
ŁUKASZ PISKORSKI1

MODELOWANIE AZOTKOWYCH LASERÓW O EMISJI
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Zwiększenie mocy laserów półprzewodnikowych zwykle wiąże się z poszerzaniem
obszaru czynnego, w którym generowane jest promieniowanie. Prowadzi to jed-
nak do przejścia pracy z trybu jednomodowego do wielomodowego, co w wielu
zastosowaniach jest niepożądane. Dlatego poszukuje się rozwiązań pozwalających
na jednoczesne uzyskanie wysokiej mocy i stabilnej pracy w trybie pojedynczego
modu poprzecznego. Jednym z obiecujących kierunków jest podejście supersyme-
tryczne, wynikające z analogii pomiędzy równaniami Schrödingera i Helmholtza,
które znalazło zastosowanie w optyce falowej i umożliwia skuteczne tłumienie
modów wyższego rzędu.
W niniejszej pracy podejście supersymetryczne zostało zastosowane w struktu-
rze bazującej na azotkowym laserze o emisji krawędziowej emitującym światło
niebieskie o długości fali 430 nm. W pracy badany jest wpływ parametrów geo-
metrycznych struktury oraz parametrów warstwy czynnej na skuteczną dyskry-
minację modów wyższego rzędu w strukturze z dwoma falowodami grzbietowymi.
Do tej pory w literaturze przedstawiono podobne analizy dla laserów arsenko-
wych i fosforkowych, natomiast podejście supersymetryczne w przypadku laserów
azotkowych nie zostało jeszcze dokładnie zbadane.
Otrzymane wyniki wskazują, że zastosowanie podejścia supersymetrycznego
w azotkowych laserach o emisji krawędziowej umożliwia uzyskanie pracy w trybie
pojedynczego modu poprzecznego również przy szerszym obszarze czynnym. Pa-
rametr zwany względną separacją modów, zastosowany do porównania badanych
laserów, osiągnął w supersymetrycznej strukturze wartość około 3,5, co oznacza,
że separacja modów jest ponad trzykrotnie większa niż w strukturze referencyjnej
z pojedynczym falowodem grzbietowym. Wynik ten wskazuje, że struktury oparte
na podejściu supersymetrycznym mogą stanowić szczególnie korzystne rozwiąza-
nie w projektowaniu przyrządów przeznaczonych do zastosowań wymagających
wyższej mocy optycznej.

Słowa kluczowe: lasery półprzewodnikowe, symulacja komputerowa, model nume-
ryczny, półprzewodnikowe materiały azotkowe, modelowanie zjawisk optycznych

1. WSTĘP

Lasery azotkowe o dużej mocy, emitujące promieniowanie w postaci wiązki gaussow-
skiej o małej rozbieżności, stanowią atrakcyjne źródło światła do wielu zastosowań.
Wykorzystywane są m.in. w chirurgii laserowej [1], obróbce materiałów [2] i druku
3D [3].
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Uzyskanie akcji laserowej na pojedynczym modzie poprzecznym w laserach o emi-
sji krawędziowej jest zazwyczaj możliwe dzięki zastosowaniu wąskiego falowodu grzbie-
towego [4] lub falowodu grzbietowego otrzymanego poprzez płytkie trawienie struk-
tury [5]. Efekt falowodowy w takich laserach występuje w kierunku poprzecznym,
ponieważ efektywny współczynnik załamania w obszarze falowodu grzbietowego jest
wyższy niż w obszarach z nim sąsiadujących. Wąski falowód grzbietowy ogranicza
mod podstawowy i jednocześnie tłumi lub eliminuje mody wyższego rzędu. Takie
rozwiązanie ma jednak swoje wady. Powierzchnia przez którą prąd jest wstrzyki-
wany do warstwy czynnej ze studniami kwantowymi jest wtedy niewielka, co ogra-
nicza objętość obszaru czynnego i obniża moc optyczną lasera. Dodatkowo wąski
obszar czynny przekłada się na wysoką gęstość mocy cieplnej, przez co odprowa-
dzanie ciepła staje się problematyczne. Sytuacja jest inna w przypadku płytkiego
falowodu grzbietowego, który wprowadza jedynie niewielki skok współczynnika za-
łamania w kierunku poprzecznym. Pozwala to na tłumienie modów wyższego rzędu
również w strukturach z szerszymi falowodami grzbietowymi, co sprzyja pracy jedno-
modowej i daje szansę uzyskania większej mocy optycznej. Z drugiej jednak strony,
słabszy efekt falowodowy przekłada się na wyższe wartości prądu progowego. Obser-
wuje się wtedy wzrost temperatury, która wpływa na wartości współczynników zała-
mania użytych materiałów. Otrzymany w ten sposób rozkład tej wielkości wzmacnia
efekt falowodowy i sprzyja powstawaniu modów wyższego rzędu. W efekcie praca
lasera staje się wielomodowa [6].

Aby obejść te ograniczenia i uzyskać pracę jednomodową na modzie podstawo-
wym, w niniejszej pracy wykorzystano sprzężenie optyczne pomiędzy sąsiednimi fa-
lowodami grzbietowymi — rozwiązanie znane jako podejście supersymetryczne. Kon-
cepcja supersymetrii narodziła się w fizyce cząstek, później była rozwijana w mecha-
nice kwantowej, a dzięki analogii pomiędzy równaniami Schrödingera i Helmholtza
znalazła również zastosowanie w optyce falowej [7], szczególnie w układach sprzężo-
nych falowodów [8], gdzie charakterystyka modowa zależy od sposobu ich sprzężenia.
Klasycznym przykładem działania supersymetrii jest tu para sprzężonych falowodów
o różnych parametrach, w której wszystkie mody mają te same stałe propagacji w obu
falowodach [9]. Wyjątek stanowi mod podstawowy w pierwszym z falowodów, który
nie posiada odpowiednika w drugim. W rezultacie wszystkie mody mające swoje
odpowiedniki propagują się w obu falowodach, a tylko mod podstawowy pozostaje
zlokalizowany w pierwszym falowodzie.

W niniejszej pracy podejście supersymetryczne zostało zastosowane w azotkowym
laserze o emisji krawędziowej (rysunek 1), aby uzyskać lepsze parametry pracy na
modzie podstawowym. Struktura takiego lasera, dalej nazywana DRW (ang. double-
ridge waveguide — struktura z podwójnym falowodem grzbietowym), składa się
z dwóch falowodów: szerszego (A) i węższego (B). Dla porównania analizowana jest
również klasyczna struktura z pojedynczym falowodem grzbietowym, dalej nazywana
SRW (ang. single-ridge waveguide — struktura z pojedynczym falowodem grzbieto-
wym). Obszary znajdujące się pod falowodami grzbietowymi będą nazywane aper-
turami.

W strukturze DRW, jeśli szerokości falowodów grzbietowych A i B zostaną do-
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brane tak, aby mody wyższego rzędu w A miały te same współczynniki załamania
co mody w B, wówczas ulegają one sprzężeniu a ich rozkłady rozpraszają się w obu
aperturach. Mod podstawowy, który nie ma odpowiednika w falowodzie B, pozostaje
ograniczony do falowodu A. W pracy mody w strukturach SRW i DRW będą ozna-
czane odpowiednio TESRW

i i TEDRW
i , przy czym i = 0 będzie stosowane dla modu

podstawowego, a liczby dodatnie dla i będą stosowane dla modów wyższego rzędu.
Ponieważ badania opisane w pracy skupiają się głównie na dyskryminacji modów,
sposób ich numerowania nie ma wpływu na wyniki. Przyjęta została prosta zasada:
wyższe mody będą porządkowane malejąco według części rzeczywistej efektywnego
współczynnika załamania.

