
AE(z,E,T,N)=E + AE(z,T) + AE3(N), (11)
AE(y, E,T,N) = E+ AE(y,T) + AE3(N), (12)
AE(T) = Bgcan(298K) — Eg can(T), (13)
AE(2,T) = Egcan(298K) — Eg a1can(z, T), (14)
AE(y,T) = Egqan(298K) — Eg 1ngan(y, T), (15)
AEy(N) = —aN'/3, (16)

Wartos¢ wspolczynnika a we wzorze (16) przyjeta w niniejszej pracy wynosi
2,4 x 1078 ¢V cm dla materialow typu n [28] oraz 1,9 x 1078 ¢V cm dla materiatow
typu p [23], a w celu obliczenia A Fs nalezy podstawi¢ za N koncentracje domieszki.

Wartosci przerw energetycznych dla materiatéw azotkowych dwusktadnikowych
w danej temperaturze mozna obliczy¢ korzystajac ze wzoru Varshniego [29]:

aT?
T+p
gdzie Ey to przerwa energetyczna dla T' = 0K, a o oraz 3 to parametry dopa-
sowania. W przypadku materiatéw trojsktadnikowych wartosci przerwy energetycz-
nej wyznacza sie za pomocg wzoroéw interpolacyjnych, ktére uwzgledniaja nieliniowe
zmiany tej wielkosci w zaleznosci od sktadu materiatowego [30]:

Ey(T) = Ego - ()

Eg nican(z,T) = 2Eg N + (1 — ) Eg gan — (1 — 2)Cargan, (18)
Egnaan(y, T) = yEg1an + (1 = y) Eg gan — y(1 — ¥)Cmaan- (19)

Wartosci wszystkich parametréow niezbednych do obliczenia przerwy energetycz-
nej w materiatach GaN, AlGaN i InGaN o dowolnym sktadzie materialowym zostaly
przedstawione w tabeli 3.

W celu zilustrowania ogélnego przebiegu zmian wspoétczynnika zatamania dla
materialéow o sktadach mieszczacych sie w przedziale zastosowanym w strukturze
wyjsciowej, na rysunku 3 przedstawiono zaleznosé wspoétczynnika zatamania w tem-
peraturze 300K od dlugosci fali dla GaN, AlGaN oraz InGaN. Dokladne warto-
Sci wspotezynnika zatamania uzyte w dalszych obliczeniach, dla ktérych przyjeto
A = 430 nm, przedstawiono w tabeli 2.
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Tabela 3. Warto$ci parametréw niezbednych do obliczenia przerwy energetycznej w ma-
teriatach GaN, AlGaN i InGaN dla zadanej temperatury

Parametr AIN GaN InN AlGaN InGaN
Eqo [eV] 6,100 3,510 0,690

a[meVK™] 263 0914 0,414 — —
B K] 2082 825 154 — —
C [eV] — — 0,8 1,4

Zrédito: opracowanie wtasne na podstawie [31].
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Rysunek 3. Obliczone (dla 300 K) wartosci wspolezynnika zalamania ng w zaleznosci
od dlugoscei fali A dla niedomieszkowanych materialow GaN, AlGaN (Al: 6 %, 12 %)
i InGaN (In: 6 %, 12 %)
Zrédto: opracowanie wlasne.

Wzory oraz wartosci parametréw umozliwiajace obliczenie wspolczynnika zata-
mania dla amorficznego SiOg i ztota mozna znalezé¢ w [32] oraz [33]. Dla powietrza
przyjeto warto$é wspotezynnika zalamania rowna 1 [34].

Do obliczeni wspolczynnika absorpcji promieniowania w materiatach azotkowych
zastosowano prosta zaleznos¢ liniowa, w ktorej wielkosé ta jest proporcjonalna do
koncentracji domieszki N:

a(N) = AN, (20)

i prayjeto, ze wartoi¢ wspotezynnika proporcjonalnosci A wynosi 10718 cm?.
Wedtug danych z [35], w warstwach typu p, ktore sg silnie domieszkowane, absorp-

cja jest wyraznie wicksza niz w warstwach typu n stosowanych w azotkowych laserach

polprzewodnikowych. Wynika to z faktu, ze energia aktywacji nosnikow w warstwach
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typu n jest o rzad mniejsza niz w warstwach typu p [36,37], a tym samym do uzyska-
nia odpowiedniej przewodnosci elektrycznej nie jest konieczne stosowanie wysokiej
koncentracji domieszek.

