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Before you start to perform an experiment you are obliged to have mastered the 

following theoretical subjects: 
1. Boolean algebra, principal laws and identities. [1-9] 
2. Simplification of Boolean expressions using the Karnaugh map method. [1-10] 
3. Symbols of gates performing basic logical functions AND, OR, NOT, NAND, NOR, 

EX-OR and EX-NOR [1-3,5-9]. 
4. Implementation of other types of logic gates as a network of just NAND or just NOR 

gates. [1-4,8] 
5. Definitions of combinational and sequential logic circuits. [1,3,5-8] 

 

1. Purpose of the exercise 
 
 
The purposes of this experiment are: 

1. Comprehension of basic logical functions and gates. 
2. The design, implementation, and testing of combinational logic circuit. The designed 

circuit should be as simple as possible for the stated problem. 
 
 

2. Hazards 
 
 

Type Absence Low Medium High 

electrical radiation hazards  +     

optical radiation hazards +      

mechanical hazards (including acoustic hazards, noise) +       

electromagnetic radiation hazards (invisible) +       

biological hazards +       

ionizing radiation hazards +       

chemical hazards +       

thermal hazards (including explosion and fire) +      

 
The cables with banana plugs are designed exclusively for use in low-voltage circuits – 

do not connect them to the mains supply 230 V. 
 
 

3. Introduction 
 

3.1. Basic logical functions and gates 
 

Digital electronics uses predominantly Boolean algebra referred to variables taking only 
two possible values “1” and “0”. There exist also three-state circuits, however, they will not 
be the subject of this exercise. The basic operators applicable to two-state variables are: 
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– conjunction, logical product, also known as AND operator: BAY ⋅= , 
– disjunction, logical sum, also known as OR operator: BAY += , 

– logical negation, NOT operator: AY = . 
In practice, it is very useful to introduce the composition of NOT and AND operators, as well 
as the composition of NOT and OR operators: 

– negation of the conjunction, NAND: BAY ⋅= , 

– negation of the disjunction, NOR: BAY += . 
The symbols of electric devices (called logic gates) which are performing the functions listed 
above are given in Fig. 1. The definitions of the AND, OR, NAND, and NOR operators can 
be easily extended to any number of arguments by employing the composition of 
two-argument operators, such as A·B·C = (A·B)·C. 
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0 1 0 
1 0 0 
1 1 1 

 
A B Y 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

 
 
 
 

 
 
 
 

 

 
A B Y 

0 0 1 
0 1 1 
1 0 1 
1 1 0 

 
A B Y 

0 0 1 
0 1 0 
1 0 0 
1 1 0 

 
A Y 

0 1 
1 0 

 
Fig. 1. The symbols of basic logic gates and their truth tables. 

 
 

Moreover, two additional derived operators are very important in practice. The first is 
called exclusive-or (EX-OR) or parity (in Polish: operator ALBO, WYŁĄCZNE LUB). The 
second is defined as the negation NOT of EX-OR (EX-NOR) and is called logical 
biconditional, logical equality, or logical equivalence (in Polish: funkcja równoważności lub 
funkcja tożsamości). 

– exclusive disjunction, EX-OR operator: BABABAY ⋅+⋅=⊕= , 

– logical biconditional, EX-NOR operator: BABABAY ⋅+⋅=⊗= . 
 

 

 

 

A B Y 

0 0 1 
0 1 0 
1 0 0 
1 1 1 

 

 

 

A B Y 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
Fig. 2. The symbols of additional logic gates and their truth tables. 
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To design the logic circuits the following laws of Boolean algebra are commonly used: 
commutativity, associativity, distributivity, and De Morgan's laws. Note that distributivity of 
disjunction over conjunction and both De Morgan’s laws do not have their counterparts in 
ordinary algebra of real numbers. 
 

Property For conjunction For disjunction 
Commutativity ABBA ⋅=⋅  ABBA +=+  
Associativity CBACBA ⋅⋅=⋅⋅ )()(  CBACBA ++=++ )()(  

Distributivity CABACBA ⋅+⋅=+⋅ )(  )()( CABACBA +⋅+=⋅+  

De Morgan's laws 
KK ++=⋅⋅ BABA  KK ⋅⋅=++ BABA  

Basic identities 00 =⋅A  

AA =⋅1  

AAA =⋅  

0=⋅ AA  

11 =+A  
AA =+ 0  

AAA =+  

1=+ AA  
Additional identities AB)(AA =+⋅  

BABAA +=⋅+  

BBABA =+⋅+ )()(  

ABAA =⋅+  

BAB)A(A ⋅=+⋅  

BBABA =⋅+⋅  

 
Table 1. Principal identities and laws of Boolean algebra. 