Rysunek 1. Schematyczne przedstawienie struktur laserów krawędziowych
z pojedynczym (SRW) i podwójnym (DRW) falowodem grzbietowym, badanych

w niniejszej pracy, wraz z układem współrzędnych zastosowanym w analizie. Oznaczenia:
wA, wB — szerokości falowodów A i B; dAB — odległość między falowodami A i B

Źródło: opracowanie własne.

W pracy badany jest wpływ szerokości falowodu B, który zapewnia skuteczną
dyskryminację modów wyższego rzędu w strukturze DRW. Analizowany jest także
wpływ części urojonej współczynnika załamania w warstwie czynnej. Rozkład tej
wielkości zależy od wartości wzmocnienia i absorpcji przyjętych w warstwach studni
kwantowych. Do tej pory w literaturze opisano podobne analizy dla laserów arsenko-
wych [10–12] i fosforkowych [13], natomiast podejście supersymetryczne w przypadku
laserów azotkowych nie zostało jeszcze dokładnie zbadane. Materiały azotkowe wy-
różniają się mniejszym kontrastem współczynnika załamania niż materiały arsenkowe
i fosforkowe, a także krótszą długością fali emitowanego promieniowania.
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2. MODELOWANA STRUKTURA

Struktura wyjściowa do badań teoretycznych stanowiących przedmiot niniejszej pracy
to półprzewodnikowy laser azotkowy o emisji krawędziowej typu ridge-waveguide
(z falowodem grzbietowym) z obszarem czynnym w postaci studni kwantowych In-
GaN/GaN generujący promieniowanie o długości fali 430 nm. Obecna technologia
umożliwia wytwarzanie takich struktur, czego potwierdzeniem są zmierzone ekspe-
rymentalnie charakterystyka prądowo-napięciowa oraz charakterystyka wyjściowej
mocy optycznej w funkcji prądu, które zostały zaprezentowane w [14]. Modelowana
struktura wyjściowa, schematycznie przedstawiona na rysunku 2, bazuje na struktu-
rze pojedynczego emitera przedstawionego w [14] zaprojektowanego do emisji pro-
mieniowania o długości fali 430 nm i jest podobna do konstrukcji opisanych w [15–17],
które opracowano tak, by w temperaturze pokojowej generowały światło niebieskie
o długości fali z przedziału 442–450 nm.

Rysunek 2. Schemat struktury lasera półprzewodnikowego o emisji krawędziowej typu
ridge-waveguide z obszarem czynnym InGaN/GaN. W celu lepszego uwidocznienia
szczegółów konstrukcji pokazano jedynie niewielką część podłoża oraz ograniczono
szerokość fragmentu struktury do 6 µm. Prawą część rysunku, ukazującą fragment

struktury obejmujący warstwy o małej grubości, przedstawiono w powiększeniu, w innej
skali niż część lewą. Dla uproszczenia zapisu, na rysunku oraz w dalszej części pracy skład
materiałowy dla materiałów AlGaN oraz InGaN podawany jest wyłącznie poprzez wartość
określającą zawartość Al lub In. Zawartość Ga równa jest różnicy 1 i zawartości Al lub In

Źródło: opracowanie własne.

Szczegóły budowy struktury wyjściowej takie jak materiały z których wykonano
warstwy, typ domieszkowania i koncentracja domieszki, grubości warstw przedsta-
wiono w tabeli 1. W celu uzyskania falowodu grzbietowego wytrawiono warstwę pod-
kontaktową wykonaną z p-GaN i wykonaną z p-Al0,045GaN część warstwy okładkowej
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Tabela 1. Szczegóły struktury lasera półprzewodnikowego o emisji krawędziowej typu
ridge-waveguide z obszarem czynnym InGaN/GaN. W tabeli pominięte zostały grubości
warstw znajdujących się po dolnej stronie podłoża, ponieważ obliczenia stanowiące przed-
miot niniejszej pracy skupiają się na modelowaniu zjawisk optycznych, co umożliwia ogra-
niczenie struktury od dołu tak, że jedynie niewielki fragment podłoża jest uwzględniany
w obliczeniach

Element lasera Materiał
Koncentracja

domieszki
[1018 cm−3]

Grubość [nm]

kontakt metaliczny Au — 1000
izolacja tlenkowa SiO2 — 200
warstwa podkontaktowa GaN:Mg 5,0 210
warstwa okładkowa Al0,045GaN:Mg 5,0 550
warstwa okładkowa Al0→0,045GaN:Mg 2,0 → 5,0 100

warstwa blokująca
ucieczkę nośników

9 × (GaN:Mg /
Al0,12GaN:Mg)
Al0,12GaN:Mg)

40,0 9 × (2,0 / 2,0)
2,0

warstwa dystansująca GaN — 2,0
warstwa falowodowa In0,043GaN — 65,0
bariera GaN — 4,0
studnia kwantowa
(głęboka/płytka)

In0,12GaN /
In0,06GaN — 3,1 / 1,3

bariera GaN — 5,0
studnia kwantowa
(głęboka/płytka)

In0,12GaN /
In0,06GaN — 3,1 / 1,3

bariera GaN — 5,0
warstwa falowodowa In0,043GaN:Si 2,0 50,0
warstwa dystansująca GaN:Si 5,0 10,0
warstwa okładkowa Al0,068→0GaN:Si 5,0 350
warstwa okładkowa Al0,068GaN:Si 5,0 800
warstwa buforowa Al0,023GaN:Si 5,0 2000
podłoże GaN:Si 5,0 3× 105

Źródło: opracowanie własne na podstawie [14].

typu p na głębokość 710 nm. W kierunku bocznym pozostawiona jest mesa o szero-
kości 2,0 µm. Długość emitera opisanego w [14] to 900 µm, ale w prezentowanych tu
obliczeniach nie ma ona znaczenia, ponieważ dotyczą one przypadku dwuwymiaro-
wego, ograniczonego do płaszczyzny przedstawionej na rysunku 2. Izolacja tlenkowa,
która pokrywa obszary odsłonięte w wyniku trawienia, wykonana jest z amorficz-
nego SiO2 i ma grubość 200 nm. W obliczeniach przyjęto, że warstwa ta częściowo
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pokrywa falowód, zachodząc na niego na odległość równą swojej grubości. W mode-
lowanej strukturze nad tą warstwą znajduje się warstwa złota o grubości 1 µm, która
ma kontakt z warstwą podkontaktową jedynie od górnej strony falowodu grzbieto-
wego.

Obszar czynny modelowanego lasera jest niedomieszkowany (patrz: tabela 1) i zo-
stał wykonany w postaci dwóch studni kwantowych wykonanych z InGaN rozdzielo-
nych barierami wykonanymi z GaN. Na każdą ze studni składają się dwie warstwy
In0,06GaN o grubości 1,3 nm i In0,12GaN o grubości 3,1 nm. Całkowita grubość ob-
szaru czynnego to 22,8 nm, ale niedomieszkowany obszar nie ogranicza się jedynie
do obszaru czynnego. Zaliczają się do niego jeszcze dwie warstwy znajdujące się nad
górną barierą: warstwa falowodowa o grubości 65 nm wykonana z In0,043GaN i cienka
(2 nm) warstwa utworzona z GaN. W pracy [14] górna warstwa falowodowa jest do-
mieszkowana, ale istnieją też prace [16–18], gdzie warstwy tej się nie domieszkuje, aby
uniknąć strat optycznych spowodowanych dużą absorpcją promieniowania typową
dla materiałów azotkowych typu p [19, 20]. Dopiero 67 nm nad obszarem czynnym
znajduje się pierwsza warstwa typu p, która wraz z kilkunastoma kolejnymi cienkimi
(2 nm) naprzemiennie ułożonymi warstwami p-Al0,12GaN i p-GaN tworzy obszar na-
zywany warstwą blokującą ucieczkę nośników z obszaru czynnego do warstw typu p.
Obszar ten sąsiaduje od góry ze wcześniej wspomnianą warstwą okładkową typu p.
Po przeciwnej stronie obszaru czynnego znajduje się warstwa falowodowa wykonana
z In0,043GaN typu n o grubości 50 nm. Kolejne warstwy to: wykonana z n-GaN war-
stwa dystansująca, warstwa okładkowa typu n (część tej warstwy ma zmienny skład
materiałowy umożliwiający płynne przejście od n-Al0,068GaN do n-GaN), warstwa
buforowa wykonana z n-Al0,023GaN i podłoże utworzone z n-GaN.