Niewielkie wartosci absorpcji obserwuje sie réwniez w warstwach niedomieszko-
wanych [38,39]. Nalezy przy tym podkresli¢, ze w przypadku GaN w literaturze
wystepuja znaczne rozbieznosci dla wartosci wspotczynnika absorpcji nawet dla tych
samych koncentracji i typu domieszki, jak rowniez dtugosci fali, co pokazuja wyniki
podane w [40,41]. W zwiazku z tym zasadne wydaje sie stosowanie uproszczonego
podejsécia opartego na zaleznosci (20), przy czym bardziej szczegblowa analiza nu-
meryczna moze obejmowac obliczenia dla réznych wartosci wspotczynnika A. Warto
dodaé, ze identyczna postac¢ zaleznosci (20) podano w [42], gdzie badania dotycza
lasera emitujacego Swiatlo zielone (520nm), a przyjeta warto$¢ wspolezynnika A
wynosi 2,5 x 10718 cm?.

Wspotezynnik absorpcji a dla amorficznego SiOg obliczany jest na podstawie
wspotezynnika ekstynkeji k& dla tego materialu (o = 4mk/\), ktory dla dlugosei
fali A z przedziatu 400460 nm wynosi 0,007 wedtug danych zawartych w [43]. Wzory
oraz wartosci parametrow umozliwiajace obliczenie wspotczynnika absorpcji dla ztota
mozna znalezé w [33]. Dla powietrza przyjeto warto$é wspotezynnika absorpeji rowna 0.

4. WYNIKI SYMULACJI

Wyniki symulacji przedstawione w tej czesci uzyskano dla struktur laserowych za-
projektowanych do emisji promieniowania o dtugosci fali A = 430 nm, opartych na
strukturze opisanej w [14]. Materialy warstw oraz ich grubosci w modelowanych
strukturach zestawiono w tabeli 1. Przyktadowe wartosci parametréw optycznych,
obliczone dla T' = 300 K, znajduja sie w tabeli 2. Szerokosci falowodow grzbietowych,
a takze wartosci wzmocnienia gqw i absorpcji aqw przyjete w warstwie czynnej po-
dano w podpisach pod rysunkami. Uklad wspoélrzednych uzyty do przedstawienia
rozkladéw modéw promieniowania pokazano na rysunku 1.

Przy badaniu wplywu parametrow, takich jak szerokosci falowodow A (wy) i B
(wg) oraz wartosci wzmocnienia gqw 1 absorpcji aqw, parametry te byly modyfi-
kowane z wykorzystaniem okreslonego kroku: 0,1 um dla wa i wg, 5 x 102cm™! dla
gqw oraz 1 x 103 cm~! dla aqw. Na wykresach poszczegolne punkty przedstawiaja
wyniki obliczeri, natomiast linie pokazuja przewidywane wartosci dla parametrow
z badanego zakresu.

4.1. Laser z pojedynczym falowodem grzbietowym

Kluczowym parametrem decydujacym o liczbie modéw poprzecznych w strukturze
SRW jest szerokosé falowodu grzbietowego. Rzeczywista i urojona czesé efektywnego
wspolczynnika zatamania neg, w zaleznosci od szerokosci falowodu, pokazane sa na
rysunku 4a i rysunku 4b. Dodatkowo, na rysunku 5 ukazane sg przestrzenne roz-
ktady modéw promieniowania dla struktury o szerokosci grzbietu 8,0 um, ktora jest
maksymalng szerokoscia falowodu, dla ktérej wykonano obliczenia.
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Rysunek 4. Rzeczywista (a) oraz urojona (b) czesé¢ efektywnego wspotczynnika
zalamania w zaleznosci od szerokosci falowodu grzbietowego w strukturze SRW, obliczone
dla gqw = 3000cm ™! oraz aqw = 3000 cm™!