 
Using De Morgan’s laws it can be proved that only NAND and NOR logic gates are 
universal. All other types of Boolean operators (i.e., AND, OR, NOT, EX-OR, and EX-NOR) 
can be implemented as a suitable network of just NAND or just NOR gates. Reduction of a 
set of logical functors used to implement any Boolean function has many advantages and is 
often used in practice. 
 

3.2. Minimization and synthesis of combinational logic circuits 
 

Suppose that analysis of a certain control problem led to the following truth table, which 
describes the response W of a system for all possible logic states of the four inputs A, B, C, 
and D. 

 

A B C D W  A B C D W 

0 0 0 0 1  1 0 0 0 0 
0 0 0 1 0  1 0 0 1 0 
0 0 1 0 0  1 0 1 0 1 
0 0 1 1 0  1 0 1 1 1 
0 1 0 0 1  1 1 0 0 0 
0 1 0 1 0  1 1 0 1 0 
0 1 1 0 1  1 1 1 0 1 
0 1 1 1 –  1 1 1 1 – 

 

Table 2. A logical function written in the form of a truth table. Dash (–) are used 

for cases in which the logic state of output does not matter. 

 
If one is given a truth table of a Boolean function, it is easy to write the function in a 

canonical sum form, i.e. as a sum of minterms, where each minterm is a logical product of all 
input variables in either literal or negated form and is related to one unique row, which has 
output W = 1 in the truth table 
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 DCBADCBADCBADCBADCBADCBAW                   +++++= . (1) 

Simplification of the function W = f(A, B, C, D) using only the principles of Boolean algebra 
may prove an arduous task and a final form will depend on the designer's intuition and luck. A 
much more effective approach employs the Karnaugh map, which taking advantage of human 
pattern-recognition. The Karnaugh map is a two-dimensional table of output states, where 
each grid box corresponds to one row in the truth table (see Fig. 3). The input states are given 
outside the table and are ordered according to the Gray code, in which any two successive 
values differ in exactly one bit. The size of the map reduces to 2 × 4 boxes for 3 input 
variables and to 2 × 2 boxes for 2 variables. Minimization of a function is realized by 
grouping neighboring “1s” into rectangular groups (Fig. 3.a), in which the number of grid 
boxes in the groups must be equal to a power of 2. Alternatively, the “0s” may be grouped 
(Fig. 3.b). The grid is toroidally connected, i.e. opposite edges are adjacent to each other. To 
obtain the simplest solution the minimal number of largest possible groups should be selected. 
All “1s” (or “0s”) must be involved in at least one group. Selected “–” fields may be encircled 
together with “1s” (or “0s”). 

 

  
 a) b) 

 
Fig. 3. The logical function given by Table 2 written in the form of the Karnaugh map. 

a) minimization by grouping “1s”, b) minimization by grouping “0s”. 

 
The minimized function corresponding to the table shown in Fig. 3.a will be constructed as a 
sum of logical products, where each product must give the result 1 for all fields of a suitable 
group of “1s” and “–”. For example, the encircling area that goes through the edges leads to 
the product DBA , where C is omitted here because it does not maintain the same state in the 
whole encircling area. The result for all groups is 

 ACDBADCAW ++=  . (2) 

When the “0s” are grouped in the Karnaugh table (see Fig. 3.b), we will create the minimized 
function as a product of sums, each of which gives the result 0 in one encircled area 

 ))(()( CBADACAW ++++= . (3) 

Let assume, that the function must be implemented employing only the NOT and 
NAND gates. Thus, we have to transform all logical sums occurring in Eqs. (2) and (3) 
according to De Morgan’s laws 

 KK XYYX =++ ,  KK YXYX =++  . (4) 

Now Eqs. (2) and (3) will take the following forms, respectively, 
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 )()()(  ACDBADCAW = , (5) 

 )()()( CBADACAW = . (6) 

Note, that all operations occurring in Eq. (5) can be implemented directly employing assumed 
available gates, while the outer logical product (AND) in Eq. (6) must be expressed as a 
negation (NOT) of negated product (NAND) 

 ( ) ( ) ( )CBADACAW = . (7) 

As seen in figures 4 and 5 a hardware implementation of the function given by Eq. (7) 
requires more NOT gates than in the case of Eq. (5), but smaller number of inputs of NAND 
gates in the circuit shown in Fig. 5 leads to a similar amount of work effort when building 
both systems. These solutions, however, are not equivalent in terms of signal propagation 
time from inputs to output. 
 