W pracy [14], gdzie badania skupiają się na modelowaniu zagadnień cieplnych,
nie zostały podane koncentracje domieszkowania. Do obliczeń będących przedmiotem
niniejszej pracy, przyjęto, że koncentracja domieszki donorowej wynosi 5×1018 cm−3

[16]. Jedynym wyjątkiem jest dolna warstwa falowodowa, dla której założona została
koncentracja 2×1018 cm−3 z uwagi na to, że warstwa ta sąsiaduje z obszarem czynnym
i wprowadzenie domieszki o większej koncentracji domieszki może przekładać się na
stosunkowo duże straty optyczne w tej warstwie. Dla warstwy podkontaktowej i gór-
nej warstwy okładkowej przyjęto koncentrację domieszki wynoszącą 5 × 1018 cm−3.
Dużo wyższa koncentracja domieszki wynosząca 4× 1019 cm−3 [17] została przyjęta
dla warstwy blokującej ucieczkę nośników. W przypadku górnej warstwy okładko-
wej o zmiennym składzie materiałowym założono, że wartość koncentracji domieszki
zmienia się w sposób ciągły od 2× 1018 cm−3 do 5× 1018 cm−3.

3. MODEL NUMERYCZNY I PARAMETRY MATERIAŁOWE

Zjawiska optyczne w strukturach badanych w niniejszej pracy modelowane są przy
użyciu metody admitancyjnej fal płaskich [21]. Metoda ta umożliwia obliczenie efek-
tywnych współczynników załamania światła dla poszczególnych modów promienio-
wania i odpowiadające im przestrzenne rozkłady tych modów.

Wszystkie obliczenia, które zostały wykonane w ramach badań opisanych w ni-
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niejszej pracy zostały przeprowadzone dla 150 fal płaskich. Wartość ta została okre-
ślona na podstawie wstępnych obliczeń wykonanych dla struktury z jednym falowo-
dem grzbietowym o szerokości 5,5 µm. Szerokość ta jest prawie trzykrotnie większa
niż w przypadku struktury wyjściowej, jednak mając na uwadze główną część ob-
liczeń, która dotyczy struktury z dwoma falowodami grzbietowymi i jej optymali-
zacji, zdecydowano by wybór liczby fal płaskich został dokonany w oparciu o war-
tość łącznej szerokości falowodów, której można się spodziewać dla struktury zbli-
żonej do optymalnej. W celu uproszczenia sposobu generowania plików wsadowych
do obliczeń, liczba fal płaskich dla głównych obliczeń nie zależy od łącznej szero-
kości okna obliczeniowego. Przez okno to rozumiany jest tutaj dwuwymiarowy ob-
szar struktury lasera różniący się od tego ukazanego na rysunku 2 jedynie tym, że
dolna krawędź tego obszaru przypada na miejsce styku warstwy buforowej i podłoża.
W kierunku poziomym rozmiar okna obliczeniowego zależy od szerokości falowodu
grzbietowego (w przypadku struktury z jednym falowodem) lub od łącznej szero-
kości dwóch falowodów grzbietowych i szerokości przerwy między tymi falowodami
(w przypadku struktury z dwoma falowodami). Na szerokość okna obliczeniowego

Tabela 2. Wartości współczynnika załamania i współczynnika absorpcji obliczone dla
materiałów składających się na modelowane w niniejszej pracy struktury. Wszystkie wartości
podano dla długości fali 430 nm i temperatury 300K. W przypadku warstw niedomieszko-
wanych, gdzie występuje nieintencjonalna domieszka, nie uwzględniono jej przy wyznaczeniu
parametrów, ponieważ koncentracja takiej domieszki jest bardzo mała (∼ 1×1017 cm−3) [23].
Dla InGaN tworzącego studnie kwantowe przyjmowane są różne wartości wzmocnienia gQW

i absorpcji αQW, zależnie od położenia wzdłuż osi x (patrz: rys. 1)

Materiał Współczynnik załamania Współczynnik absorpcji [cm−1]

Au 1,4763 5,2998× 104

SiO2 1,4672 2,0457× 10−2

GaN:Mg 2,4689 5
Al0.045GaN:Mg 2,4512 5
Al0→0.045GaN:Mg 2,4709 → 2,4512 2 → 5
GaN:Mg/Al0.12GaN:Mg 40,0 40
In0.043GaN 2,5277 0
In0.12GaN 2,7491 gQW lub αQW

In0.06GaN 2,5518 gQW lub αQW

GaN 2,4766 0
In0.043GaN:Si 2,5180 2
GaN:Si 2,4669 5
Al0.068→0GaN:Si 2,4412 → 2,4669 5
Al0.068GaN:Si 2,4412 5
Al0.023GaN:Si 2,4578 5
GaN:Si 2,4669 5

Źródło: opracowanie własne.
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składa się także 30 µm, które wynika z łącznej szerokości obszarów położonych obok
falowodów grzbietowych. Do obszarów tych wnikają częściowo mody promieniowania
wyznaczane przez model optyczny i ich pominięcie przełożyłoby się na przyjęcie wa-
runków brzegowych (w postaci tzw. idealnie dopasowanych warstw o dużej absorpcji
promieniowania [22]) w nieodpowiednim miejscu, co skutkowałoby uzyskaniem błęd-
nych rozwiązań. Wstępne obliczenia pokazały, że 150 fal płaskich to minimalna ich
liczba powyżej której obserwuje się jedynie znikome zmiany w wartości części urojonej
efektywnych współczynników załamania światła powiązanych z modami promienio-
wania wyznaczonymi dla struktury wybranej do wstępnych obliczeń.

Wyznaczone dla temperatury pokojowej (300K) parametry materiałowe (współ-
czynnik absorpcji promieniowania i rzeczywista część współczynnika załamania zwana
w dalszej części niniejszej pracy współczynnikiem załamania) stosowane w oblicze-
niach zamieszczone zostały w tabeli 2.

W celu wyznaczenia współczynników załamania w materiałach azotkowych przy-
jęto, że punktem wyjścia będą następujące zależności, które umożliwiają wyznaczenie
tej wielkości dla materiału GaN w 298K [24] dla energii fotonu E (w eV) z róż-
nych zakresów (poniżej podano również odpowiadające im zakresy dla długości fali
λ) [25, 26]:

nR,GaN(E) = 0,013914E4 − 0,096422E3 + 0,27318E2 − 0,27725E + 2,3535, (1)
1,000 eV < E < 2,138 eV (580 nm < λ < 1240 nm),

nR,GaN(E) = 0,1152E3 − 0,7955E2 + 1,959E + 0,68, (2)
2,138 eV < E < 3,163 eV (392 nm < λ < 580 nm),

nR,GaN(E) = 18,2292E3 − 174,6974E2 + 558,535E − 593,164, (3)
3,163 eV < E < 3,351 eV (370 nm < λ < 392 nm),

nR,GaN(E) = 33,63905E3 − 353,1446E2 + 1235,0168E − 1436,09, (4)
3,351 eV < E < 3,532 eV (351 nm < λ < 370 nm),

nR,GaN(E) = −0, 72116E3 + 8, 8092E2 − 35, 8878E + 51, 335, (5)
3,532 eV < E < 4,100 eV (302 nm < λ < 351 nm),

nR,GaN(E) = 0,351664E4 − 6,06337E3 + 39,2317E2 − 112,865E + 124,358, (6)
4,100 eV < E < 4,500 eV (276 nm < λ < 302 nm).