Zrédto: opracowanie wlasne.
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Rysunek 5. Przestrzenne rozklady modéw promieniowania w strukturze SRW
z falowodem grzbietowym o szerokosci wa = 8,0 um, obliczone dla gqw = 3000 cm™ oraz
aqw = 3000 cm ™!
Zrédto: opracowanie wtasne.

Czgs¢ urojona efektywnego wspoélczynnika zalamania, neg 1m, jest proporcjonalna
do wzmocnienia modowego g, zgodnie ze wzorem:

4T
9m = Tneff,lm~ (21)
Jezeli jej wartosé jest dodatnia, oznacza to, ze dla danego modu wszystkie moz-

liwe straty optyczne sa réwnowazone przez wzmocnienie materialowe uzyskiwane
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w obszarze czynnym. Tym samym spelniony jest warunek osiagniecia progu akcji
laserowe;j.

W przypadku, gdy dla danej szerokosci falowodu moze istnie¢ wiele modow po-
przecznych, wartosé wzmocnienia materialowego decyduje o tym, ile z nich osiggnie
prog. W rzeczywistosci wzmocnienie materialowe zalezy od koncentracji no$nikow
wynikajacej z gestosci pradu elektrycznego, a emitowanie promieniowania laserowego
jest procesem silnie nieliniowym, w ktérym dominujaca role odgrywaja przestrzenne
i spektralne wypalanie no$nikow, co wplywa na liczbe modéw w widmie Swiatta
laserowego.

Niemniej jednak roéznice pomiedzy cze$ciami urojonymi efektywnych wspotezyn-
nikéw zatamania wyznaczonych dla poszczegélnych modéw mozna traktowaé jako
wskaznik réznic w pradzie wymaganym do osiagniecia progu akcji laserowej dla tych
modoéw. Z tego powodu zwiekszanie réznicy pomiedzy czedcia urojona efektywnego
wspolczynnika zatamania dla modu podstawowego (nes,im,0) & najwicksza wartoscia
tej wielkosci sposrdd tych dla kolejnych modoéw (neg m i) sprzyja pracy jednomodo-
wej. (W przyjetej tutaj notacji indeks ¢ jest dodatni dla modow wyzszego rzedu oraz
wynosi 0 dla modu podstawowego.)

Wyniki przedstawione na rysunku 4 ukazuja typowa zaleznosé [10,44], jaka mozna
otrzymaé¢ dla lasera krawedziowego z falowodem grzbietowym: wraz ze wzrostem
szerokosci falowodu rosnie liczba modéw poprzecznych w strukturze, a jednocze-
$nie zmniejszaja si¢ straty optyczne pomiedzy poszczegdlnymi modami. Z rysunku 4
wynika, ze praca wylacznie na jednym modzie mozliwa jest dla wa < 2,1 um, co
odpowiada progu odciecia modu TE?RW. Dla zalozonego wzmocnienia w obszarze
czynnym, ktére wynosi 3000 cm™!, mod TE?RW moze zostaé zaobserwowany w wid-
mie promieniowania juz dla wa = 2,4 pum. W przedziale 2,1 pm < wa < 3,4 pm mod
TE?RW moze pojawié sie w widmie dopiero przy wyzszych wartosciach wzmocnienia
w obszarze czynnym.

Aby opisa¢ zdolno$é¢ thumienia modoéw wyzszego rzedu, wprowadzona zostanie
wielkos$¢ nazwana separacja modow (ms), zdefiniowana jako réznica pomiedzy czescia
urojona efektywnego wspotczynnika zatamania modu podstawowego i czescia urojona,
modu o kolejnej najwyzszej wartosci dla tej wielkosci:

Mg = Neff,Im,0 — Meff,Im,i- (22)

Separacja modoéw pelni istotng role w analizie wynikow dla struktury DRW, a jej
wartosci dla struktury SRW beda traktowane jako punkt odniesienia. Z tego wzgledu
pokazano je dla réznych szerokosci falowodu grzbietowego na rysunku 6a.

