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Abstract

The report presents the measurements of the water boiling temperature as a

function of the pressure. The relation has been determined by heating the water

under reduced pressure. The experimental results allows to compute the speci�c

heat of water vaporisation. The obtained value is in good agreement with the one

published in textbooks.

1 Introduction

The aim of this exercise was a measurement of a relation between the water boiling
temperature and the external pressure. The phenomenon of boiling can take place in
any temperature, in which the liquid state can exist, i. e. between the triple and critical
points of the substance. It takes place when the vapour pressure is equal to the external
pressure, which results in the evaporating phenomena taking place in the whole volume of
the liquid. This means that the boiling temperature is dependent on the external pressure.
For water, the common boiling temperature is assumed to be 100◦C. In a matter of fact
it is equal to this value only in so called normal conditions, i. e. under the pressure of
101.325 kPa. In other cases the water boiling temperature can signi�cantly di�er from
100◦C. In this exercise we determine these di�erences. Furthermore, using the measured
relation between the water boiling temperature and the external pressure, we determine
the speci�c heat of vaporisation of water.

The report consists of three parts. In the beginning we present the basic model of
the analysed phenomenon. We show the schematic diagram of the laboratory set-up and
shortly present the method of measurements. Next we present our experimental results
and their analysis. In the end we conclude.

2 Theory and measurement method

As already stated in the introduction, the boiling temperature of any liquid depends on
the external pressure. Their mutual relation�under assumption that the vapour is a
perfect gas and liquid state occupies no volume�is described by the Clausius-Clapeyron
equation [1, 2]
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Figure 1: Diagram of the experimental set-up. It consists of a �ask F containing analysed
liquid, a heater H, thermometer T , cooler C, big bottle B used for ensuring constant
pressure inside a �ask, a valve V and manometer M .

where Ti is the liquid boiling temperature under the pressure pi, R = 8, 31447 J
molK

is
the universal gas constant, λp is a speci�c heat of vaporisation, T0 is boiling temperature
under normal conditions, p0 = 101,325 kPa states for atmospheric pressure in normal
conditions. Using the above relation we can write

Ti =

[
−R (ln log pi − ln p0)
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, (2)

which means that the reciprocity of the boiling temperature T−1
i is proportional to the

natural logarithm of the pressure ln pi, i. e.

T−1
i = a ln pi + b, (3)

where

a = −R/λp, (4)

b = −R

λp

ln p0 +
1

T0

. (5)

In consequence, knowing the coe�cients a and b it is possible to determine the speci�c
heat of vaporisation λp, using Eqs. (3) and (4) transformed into

λp = −R/a. (6)

The experiment is performed with an apparatus shown in Fig. 1. It consists of a
heated �ask containing analysed water, a cooler and elements necessary for adjusting the
air pressure. In the beginning of the experiment the air pump was used to twice decrease
the pressure inside of the �ask. Next, the water was heated up until it began to boil. In
this moment its temperature was measured with the attached thermometer. In the next
steps we were letting some amount of air into the system each time, in order to increase
the pressure a little, and were measuring the boiling temperature. This procedure was
performed until we have reached again the atmospheric pressure inside the �ask.
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Table 1: Measured results: quantities read from the manometer and thermometer hi and
Ti, respectively, and calculated quantities pi, ln pi and T

−1
i .

hi [kPa] pi [kPa] Ti [
◦C] Ti [K] ln pi T−1

i [10−3 K−1]
71.4 29.0 71 344 3.368 2.907
62.0 38.4 77 350 3.648 2.857
51.6 48.8 83 356 3.888 2.811
46.2 54.2 84 357 3.993 2.801
37.2 63.2 86 359 4.147 2.788
25.7 74.7 90 364 4.314 2.750
19.2 81.2 91 365 4.398 2.743
16.1 84.3 97 371 4.434 2.699
0.0 100.4 100 373 4.609 2.679

3 Results

The results of our measurements are presented in Table 1. It contains the values read
from the manometer and boiling temperatures, as well as computed quantities: pressure
inside the �ask and functions T−1

i and ln pi. The pressure in the system was determined
using the relation

pi = pb − hi, (7)

where hi is the manometer reading and pb is the atmospheric pressure, in the day of exper-
iment equal to pb = (100.4± 0.1) kPa, as read from the wall-barometer in the laboratory.

The uncertainties of the pressure and boiling temperature were ∆pi = 0,1 kPa and
∆Ti = 2 K, respectively. The latter value was estimated rather high due to the di�culty
of precise observation of the moment in which the boiling begins.
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Figure 2: Plot of T−1
i as a function of ln pi and the linear function approximating the

measurements with the best possible accuracy.
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The results are plotted in Fig. 2. According to Eq. (3) the relation between T−1
i and

ln pi is linear. The slope of this function can be easily determined with the least squares
method and is equal to

a = (−1.78± 0.12) · 10−4 K−1.

Using this value it is possible to determine the speci�c heat of vaporisation from Eq. (6):

λp = −8, 31447 J mol−1 K−1

−1.78 · 10−4 K−1
= 46.6 · 103 J

mol
.

A more detailed analysis of Fig. 2 reveals that the error of the above quantity is in�uenced
by some other factors than the uncertainties of the measuring devices, denoted by ∆Ti

and ∆pi. Hence, the decisive factor is the uncertainty of the slope ∆a, which results
from the dissipation of the measured points. In consequence the uncertainty ∆λp can be
computed using absolute error propagation for Eq. (6):

∆λp =
R

a2
∆a, (8)

substituting numerical values we have

∆λp =
8, 31447 J mol−1 K−1

(−1,78 · 10−4 K−1)2 · 0,12 · 10−4 K−1 = 3,2 · 103 J

mol
.

Finally, the determined speci�c heat of vaporisation for water is equal to

λp = (47± 4)
kJ

mol
.

4 Conclusions

The speci�c heat of water vaporisation, determined in our experiment, is equal to λp =
(47 ± 4) kJ

mol
. Its tabular value, reproduced from Ref. [3] is λp tab = 43.630 kJ

mol
. Both

results are in agreement withing the error bounds. This means that no big systematic
errors occured in our experiment and the in�uence of statistical errors was minimised due
to the use of the least squares method. The measurements were in close vicinity of the
theoretical expectations. Hence, one can conclude that the presented method allows to
determine the speci�c heat of vaporisation with a few percent accuracy (in our case it
is exactly 7%). In order to increase precision one should take special care to accurately
determine the exact temperature of boiling and, at the same time, measure the pressure.
The di�culties with the correct reading of these quantities should be considered the main
source of errors in our experiment.
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