W celu wykorzystania zależności (1)–(6) do obliczenia współczynnika załamania
dla AlxGaN oraz InyGaN należy zmodyfikować wartość energii tak, aby uwzględnić
różnicę pomiędzy przerwą energetyczną GaN oraz materiału potrójnego [27]. Dodat-
kowo można też uwzględnić zmiany współczynnika załamania wraz z temperaturą,
a także te wynikające z różnych koncentracji nośników. Zależności na współczynniki
załamania w materiałach azotkowych GaN, AlGaN i InGaN można wtedy zapisać
w następujący sposób:
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nR,GaN(E, T,N) = nR,GaN(E +∆E(E, T,N)), (7)
nR,AlGaN(x,E, T,N) = nR,GaN(E +∆E(x,E, T,N)), (8)
nR,InGaN(y,E, T,N) = nR,GaN(E +∆E(y,E, T,N)), (9)

gdzie:

∆E(E, T,N) = E +∆E1(T ) + ∆E2(N), (10)
∆E(x,E, T,N) = E +∆E1(x, T ) + ∆E2(N), (11)
∆E(y,E, T,N) = E +∆E1(y, T ) + ∆E2(N), (12)

∆E1(T ) = Eg,GaN(298K)− Eg,GaN(T ), (13)
∆E1(x, T ) = Eg,GaN(298K)− Eg,AlGaN(x, T ), (14)
∆E1(y, T ) = Eg,GaN(298K)− Eg,InGaN(y, T ), (15)

∆E2(N) = −aN1/3. (16)

Wartość współczynnika a we wzorze (16) przyjęta w niniejszej pracy wynosi
2,4× 10−8 eV cm dla materiałów typu n [28] oraz 1,9 × 10−8 eV cm dla materiałów
typu p [23], a w celu obliczenia ∆E2 należy podstawić za N koncentrację domieszki.

Wartości przerw energetycznych dla materiałów azotkowych dwuskładnikowych
w danej temperaturze można obliczyć korzystając ze wzoru Varshniego [29]:

Eg(T ) = Eg,0 −
αT 2

T + β
, (17)

gdzie Eg,0 to przerwa energetyczna dla T = 0K, a α oraz β to parametry dopa-
sowania. W przypadku materiałów trójskładnikowych wartości przerwy energetycz-
nej wyznacza się za pomocą wzorów interpolacyjnych, które uwzględniają nieliniowe
zmiany tej wielkości w zależności od składu materiałowego [30]:

Eg,AlGaN(x, T ) = xEg,AlN + (1− x)Eg,GaN − x(1− x)CAlGaN, (18)
Eg,InGaN(y, T ) = yEg,InN + (1− y)Eg,GaN − y(1− y)CInGaN. (19)

Wartości wszystkich parametrów niezbędnych do obliczenia przerwy energetycz-
nej w materiałach GaN, AlGaN i InGaN o dowolnym składzie materiałowym zostały
przedstawione w tabeli 3.

W celu zilustrowania ogólnego przebiegu zmian współczynnika załamania dla
materiałów o składach mieszczących się w przedziale zastosowanym w strukturze
wyjściowej, na rysunku 3 przedstawiono zależność współczynnika załamania w tem-
peraturze 300 K od długości fali dla GaN, AlGaN oraz InGaN. Dokładne warto-
ści współczynnika załamania użyte w dalszych obliczeniach, dla których przyjęto
λ = 430nm, przedstawiono w tabeli 2.

69

Ł. Piskorski



BPAM Vol.1, No.1 (2025)

Tabela 3. Wartości parametrów niezbędnych do obliczenia przerwy energetycznej w ma-
teriałach GaN, AlGaN i InGaN dla zadanej temperatury

Parametr AlN GaN InN AlGaN InGaN

Eg,0 [eV] 6,100 3,510 0,690 — —
α [meV K−1] 2,63 0,914 0,414 — —
β [K] 2082 825 154 — —
C [eV] — — — 0,8 1,4
Źródło: opracowanie własne na podstawie [31].

Rysunek 3. Obliczone (dla 300 K) wartości współczynnika załamania nR w zależności
od długości fali λ dla niedomieszkowanych materiałów GaN, AlGaN (Al: 6 %, 12 %)

i InGaN (In: 6 %, 12%)
Źródło: opracowanie własne.

Wzory oraz wartości parametrów umożliwiające obliczenie współczynnika zała-
mania dla amorficznego SiO2 i złota można znaleźć w [32] oraz [33]. Dla powietrza
przyjęto wartość współczynnika załamania równą 1 [34].

Do obliczeń współczynnika absorpcji promieniowania w materiałach azotkowych
zastosowano prostą zależność liniową, w której wielkość ta jest proporcjonalna do
koncentracji domieszki N :

α(N) = AN, (20)

i przyjęto, że wartość współczynnika proporcjonalności A wynosi 10−18 cm2.
Według danych z [35], w warstwach typu p, które są silnie domieszkowane, absorp-

cja jest wyraźnie większa niż w warstwach typu n stosowanych w azotkowych laserach
półprzewodnikowych. Wynika to z faktu, że energia aktywacji nośników w warstwach
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typu n jest o rząd mniejsza niż w warstwach typu p [36,37], a tym samym do uzyska-
nia odpowiedniej przewodności elektrycznej nie jest konieczne stosowanie wysokiej
koncentracji domieszek.

Niewielkie wartości absorpcji obserwuje się również w warstwach niedomieszko-
wanych [38, 39]. Należy przy tym podkreślić, że w przypadku GaN w literaturze
występują znaczne rozbieżności dla wartości współczynnika absorpcji nawet dla tych
samych koncentracji i typu domieszki, jak również długości fali, co pokazują wyniki
podane w [40, 41]. W związku z tym zasadne wydaje się stosowanie uproszczonego
podejścia opartego na zależności (20), przy czym bardziej szczegółowa analiza nu-
meryczna może obejmować obliczenia dla różnych wartości współczynnika A. Warto
dodać, że identyczną postać zależności (20) podano w [42], gdzie badania dotyczą
lasera emitującego światło zielone (520 nm), a przyjęta wartość współczynnika A
wynosi 2,5× 10−18 cm2.

Współczynnik absorpcji α dla amorficznego SiO2 obliczany jest na podstawie
współczynnika ekstynkcji k dla tego materiału (α = 4πk/λ), który dla długości
fali λ z przedziału 400–460 nm wynosi 0,007 według danych zawartych w [43]. Wzory
oraz wartości parametrów umożliwiające obliczenie współczynnika absorpcji dla złota
można znaleźć w [33]. Dla powietrza przyjęto wartość współczynnika absorpcji równą 0.

4. WYNIKI SYMULACJI

Wyniki symulacji przedstawione w tej części uzyskano dla struktur laserowych za-
projektowanych do emisji promieniowania o długości fali λ = 430nm, opartych na
strukturze opisanej w [14]. Materiały warstw oraz ich grubości w modelowanych
strukturach zestawiono w tabeli 1. Przykładowe wartości parametrów optycznych,
obliczone dla T = 300 K, znajdują się w tabeli 2. Szerokości falowodów grzbietowych,
a także wartości wzmocnienia gQW i absorpcji αQW przyjęte w warstwie czynnej po-
dano w podpisach pod rysunkami. Układ współrzędnych użyty do przedstawienia
rozkładów modów promieniowania pokazano na rysunku 1.