Podstawowym czynnikiem decydujacym o wartosci réznic dla czesci urojonych
efektywnego wspoélczynnika zatamania dla réznych modéw jest to, jaka cze$é pola
optycznego przypada na silnie absorbujace obszary znajdujace sie w warstwie czyn-
nej poza apertura dla grzbietu A, gdzie zachodzi absorpcja miedzypasmowa. Dla-
tego w analizie tlumienia modéw uzyteczne jest wprowadzenie parametru opisuja-
cego, jaka czes¢ catkowitego pola optycznego w warstwie czynnej przypada na obszar
apertury A. Parametr ten, nazywany dalej wspotczynnikiem ograniczenia modu T,
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Rysunek 6. Separacja modéw (a) oraz wspotczynnik ograniczenia modu (b)
w zaleznosci od szerokosci falowodu grzbietowego w strukturze SRW, obliczone dla
gow = 3000cm~! oraz aqw = 3000 cm™!
Zrédto: opracowanie wtasne.

mozna wyrazi¢ poprzez stosunek natezenia §wiatta w czedci warstwy czynnej, ktora
przypada na obszar apertury A, do calkowitego natezenia swiatla w tym obszarze
warstwy czynnej, ktory zostal uwzgledniony w obliczeniach:

TA2
/ I(z)dx
TA1
T B
/ I(x)dx
Ts1

przy czym a1 1 T2 wyznaczaja odpowiednio lewsa i prawg krawedz falowodu A (przy
CzZym Tpa — TAL = WA), & Tgl 1 T2 Oznaczaja lewe 1 prawe granice calego obszaru

r= (23)

obliczeniowego. Funkcja I(z) opisuje natezenie Swiatta wzdluz osi z dla wartosci y
odpowiadajacej potozeniu srodka warstwy czynnej. Obliczone wartosci wspotczyn-
nika ograniczenia dla struktur SRW o réznych szerokosciach falowodu grzbietowego
przedstawiono na rysunku 6b.

Projektujac strukture DRW w oparciu o podejscie supersymetryczne, nalezy na
poczatku ustali¢ szerokosci falowodu A i obliczy¢ dla niej efektywne wspotezynniki
zatamania wszystkich modow. Nastepny krok polega na wyznaczeniu szerokosci fa-
lowodu B, ktérego obecnos$¢ pozwoli na znalezienie modu bedacego odpowiednikiem
modu wyzszego rzedu z falowodu A. W przypadku dazenia do uzyskania jak najwyz-
szej mocy emitowanego promieniowania przez strukture DRW, nalezy poszukiwaé
najwiekszej szerokosci falowodu A. Z uwagi na to, ze celem niniejszej pracy jest je-
dynie przyblizenie tematu podejscia supersymetrycznego, obliczenia dla struktury
DRW zostang przedstawione dla przyktadowej szerokosci wa = 3,5 um. Dla tej sze-
rokosci falowodu A, w oparciu o rysunek 4a, wybrana zostata szerokosé¢ falowodu
wp = 1,3 um, ktoéra bedzie uwzgledniona w wiekszosci obliczeri dla struktury DRW,
opisanych w czesci 4.2 (Laser z podwojnym falowodem grzbietowym).
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Przedmiotem analizy bedzie réwniez wplyw wartosci wzmocnienia gqw i absorp-
cji aqw w warstwie czynnej na mozliwo$¢ sprzezenia modéw. Wartosci tych para-
metréw sa powiazane z wartoscig czesci urojonej wspotczynnika zalamania, przez

co ich zmiany moga wplywaé¢ na wartosci efektywnych wspotczynnikow zatamania
poszczegdlnych modow.
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Rysunek 7. Rzeczywista czesé efektywnego wspolezynnika zatamania w zaleznosci od
wzmocnienia (a) oraz absorpcji (b) przyjetych w warstwach ze studniami kwantowymi
w strukturze SRW z falowodem grzbietowym o szerokosci 3,5 pm, obliczone dla
gow = 3000 cm ™! oraz agqw = 3000 cm™*
Zrédto: opracowanie wtasne.
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Rysunek 8. Urojona czesé efektywnego wspolczynnika zatamania w zaleznosci od

wzmocnienia (a) oraz absorpcji (b) przyjetych w warstwach ze studniami kwantowymi
w strukturze SRW z falowodem grzbietowym o szerokosci 3,5 wm, obliczone dla

aqw = 3000cm™! (a) oraz gqw = 3000cm™! (b)
Zrédto: opracowanie wlasne.

Na rysunku 7a i rysunku 7b pokazany zostat wplyw zmian przyjetych wartosci

wzmocnienia i absorpcji na cze$é rzeczywista efektywnego wspotezynnika zatamania.
Jak mozna zauwazy¢, wplyw ten jest znikomy, nawet pomimo tego, ze réznice pomie-
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dzy maksymalna a minimalng wartoscig wzmocnienia i absorpcji wynosza odpowied-
nio 5000 cm™! i 10000 cm™!. Zmiany przyjetych wartosci wzmocnienia i absorpcji
wplywaja jednak wyraZnie na cze$¢ urojona wspolczynnika zatamania (rysunek 8a
i rysunek 8b). Z tego powodu, przy projektowaniu struktury DRW w oparciu o po-
dejscie supersymetryczne, mozna przyjaé, ze zmiany czesci urojonej wspotcezynnika
zalamania nie wplywaja znaczgco na wybor optymalnych szerokosci falowodow.

4.2. Laser z podwéjnym falowodem grzbietowym

W tej czesci przedstawione zostang wyniki dla struktury DRW, dla ktorych zbadany
zostanie wplyw szerokosci falowodu B, a takze parametréw warstwy czynnej, na wiel-
kosci takie jak efektywne wspolczynniki zalamania, separacje modow czy wspodtezyn-
niki ograniczenia. Struktura wyjsciowa bedzie struktura z falowodem A o szerokosci
wa = 3,5 um i falowodem B o szerokosci wp = 1,3 um, ale rozwazane beda struktury,
gdzie szerokosé falowodu B miesci sie w przedziale od 0,1 um do 2 um. Wszystkie
obliczenia wykonano dla odlegtosci miedzy falowodami wynoszacej dag = 0,1 pm.
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Rysunek 9. Rzeczywista (a) i urojona (b) czesé¢ efektywnego wspolezynnika zatamania
oraz wspoélczynnik ograniczenia modu (¢) w zaleznosci od szerokosci falowodu grzbietowego
B w strukturze DRW z falowodem grzbietowym A o szerokosci 3,5 pym obliczone dla
gow = 3000 cm~ i agqw = 3000 cm~ !

Zrédto: opracowanie wlasne.
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Na rysunku 9a i rysunku 9b przedstawiono wplyw zmiany szerokosci falowodu
B na czesci rzeczywista 1 urojona efektywnego wspolezynnika zalamania, natomiast
na rysunku 9c pokazany zostal wpltyw szerokosci falowodu B na wspoétczynnik ogra-
niczenia I". Wartosé tego wspolczynnika pozwala na jednoznaczne wskazanie, gdzie
sa zlokalizowane mody. W przypadku, gdy wp dazy do zera, wyniki dla struktury
DRW 2z rysunku 9 staja sie¢ zblizone do wynikéw dla struktury SRW o szerokosci
wp = 3,5 um, przedstawionych na rysunku 4 i rysunku 6. Dla wp = 0 um struktura
DRW sprowadza sie do struktury SRW, a na aperture o szerokosci 3,5 pm przypadaja
jedynie dwa mody (rysunek 10a). Separacja pomiedzy tymi modami jest stosunkowo
niewielka (patrz: rysunek 4b), co moze prowadzi¢ do wzbudzenia modu wyzszego
rzedu.