Przy badaniu wpływu parametrów, takich jak szerokości falowodów A (wA) i B
(wB) oraz wartości wzmocnienia gQW i absorpcji αQW, parametry te były modyfi-
kowane z wykorzystaniem określonego kroku: 0,1µm dla wA i wB, 5× 102 cm−1 dla
gQW oraz 1× 103 cm−1 dla αQW. Na wykresach poszczególne punkty przedstawiają
wyniki obliczeń, natomiast linie pokazują przewidywane wartości dla parametrów
z badanego zakresu.

4.1. Laser z pojedynczym falowodem grzbietowym

Kluczowym parametrem decydującym o liczbie modów poprzecznych w strukturze
SRW jest szerokość falowodu grzbietowego. Rzeczywista i urojona część efektywnego
współczynnika załamania neff , w zależności od szerokości falowodu, pokazane są na
rysunku 4a i rysunku 4b. Dodatkowo, na rysunku 5 ukazane są przestrzenne roz-
kłady modów promieniowania dla struktury o szerokości grzbietu 8,0 µm, która jest
maksymalną szerokością falowodu, dla której wykonano obliczenia.
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(a) (b)

Rysunek 4. Rzeczywista (a) oraz urojona (b) część efektywnego współczynnika
załamania w zależności od szerokości falowodu grzbietowego w strukturze SRW, obliczone

dla gQW = 3000 cm−1 oraz αQW = 3000 cm−1

Źródło: opracowanie własne.

Rysunek 5. Przestrzenne rozkłady modów promieniowania w strukturze SRW
z falowodem grzbietowym o szerokości wA = 8,0µm, obliczone dla gQW = 3000 cm−1 oraz

αQW = 3000 cm−1

Źródło: opracowanie własne.

Część urojona efektywnego współczynnika załamania, neff,Im, jest proporcjonalna
do wzmocnienia modowego gm zgodnie ze wzorem:

gm =
4π

λ
neff,Im. (21)

Jeżeli jej wartość jest dodatnia, oznacza to, że dla danego modu wszystkie moż-
liwe straty optyczne są równoważone przez wzmocnienie materiałowe uzyskiwane
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w obszarze czynnym. Tym samym spełniony jest warunek osiągnięcia progu akcji
laserowej.

W przypadku, gdy dla danej szerokości falowodu może istnieć wiele modów po-
przecznych, wartość wzmocnienia materiałowego decyduje o tym, ile z nich osiągnie
próg. W rzeczywistości wzmocnienie materiałowe zależy od koncentracji nośników
wynikającej z gęstości prądu elektrycznego, a emitowanie promieniowania laserowego
jest procesem silnie nieliniowym, w którym dominującą rolę odgrywają przestrzenne
i spektralne wypalanie nośników, co wpływa na liczbę modów w widmie światła
laserowego.

Niemniej jednak różnice pomiędzy częściami urojonymi efektywnych współczyn-
ników załamania wyznaczonych dla poszczególnych modów można traktować jako
wskaźnik różnic w prądzie wymaganym do osiągnięcia progu akcji laserowej dla tych
modów. Z tego powodu zwiększanie różnicy pomiędzy częścią urojoną efektywnego
współczynnika załamania dla modu podstawowego (neff,Im,0) a największą wartością
tej wielkości spośród tych dla kolejnych modów (neff,Im,i) sprzyja pracy jednomodo-
wej. (W przyjętej tutaj notacji indeks i jest dodatni dla modów wyższego rzędu oraz
wynosi 0 dla modu podstawowego.)

Wyniki przedstawione na rysunku 4 ukazują typową zależność [10,44], jaką można
otrzymać dla lasera krawędziowego z falowodem grzbietowym: wraz ze wzrostem
szerokości falowodu rośnie liczba modów poprzecznych w strukturze, a jednocze-
śnie zmniejszają się straty optyczne pomiędzy poszczególnymi modami. Z rysunku 4
wynika, że praca wyłącznie na jednym modzie możliwa jest dla wA < 2,1µm, co
odpowiada progu odcięcia modu TESRW

1 . Dla założonego wzmocnienia w obszarze
czynnym, które wynosi 3000 cm−1, mod TESRW

1 może zostać zaobserwowany w wid-
mie promieniowania już dla wA = 2,4µm. W przedziale 2,1µm < wA < 3,4µm mod
TESRW

1 może pojawić się w widmie dopiero przy wyższych wartościach wzmocnienia
w obszarze czynnym.

Aby opisać zdolność tłumienia modów wyższego rzędu, wprowadzona zostanie
wielkość nazwana separacją modów (ms), zdefiniowana jako różnica pomiędzy częścią
urojoną efektywnego współczynnika załamania modu podstawowego i częścią urojoną
modu o kolejnej najwyższej wartości dla tej wielkości:

ms = neff,Im,0 − neff,Im,i. (22)

Separacja modów pełni istotną rolę w analizie wyników dla struktury DRW, a jej
wartości dla struktury SRW będą traktowane jako punkt odniesienia. Z tego względu
pokazano je dla różnych szerokości falowodu grzbietowego na rysunku 6a.

Podstawowym czynnikiem decydującym o wartości różnic dla części urojonych
efektywnego współczynnika załamania dla różnych modów jest to, jaka część pola
optycznego przypada na silnie absorbujące obszary znajdujące się w warstwie czyn-
nej poza aperturą dla grzbietu A, gdzie zachodzi absorpcja międzypasmowa. Dla-
tego w analizie tłumienia modów użyteczne jest wprowadzenie parametru opisują-
cego, jaka część całkowitego pola optycznego w warstwie czynnej przypada na obszar
apertury A. Parametr ten, nazywany dalej współczynnikiem ograniczenia modu Γ,
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(a) (b)

Rysunek 6. Separacja modów (a) oraz współczynnik ograniczenia modu (b)
w zależności od szerokości falowodu grzbietowego w strukturze SRW, obliczone dla

gQW = 3000 cm−1 oraz αQW = 3000 cm−1

Źródło: opracowanie własne.

można wyrazić poprzez stosunek natężenia światła w części warstwy czynnej, która
przypada na obszar apertury A, do całkowitego natężenia światła w tym obszarze
warstwy czynnej, który został uwzględniony w obliczeniach:

Γ =

∫ xA2

xA1

I(x) dx∫ xs2

xs1

I(x) dx

, (23)

przy czym xA1 i xA2 wyznaczają odpowiednio lewą i prawą krawędź falowodu A (przy
czym xA2 − xA1 = wA), a xs1 i xs2 oznaczają lewe i prawe granice całego obszaru
obliczeniowego. Funkcja I(x) opisuje natężenie światła wzdłuż osi x dla wartości y
odpowiadającej położeniu środka warstwy czynnej. Obliczone wartości współczyn-
nika ograniczenia dla struktur SRW o różnych szerokościach falowodu grzbietowego
przedstawiono na rysunku 6b.