Na drugim krancu rozwazanego przedziatu dla wp szerokosé falowodu B wynosi
prawie 2 pm. W takim przypadku rozklady modéw promieniowania sa prawie catko-
wicie ograniczone do falowodu A lub falowodu B, a sprzezenie pomiedzy tymi modami
jest niewielkie (rysunek 10c). Obecnogé dwoch modéw ograniczonych do falowodu A
przeklada sie na niewielks separacje pomiedzy nimi (rysunek 4b), przez co mozliwe
jest wzbudzenie w takiej strukturze modu wyzszego rzedu.
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y lum]

L - |
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(a) (b)

Rysunek 10. Przestrzenne rozklady modoéw promieniowania w strukturze DRW
z falowodem grzbietowym A o szerokosci 3,5 um i falowodem grzbietowym B o szerokosci
0,1 pum (a), 1,3 pm (b) i 1,9 pm (c) obliczone dla gqw = 3000cm™! i aqw = 3000 cm ™!
Zrédto: opracowanie wlasne.

Aby rozwiazaé problem ewentualnego wzbudzania modéw wyzszego rzedu w struk-
turze DRW, gdzie niewielka separacje modéw obserwuje sie zaréwno dla bardzo ma-
tych, jak i duzych wartosci wg, zbadany zostal przypadek, w ktérym falowéd B ma
szeroko$¢ wp = 1,3 um. Jak wynika z rysunku 9b, szeroko$é¢ ta powinna by¢ bliska
warto$ci optymalnej dla uzyskania efektu supersymetrii. W rozwazanej strukturze
DRW czeéci rzeczywiste efektywnych wspoélezynnikéw zatamania neg ge dla modow
TEPRW i TEDPRW zblizaja sie do siebie (rysunek 9a), gdy wg dazy do 1,4 wum, a
minimalna réznica pomiedzy nimi wynosi wtedy 8,3 x 10™%. Z kolei czesci urojone
wspOtczynnikow neg m (rysunek 9b) oraz wspoétczynniki ograniczenia modow I' (ry-
sunek 9¢) przecinaja si¢ dla wg = 1,3 um. Dla tej szerokosci falowodu B sprzezone
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mody maja podobne rozklady pola promieniowania (rysunek 10b) i przestaja by¢
ograniczone do jednego falowodu. Dla wp = 1,3 um efektywne wspolezynniki za-
tamania modow TEPEW i TEPEW maja niemal rowne czeéci urojone (rézmica to
2,0 x 10*5)7 a roznica pomiedzy ich czeSciami rzeczywistymi jest prawie najmniejsza.
Straty optyczne, wynikajace z ujemnej czesci urojonej efektywnego wspodltczynnika
zalamania (Nef,im,1 1 Neff,Im,2), OSiagaja maksimum dla obu tych modéw, podczas
gdy czesé urojona efektywnego wspotczynnika zatamania dla modu podstawowego
Neff, 1m0 jest dodatnia (rysunek 9b), co wskazuje na mozliwosé¢ uzyskania akcji lase-
rowej. Co wigcej, mod TEY®W | zlokalizowany w falowodzie A, nie ulega istotnym
zmianom przy modyfikacji grubosci falowodu B w badanym zakresie. Maksymalna
wzgledna zmiana wspotczynnika ograniczenia dla tego modu, przyjmujac wartosé ob-
liczong dla wg = 1,3 um jako punkt odniesienia, wynosi jedynie 0,82 %. Umozliwia
to stabilng prace z jednym modem poprzecznym oraz uzyskanie wyzszej mocy emi-
towanego promieniowania dzieki zastosowaniu szerszego falowodu i wykorzystaniu
supersymetrii.

W czesei 4.1 (Laser z pojedynczym falowodem grzbietowym) do opisu ttumienia
moddéw wyzszego rzedu wprowadzona zostata wielkosé zwana separacja modow. Poni-
zej znajduje sie definicja innej wielkosci, ktora moze petni¢ podobna role. Wielkosé ta
bedzie nazywana wzgledna separacja modow (ms,) i jest zdefiniowana nastepujacym
wzorem:

Mgr = Mg — Mgwp (24)

gdzie mg 4, oznacza separacje modow obliczong dla struktury SRW o szerokosci
grzbietu wa. W odrdznieniu od separacji modéw, wzgledna separacja modow bezpo-
$rednio informuje o stopniu poprawy w ttumieniu modéw wyzszego rzedu, wykorzy-
stujac jako punkt odniesienia wynik dla struktury SRW.