Projektując strukturę DRW w oparciu o podejście supersymetryczne, należy na
początku ustalić szerokości falowodu A i obliczyć dla niej efektywne współczynniki
załamania wszystkich modów. Następny krok polega na wyznaczeniu szerokości fa-
lowodu B, którego obecność pozwoli na znalezienie modu będącego odpowiednikiem
modu wyższego rzędu z falowodu A. W przypadku dążenia do uzyskania jak najwyż-
szej mocy emitowanego promieniowania przez strukturę DRW, należy poszukiwać
największej szerokości falowodu A. Z uwagi na to, że celem niniejszej pracy jest je-
dynie przybliżenie tematu podejścia supersymetrycznego, obliczenia dla struktury
DRW zostaną przedstawione dla przykładowej szerokości wA = 3,5 µm. Dla tej sze-
rokości falowodu A, w oparciu o rysunek 4a, wybrana została szerokość falowodu
wB = 1,3 µm, która będzie uwzględniona w większości obliczeń dla struktury DRW,
opisanych w części 4.2 (Laser z podwójnym falowodem grzbietowym).
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Przedmiotem analizy będzie również wpływ wartości wzmocnienia gQW i absorp-
cji αQW w warstwie czynnej na możliwość sprzężenia modów. Wartości tych para-
metrów są powiązane z wartością części urojonej współczynnika załamania, przez
co ich zmiany mogą wpływać na wartości efektywnych współczynników załamania
poszczególnych modów.

(a) (b)

Rysunek 7. Rzeczywista część efektywnego współczynnika załamania w zależności od
wzmocnienia (a) oraz absorpcji (b) przyjętych w warstwach ze studniami kwantowymi

w strukturze SRW z falowodem grzbietowym o szerokości 3,5 µm, obliczone dla
gQW = 3000 cm−1 oraz αQW = 3000 cm−1

Źródło: opracowanie własne.

(a) (b)

Rysunek 8. Urojona część efektywnego współczynnika załamania w zależności od
wzmocnienia (a) oraz absorpcji (b) przyjętych w warstwach ze studniami kwantowymi

w strukturze SRW z falowodem grzbietowym o szerokości 3,5 µm, obliczone dla
αQW = 3000 cm−1 (a) oraz gQW = 3000 cm−1 (b)

Źródło: opracowanie własne.

Na rysunku 7a i rysunku 7b pokazany został wpływ zmian przyjętych wartości
wzmocnienia i absorpcji na część rzeczywistą efektywnego współczynnika załamania.
Jak można zauważyć, wpływ ten jest znikomy, nawet pomimo tego, że różnice pomię-
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dzy maksymalną a minimalną wartością wzmocnienia i absorpcji wynoszą odpowied-
nio 5000 cm−1 i 10000 cm−1. Zmiany przyjętych wartości wzmocnienia i absorpcji
wpływają jednak wyraźnie na część urojoną współczynnika załamania (rysunek 8a
i rysunek 8b). Z tego powodu, przy projektowaniu struktury DRW w oparciu o po-
dejście supersymetryczne, można przyjąć, że zmiany części urojonej współczynnika
załamania nie wpływają znacząco na wybór optymalnych szerokości falowodów.

4.2. Laser z podwójnym falowodem grzbietowym

W tej części przedstawione zostaną wyniki dla struktury DRW, dla których zbadany
zostanie wpływ szerokości falowodu B, a także parametrów warstwy czynnej, na wiel-
kości takie jak efektywne współczynniki załamania, separacje modów czy współczyn-
niki ograniczenia. Strukturą wyjściową będzie struktura z falowodem A o szerokości
wA = 3,5µm i falowodem B o szerokości wB = 1,3 µm, ale rozważane będą struktury,
gdzie szerokość falowodu B mieści się w przedziale od 0,1 µm do 2 µm. Wszystkie
obliczenia wykonano dla odległości między falowodami wynoszącej dAB = 0,1 µm.

(a) (b)

(c)

Rysunek 9. Rzeczywista (a) i urojona (b) część efektywnego współczynnika załamania
oraz współczynnik ograniczenia modu (c) w zależności od szerokości falowodu grzbietowego

B w strukturze DRW z falowodem grzbietowym A o szerokości 3,5 µm obliczone dla
gQW = 3000 cm−1 i αQW = 3000 cm−1

Źródło: opracowanie własne.
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Na rysunku 9a i rysunku 9b przedstawiono wpływ zmiany szerokości falowodu
B na części rzeczywistą i urojoną efektywnego współczynnika załamania, natomiast
na rysunku 9c pokazany został wpływ szerokości falowodu B na współczynnik ogra-
niczenia Γ. Wartość tego współczynnika pozwala na jednoznaczne wskazanie, gdzie
są zlokalizowane mody. W przypadku, gdy wB dąży do zera, wyniki dla struktury
DRW z rysunku 9 stają się zbliżone do wyników dla struktury SRW o szerokości
wA = 3,5µm, przedstawionych na rysunku 4 i rysunku 6. Dla wB = 0 µm struktura
DRW sprowadza się do struktury SRW, a na aperturę o szerokości 3,5 µm przypadają
jedynie dwa mody (rysunek 10a). Separacja pomiędzy tymi modami jest stosunkowo
niewielka (patrz: rysunek 4b), co może prowadzić do wzbudzenia modu wyższego
rzędu.

Na drugim krańcu rozważanego przedziału dla wB szerokość falowodu B wynosi
prawie 2 µm. W takim przypadku rozkłady modów promieniowania są prawie całko-
wicie ograniczone do falowodu A lub falowodu B, a sprzężenie pomiędzy tymi modami
jest niewielkie (rysunek 10c). Obecność dwóch modów ograniczonych do falowodu A
przekłada się na niewielką separację pomiędzy nimi (rysunek 4b), przez co możliwe
jest wzbudzenie w takiej strukturze modu wyższego rzędu.

(a) (b) (c)

Rysunek 10. Przestrzenne rozkłady modów promieniowania w strukturze DRW
z falowodem grzbietowym A o szerokości 3,5µm i falowodem grzbietowym B o szerokości
0,1µm (a), 1,3µm (b) i 1,9µm (c) obliczone dla gQW = 3000 cm−1 i αQW = 3000 cm−1

Źródło: opracowanie własne.

Aby rozwiązać problem ewentualnego wzbudzania modów wyższego rzędu w struk-
turze DRW, gdzie niewielką separację modów obserwuje się zarówno dla bardzo ma-
łych, jak i dużych wartości wB, zbadany został przypadek, w którym falowód B ma
szerokość wB = 1,3µm. Jak wynika z rysunku 9b, szerokość ta powinna być bliska
wartości optymalnej dla uzyskania efektu supersymetrii. W rozważanej strukturze
DRW części rzeczywiste efektywnych współczynników załamania neff,Re dla modów
TEDRW

1 i TEDRW
2 zbliżają się do siebie (rysunek 9a), gdy wB dąży do 1,4 µm, a

minimalna różnica pomiędzy nimi wynosi wtedy 8,3 × 10−4. Z kolei części urojone
współczynników neff,Im (rysunek 9b) oraz współczynniki ograniczenia modów Γ (ry-
sunek 9c) przecinają się dla wB = 1,3µm. Dla tej szerokości falowodu B sprzężone
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mody mają podobne rozkłady pola promieniowania (rysunek 10b) i przestają być
ograniczone do jednego falowodu. Dla wB = 1,3 µm efektywne współczynniki za-
łamania modów TEDRW

1 i TEDRW
2 mają niemal równe części urojone (różnica to

2,0×10−5), a różnica pomiędzy ich częściami rzeczywistymi jest prawie najmniejsza.
Straty optyczne, wynikające z ujemnej części urojonej efektywnego współczynnika
załamania (neff,Im,1 i neff,Im,2), osiągają maksimum dla obu tych modów, podczas
gdy część urojona efektywnego współczynnika załamania dla modu podstawowego
neff,Im,0 jest dodatnia (rysunek 9b), co wskazuje na możliwość uzyskania akcji lase-
rowej. Co więcej, mod TEDRW

0 , zlokalizowany w falowodzie A, nie ulega istotnym
zmianom przy modyfikacji grubości falowodu B w badanym zakresie. Maksymalna
względna zmiana współczynnika ograniczenia dla tego modu, przyjmując wartość ob-
liczoną dla wB = 1,3 µm jako punkt odniesienia, wynosi jedynie 0,82%. Umożliwia
to stabilną pracę z jednym modem poprzecznym oraz uzyskanie wyższej mocy emi-
towanego promieniowania dzięki zastosowaniu szerszego falowodu i wykorzystaniu
supersymetrii.