Zaleznosé wzglednej separacji modow dla struktur DRW z szerokoscia falowodu A
réwna wa = 3,5 pm od szerokosci falowodu B przedstawiono na rysunku 11. Najwiek-
sza wartos¢, mg = 3,5, uzyskano dla wg = 1,3 pm. Rysunek 11 pokazuje rowniez, ze
me > 1 dla wszystkich rozwazanych tu wartosci wg, co oznacza, ze ttumienie moddw
wyzszego rzedu w konfiguracji DRW jest silniejsze niz w strukturze SRW o tej samej
szerokosci falowodu A. Mozliwa jest dalsza optymalizacja struktury DRW pod katem
uzyskania jeszcze wyzszych wartodci myg,, jednak symulacja polegajaca na jednocze-
snej modyfikacji szerokosci obu falowodéw wymaga znacznie wigkszej liczby obliczen
i nie zostala przeprowadzona w ramach niniejszej pracy.

Wplyw wartosci parametrow warstwy czynnej (wzmocnienie i absorpcja), podob-
nie jak dla struktury SRW, zostal réwniez zbadany w przypadku struktury DRW.
Do obliczeri opisanych w tej czesci pracy wybrana zostata struktura z wa = 3,5 pm
iwp =1,3 um.

Na rysunku 12a pokazano, ze dla wzmocnienia z zakresu od 0 cm™! do 5000 cm—!
wspotezynnik ograniczenia modu TEFRW wynosi ponad 90 %, podczas gdy dla mo-
dow TEP®W i TEPEW (oznaczenia modow wynikaja z rysunku 12b) wynosi on okoto
50 %. Skutkuje to wyraznie mniejszymi wartociami czedci urojonych efektywnego
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0,0 0,5 1,0 15 2,0
we [pm]

Rysunek 11. Wzgledna separacja modéw w zaleznosci od szerokosei falowodu
grzbietowego B w strukturze DRW z falowodem grzbietowym A o szerokosci 3,5 pum,
obliczona dla gqw = 3000 cm~! oraz aqw = 3000 cm™!

Zrédto: opracowanie wlasne.
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Rysunek 12. Wspotezynnik ograniczenia modu (a), rzeczywista (b) i urojona (c) czesé
efektywnego wspodlezynnika zalamania oraz wzgledna separacja modow (d) w zaleznosci od
wzmocnienia przyjetego w warstwach ze studniami kwantowymi w strukturze DRW
z falowodem grzbietowym A o szerokosci 3,5 um i falowodem grzbietowym B o szerokosci
1,3 um, obliczone dla aqw = 3000 cm™!

Zrédto: opracowanie wlasne.
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wspolezynnika zalamania dla obu tych modoéw (rysunek 12c¢). Wraz ze wzrostem
wzmocnienia obserwowane sa jedynie niewielkie zmiany wspoélczynnika ograniczenia
dla modéw TE?RW i TEQDRW7 co oznacza, ze ich przestrzenne rozkltady pozostaja zbli-
zone, a dyskryminacja modéw nie ulega wyraznemu ostabieniu. Separacja modow dla
struktury DRW jest wyraznie wieksza niz w przypadku struktury SRW o tej samej
szerokosci falowodu A (rysunek 12c). Obliczenia wskazuja rowniez, ze wzgledna se-
paracja modow (rysunek 12d) rosnie wraz ze wzmocnieniem i dla ggw = 5000 cm ™!
osigga wartosé 3,56.
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Rysunek 13. Wspolczynnik ograniczenia modu (a), rzeczywista (b) i urojona (c) czesé
efektywnego wspolezynnika zalamania oraz wzgledna separacja modéw (d) w zaleznosci od
absorpcji przyjetej w warstwach ze studniami kwantowymi w strukturze DRW z falowodem

grzbietowym A o szerokosci 3,5 pm i falowodem grzbietowym B o szerokosci 1,3 pum,

obliczone dla gqw = 3000 cm™!
Zrédto: opracowanie wlasne.

Wplyw drugiego z parametréow opisujacych warstwe czynng, absorpcji, na war-
tos¢ wspotczynnika ograniczenia modu ukazany jest na rysunku 13a. Dla catego prze-
dziatu wartosci absorpcji wybranego do obliczenn wspotczynnik ograniczenia wynosi
ponad 90 % dla modu TEODRW, podczas gdy dla modow TE{)RW iTE];RW (oznaczenia
modéw wynikaja z rysunku 13b) wynosi okoto 50 % dla absorpcji od 0 cm™! do okoto
5000 cm™!, po czym nastepuja wyrazne zmiany w przestrzennych rozktadach modow
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Rysunek 14. Przestrzenne rozktady modéw promieniowania w strukturze DRW
7z falowodem grzbietowym o szerokosci 3,5 um i falowodem grzbietowym B o szerokosci
1,3 um, obliczone dla gqw = 3000 cm™! oraz aqw = Ocm ™! (a) oraz gow = 3000 cm ™!

i aqw = 10000cm™" (b)
Zrédto: opracowanie wtasne.

wyzszego rzedu (rysunek 13a) i dochodzi do sytuacji, gdy zamiast rozktadéw promie-
niowania ukazujacych sprzezone mody wyzszego rzedu (rysunek 14a) obserwuje sie
takie ich rozklady, gdzie mody te sg prawie calkowicie ograniczone do falowodu A
lub falowodu B (rysunek 14b).

Stosujac pojecie znane z literatury poswieconej supersymetrii, mozna uzy¢ tu po-
jecia ,zlamanie symetrii”. Roznica pomiedzy cze§ciami urojonymi efektywnego wspot-
czynnika zatamania dla struktury DRW jest wieksza niz w przypadku struktury SRW
o tej samej szerokosci falowodu A (rysunek 13c) dla wszystkich rozwazanych warto-
$ci absorpcji, przy czym dla absorpcji powyzej 8000 cm™! separacja modow zaczyna
wyraznie si¢ zmniejszaé, co przeklada sie na spadek wartosci wzglednej separacji
modéw (rysunek 13d) z wartosci 3,5 (dla aqw od Ocm™! do 7000 cm™!) do 2,3 (dla
aqw = 10000 cm™1).

5. PODSUMOWANIE

W niniejszej pracy przedstawiono wyniki symulacji komputerowej azotkowych lase-
row o emisji krawedziowej, w ktorych zastosowano podejécie supersymetryczne. Po-
lega ono na rozszerzeniu typowej struktury z pojedynczym falowodem grzbietowym
A o dodatkowy falowod B, pelnigcy role supersymetrycznego partnera falowodu A.
Dla takiej konfiguracji przeanalizowano wplyw szerokosci falowodu B na tlumienie
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modéw wyzszego rzedu. Dodatkowo zbadano wplyw wzmocnienia i absorpcji w war-
stwach studni kwantowych na parametry opisujace sprzezenie pomiedzy modami
wyzszego rzedu.

Uzyskane wyniki wykazaly, ze zastosowanie struktury z dwoma falowodami o od-
powiednio dobranych szerokosciach pozwala na silng dyskryminacje modéw, co umoz-
liwia stabilng prace w trybie pojedynczego modu poprzecznego nawet w przypadku
szerszych obszarow czynnych. Parametr zwany wzgledna separacja modow, uzyty do
poréwnania badanych laseréw, osiagnat w strukturze DRW wartosé¢ okoto 3,5, co
oznacza separacje modéw ponad trzykrotnie wieksza niz w strukturze SRW (struk-
turze referencyjnej z pojedynczym falowodem grzbietowym) o tej samej szerokosci.
Wynik ten czyni strukture DRW obiecujacym rozwiazaniem w projektowaniu przy-
rzadéw przeznaczonych do pracy przy wysokiej mocy optycznej. Co wiecej, przepro-
wadzone obliczenia stanowia punkt wyjscia do dalszych badan nad efektem supersy-
metrii w strukturach azotkowych, ktére moga objaé¢ m.in. analize wptywu odleglosci
miedzy falowodami, gtebokosci trawienia czy niejednorodnego rozktadu temperatury
w strukturze laserowej, a takze wplywu dodania trzeciego falowodu grzbietowego C
po przeciwnej stronie niz falowod B.
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