W części 4.1 (Laser z pojedynczym falowodem grzbietowym) do opisu tłumienia
modów wyższego rzędu wprowadzona została wielkość zwana separacją modów. Poni-
żej znajduje się definicja innej wielkości, która może pełnić podobną rolę. Wielkość ta
będzie nazywana względną separacją modów (msr) i jest zdefiniowana następującym
wzorem:

msr = ms −ms,wA , (24)

gdzie ms,wA oznacza separację modów obliczoną dla struktury SRW o szerokości
grzbietu wA. W odróżnieniu od separacji modów, względna separacja modów bezpo-
średnio informuje o stopniu poprawy w tłumieniu modów wyższego rzędu, wykorzy-
stując jako punkt odniesienia wynik dla struktury SRW.

Zależność względnej separacji modów dla struktur DRW z szerokością falowodu A
równą wA = 3,5µm od szerokości falowodu B przedstawiono na rysunku 11. Najwięk-
szą wartość, msr = 3,5, uzyskano dla wB = 1,3µm. Rysunek 11 pokazuje również, że
msr > 1 dla wszystkich rozważanych tu wartości wB, co oznacza, że tłumienie modów
wyższego rzędu w konfiguracji DRW jest silniejsze niż w strukturze SRW o tej samej
szerokości falowodu A. Możliwa jest dalsza optymalizacja struktury DRW pod kątem
uzyskania jeszcze wyższych wartości msr, jednak symulacja polegająca na jednocze-
snej modyfikacji szerokości obu falowodów wymaga znacznie większej liczby obliczeń
i nie została przeprowadzona w ramach niniejszej pracy.

Wpływ wartości parametrów warstwy czynnej (wzmocnienie i absorpcja), podob-
nie jak dla struktury SRW, został również zbadany w przypadku struktury DRW.
Do obliczeń opisanych w tej części pracy wybrana została struktura z wA = 3,5 µm
i wB = 1,3 µm.

Na rysunku 12a pokazano, że dla wzmocnienia z zakresu od 0 cm−1 do 5000 cm−1

współczynnik ograniczenia modu TEDRW
0 wynosi ponad 90 %, podczas gdy dla mo-

dów TEDRW
1 i TEDRW

2 (oznaczenia modów wynikają z rysunku 12b) wynosi on około
50 %. Skutkuje to wyraźnie mniejszymi wartościami części urojonych efektywnego
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Rysunek 11. Względna separacja modów w zależności od szerokości falowodu
grzbietowego B w strukturze DRW z falowodem grzbietowym A o szerokości 3,5µm,

obliczona dla gQW = 3000 cm−1 oraz αQW = 3000 cm−1

Źródło: opracowanie własne.

(a) (b)

(c) (d)

Rysunek 12. Współczynnik ograniczenia modu (a), rzeczywista (b) i urojona (c) część
efektywnego współczynnika załamania oraz względna separacja modów (d) w zależności od

wzmocnienia przyjętego w warstwach ze studniami kwantowymi w strukturze DRW
z falowodem grzbietowym A o szerokości 3,5µm i falowodem grzbietowym B o szerokości

1,3µm, obliczone dla αQW = 3000 cm−1

Źródło: opracowanie własne.
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współczynnika załamania dla obu tych modów (rysunek 12c). Wraz ze wzrostem
wzmocnienia obserwowane są jedynie niewielkie zmiany współczynnika ograniczenia
dla modów TEDRW

1 i TEDRW
2 , co oznacza, że ich przestrzenne rozkłady pozostają zbli-

żone, a dyskryminacja modów nie ulega wyraźnemu osłabieniu. Separacja modów dla
struktury DRW jest wyraźnie większa niż w przypadku struktury SRW o tej samej
szerokości falowodu A (rysunek 12c). Obliczenia wskazują również, że względna se-
paracja modów (rysunek 12d) rośnie wraz ze wzmocnieniem i dla gQW = 5000 cm−1

osiąga wartość 3,56.

(a) (b)

(c) (d)

Rysunek 13. Współczynnik ograniczenia modu (a), rzeczywista (b) i urojona (c) część
efektywnego współczynnika załamania oraz względna separacja modów (d) w zależności od
absorpcji przyjętej w warstwach ze studniami kwantowymi w strukturze DRW z falowodem

grzbietowym A o szerokości 3,5µm i falowodem grzbietowym B o szerokości 1,3µm,
obliczone dla gQW = 3000 cm−1

Źródło: opracowanie własne.

Wpływ drugiego z parametrów opisujących warstwę czynną, absorpcji, na war-
tość współczynnika ograniczenia modu ukazany jest na rysunku 13a. Dla całego prze-
działu wartości absorpcji wybranego do obliczeń współczynnik ograniczenia wynosi
ponad 90 % dla modu TEDRW

0 , podczas gdy dla modów TEDRW
1 iTEDRW

2 (oznaczenia
modów wynikają z rysunku 13b) wynosi około 50 % dla absorpcji od 0 cm−1 do około
5000 cm−1, po czym następują wyraźne zmiany w przestrzennych rozkładach modów
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(a) (b)

Rysunek 14. Przestrzenne rozkłady modów promieniowania w strukturze DRW
z falowodem grzbietowym o szerokości 3, 5µm i falowodem grzbietowym B o szerokości
1, 3µm, obliczone dla gQW = 3000 cm−1 oraz αQW = 0 cm−1 (a) oraz gQW = 3000 cm−1

i αQW = 10000 cm−1 (b)
Źródło: opracowanie własne.

wyższego rzędu (rysunek 13a) i dochodzi do sytuacji, gdy zamiast rozkładów promie-
niowania ukazujących sprzężone mody wyższego rzędu (rysunek 14a) obserwuje się
takie ich rozkłady, gdzie mody te są prawie całkowicie ograniczone do falowodu A
lub falowodu B (rysunek 14b).

Stosując pojęcie znane z literatury poświęconej supersymetrii, można użyć tu po-
jęcia „złamanie symetrii”. Różnica pomiędzy częściami urojonymi efektywnego współ-
czynnika załamania dla struktury DRW jest większa niż w przypadku struktury SRW
o tej samej szerokości falowodu A (rysunek 13c) dla wszystkich rozważanych warto-
ści absorpcji, przy czym dla absorpcji powyżej 8000 cm−1 separacja modów zaczyna
wyraźnie się zmniejszać, co przekłada się na spadek wartości względnej separacji
modów (rysunek 13d) z wartości 3,5 (dla αQW od 0 cm−1 do 7000 cm−1) do 2,3 (dla
αQW = 10000 cm−1).

5. PODSUMOWANIE

W niniejszej pracy przedstawiono wyniki symulacji komputerowej azotkowych lase-
rów o emisji krawędziowej, w których zastosowano podejście supersymetryczne. Po-
lega ono na rozszerzeniu typowej struktury z pojedynczym falowodem grzbietowym
A o dodatkowy falowód B, pełniący rolę supersymetrycznego partnera falowodu A.
Dla takiej konfiguracji przeanalizowano wpływ szerokości falowodu B na tłumienie
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modów wyższego rzędu. Dodatkowo zbadano wpływ wzmocnienia i absorpcji w war-
stwach studni kwantowych na parametry opisujące sprzężenie pomiędzy modami
wyższego rzędu.

Uzyskane wyniki wykazały, że zastosowanie struktury z dwoma falowodami o od-
powiednio dobranych szerokościach pozwala na silną dyskryminację modów, co umoż-
liwia stabilną pracę w trybie pojedynczego modu poprzecznego nawet w przypadku
szerszych obszarów czynnych. Parametr zwany względną separacją modów, użyty do
porównania badanych laserów, osiągnął w strukturze DRW wartość około 3,5, co
oznacza separację modów ponad trzykrotnie większą niż w strukturze SRW (struk-
turze referencyjnej z pojedynczym falowodem grzbietowym) o tej samej szerokości.
Wynik ten czyni strukturę DRW obiecującym rozwiązaniem w projektowaniu przy-
rządów przeznaczonych do pracy przy wysokiej mocy optycznej. Co więcej, przepro-
wadzone obliczenia stanowią punkt wyjścia do dalszych badań nad efektem supersy-
metrii w strukturach azotkowych, które mogą objąć m.in. analizę wpływu odległości
między falowodami, głębokości trawienia czy niejednorodnego rozkładu temperatury
w strukturze laserowej, a także wpływu dodania trzeciego falowodu grzbietowego C
po przeciwnej stronie niż falowód B.
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BPAM Vol.1, No.1 (2025)

[7] Sha H., Song Y., Chen Y. , Liu J. , Shi M. , Wu Z., Zhang H., Qin L., Liang L.,
Jia P., Qiu C., Lei Y., Wang Y., Ning Y., Miao G., Zhang J., Wang L., Advances
in semiconductor lasers based on parity-time symmetry, "Nanomaterials" 2024,
vol. 14, no. 7, art. 571, pp. 1–25.

[8] Fu T., Wang Y., Zhou X., Du F., Fan J., Wang X., Chen J., Qi A., Zheng W.,
Approaches to tuning the exceptional point of PT-symmetric double ridge stripe
lasers, "Optics Express" 2021, vol. 29, no. 13, pp. 20440–20448.

[9] Miri M.A., Heinrich M., El-Ganainy R., Christodoulides D.N., Supersymmetric
optical structures, "Physical Review Letters" 2013, vol. 110, no. 23, art. 233902,
pp. 1–5.

[10] Zhao X., Zeng S., Sweatt L., Zhu L., High-power single-mode triple-ridge wa-
veguide semiconductor laser based on supersymmetry, "AIP Advances" 2021,
vol. 11, no. 9, art. 095216, pp. 1–6, 2021.

[11] Şeker E., Olyaeefar B., Dadashi K., Şengül S., Teimourpour M.H., El-Ganainy
R., Demir A., Single-mode quasi PT-symmetric laser with high power emission,
"Light: Science & Applications" 2023, vol. 12, art. 149, pp. 1–8.

[12] Han L., Wang Z., Gordeev N.Y., Maximov M.V., Tang X., Beckman A.A., Kor-
nyshov G.O., Payusov A.S., Shernyakov Y.M., Zhukov A.E., Li K., Zhai R., Jia
Z., Yang H., Zhang W., Progress of edge-emitting diode lasers based on coupled-
waveguide concept, "Micromachines" 2023, vol. 14, no. 6, art. 1271, pp. 1–14.

[13] Hokmabadi M.P., Nye N.S., El-Ganainy R., Christodoulides D.N., Khajavikhan
M., Supersymmetric laser arrays, "Science" 2019, vol. 363, no. 6427, pp. 623–
626, 2019.

[14] Dąbrówka D., Sarzała R.P., Wasiak M., Kafar A., Perlin P., Saba K., Thermal
analysis of a two-dimensional array with surface light emission based on nitride
EEL lasers, "Opto-Electronics Review" 2022, vol. 30, no. 4, art. e144115, pp. 1–
7.

[15] Liang F., Zhao D.G., Liu Z.S., Chen P., Yang J., Duan L.H., ShiY. S., Wang
H., GaN-based blue laser diode with 6.0W of output power under continuous-
wave operation at room temperature, "Journal of Semiconductors" 2021, vol. 42,
no. 11, art. 112801, pp. 1–3.

[16] Onwukaeme C., Ryu H.Y., Investigation of the optimum Mg doping concentra-
tion in p-type doped layers of InGaN blue laser diode structures, "Crystals" 2021,
vol. 11, no. 11, art. 1335, pp. 1.

[17] Onwukaeme C., Ryu H.Y., Optimum design of InGaN blue laser diodes with
indium-tin-oxide and dielectric cladding layers, "Nanomaterials" 2024, vol. 14,
no. 17, art. 1409, pp. 1–13.

83

Ł. Piskorski



BPAM Vol.1, No.1 (2025)

[18] Zhang E., Zeng Y., Kang W., Zhong Z., Wang Y., Yan T., Huang S., Zhang Z.,
Lin K., Kang J., High-power GaN-based blue laser diodes degradation investi-
gation and anti-aging solution, "Advanced Photonics Research" 2024, vol. 5,
no. 11, art. 2400119, pp. 1–12.

[19] Uchida S., Takeya M., Ikeda S., Mizuno T., Fujimoto T., Matsumoto O., Goto S.,
Tojyo T., Ikeda M., Recent progress in high-power blue-violet lasers, "IEEE Jo-
urnal of Selected Topics in Quantum Electronics" 2003, vol. 9, no. 5, pp. 1252–
1259.

[20] Hou Y., Zhao D., Liang F., Liu Z., Yang J., Chen P., Enhancing the efficiency
of GaN-based laser diodes by the designing of a p-AlGaN cladding layer and
an upper waveguide layer, "Optical Materials Express" 2021, vol. 11, no. 6,
pp. 1780–1790, 2021.

[21] Dems M., Kotynski R., Panajotov K., Plane Wave Admittance Method — a no-
vel approach for determining the electromagnetic modes in photonic structures,
"Optics Express" 2005, vol. 13, no. 9, pp. 3196–3207.

[22] Archambeault B., Ramahi O.M., Drench C., EMI/EMC Computational Mode-
ling Handbook, Springer Science+Business Media, Nowy Jork 1998.

[23] Kudrawiec R., Motyka M., Misiewicz J., Paszkiewicz B., Paszkiewicz R., Tła-
czała M., Contactless electroreflectance study of band gap renormalization for
Mg-doped GaN, "Journal of Physics D: Applied Physics" 2008, vol. 41, no. 16,
art. 165109, pp. 1–4.

[24] Oshima Y., Suzuki T., Eri T., Kawaguchi Y., Watanabe K., Shibata M., Mi-
shima T., Thermal and optical properties of bulk GaN crystals fabricated through
hydride vapor phase epitaxy with void-assisted separation, "Journal of Applied
Physics" 2005, vol. 98, no. 10, art. 103509, pp. 1–4.

[25] Kuc M., Sarzała R.P., Modelowanie zjawisk fizycznych w krawędziowych laserach
azotkowych oraz ich matrycach, Wydawnictwo Politechniki Łódzkiej, Łódź 2019.

[26] Photonics Group, Python source code fragment for PLaSK (Photonic Lasers
Simulation Kit), Unpublished code [Computer program], Institute of Physics,
Lodz University of Technology, https://plask.app/ (dostęp: 31.08.2025).

[27] Kuc M., Sokół A.K., Piskorski Ł., Dems M., Wasiak M., Sarzała R.P., Czysza-
nowski T., ITO layer as an optical confinement for nitride edge-emitting lasers,
"Bulletin of the Polish Academy of Sciences Technical Sciences" 2020, vol. 68,
no. 1, pp. 147–154.

[28] Zhang X., Chua S.J., Liu W., Chong K.B., Photoreflectance study of Si-doped
GaN grown by metal–organic chemical vapor deposition, "Applied Physics Let-
ters" 1998, vol. 72, no. 15, pp. 1890–1892.

84

Modelowanie azotkowych laserów o emisji krawędziowej
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