 
 

Fig. 4. Schematic of a system implementing the function (5). 

 
 

 
 

Fig. 5. Schematic of a system implementing the function (7). 
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4. Available equipment 
 

4.1. The block of logic state switches 
 

The block of logic state switches are composed of five switches, which allow to select 0 
or 1 logic state at the sockets below the switches. When more than five independent inputs 
must be driven, please use also the sockets on the bottom of the front panel, which has fixed 0 
or 1 state. Moreover, the block contains three generators of single square pulse. The 
generators are used only to investigate sequential logic circuits, which go beyond the scope of 
the present experiment. 
 

 
 

Fig. 6. The front panel of the block of logic state switches. 

 

4.2. The table of logic gates 
 

The table of logic gates contains 4 NOT gates, 8 two-input NAND gates, and 8 
three-input NAND gates (fig. 7a). All other functors must be implemented as a network of 
available NAND and NOT gates. Alternatively, a set of 12 two-input NAND gates and 8 
three-input NAND gates (Fig. 7b) may be available in the laboratory. The missing NOT gate 
may be implemented e.g. as two-input NAND gate with a jumper between the inputs. 
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Fig. 7a. The front panel of the table of NAND and NOT gates. 

 
 

   
 

Fig. 7b. The front panels of the set of two modules with NAND gates. 
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4.3. The block of logic probes 
 

The block of logic probes contains 10 independent channels (fig. 8). There are a one 
input socket for each channel with red and green LED lights, which indicate the high and low 
logic state, respectively. When the investigated state changes continuously the both lights may 
be visible. Oscillations should not appear in correct combinational circuits, so if it occurs, you 
should check the network of connections. When the input of logic probe is in the 
high-resistance state or the applied voltage does not correspond to any specific logic state, the 
both lights are switched off. If the input of logic probe is connected with the output of any 
logic gate or logic state switch, such a situation indicates a failure of the cable or device, or a 
lack of power supply. 
 

 
 

Fig. 8. The front panel of the block of logic probes. 

 

4.4. Power supply 
 

All experimental modules described above are powered by a single plug-in power 
supply unit +5 V DC with cables terminated with banana plugs. 

WARNING: Do not power experimental modules with the laboratory power supply 
SIGLENT SPD3303D, including its +5 V DC fixed voltage channel. Overvoltages occurring 
at the outputs of this power supply when switching on the power pose a threat to experimental 
modules. 
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5. Experimental procedure 
 

First, you need to prepare your own project of combinational logic circuit. Then, you 
can begin to connect the circuit according to the project using available logic gates. 

The response of your circuit will be investigated by logic probe for all combinations of 
input states. Next, the experimental truth table will be compared with the theoretical one. 
 

5.1. Verification of De Morgan’s law 
 
1. Use De Morgan’s law related to logical disjunction (see Table 1) to draw a diagram of the 

circuit that implements two-input OR gate using available NAND and NOT gates. 
2. Construct the circuit, wire the inputs to the switches of logic state, and wire the output to 

the logic probe tester. 
3. Connect the plug-in power supply to all experimental modules you are using. In order to 

do this connect the black plug of the power supply to the ground line (at the bottom of the 
module) in the right or leftmost module and the red plug of the power supply to the +5 V 
power line (at the top of the module). The remaining modules will be powered through 
connections of analogous lines in neighboring modules. 
WARNING: 

a) do not use any power supplies available in the laboratory other than plug-in 

power supplies with a fixed output voltage of +5 V, 

b) do not connect +5 V voltage output directly to the outputs of gates nor outputs in 

the block of logic state switches. 

Ignoring these recommendations threatens to damage the devices. 
4. After obtaining permission switch on the power supply and check out the status of the red 

LEDs on the +5 V line. The LEDs related to the 0 and 1 logic states should be off when 
the appropriate input of logic probe tester is not connected. 

5. Set up all possible combinations of input logic states and write down the truth table for the 
circuit. Compare your experimental truth table with the theoretical one shown in Fig. 1. In 
the case of any discrepancies check out the circuit again. If you can not resolve the 
problem consult with the laboratory staff. 

 

5.2. Design and implementation of combinational logic circuit 
 
1. Consult the supervisor in order to select some tasks to solve. Some examples of tasks are 

collected in the next chapter. 
2. Develop a theoretical truth table (see example show in Table 2). The cases when the state 

of output does not matter write as a dash. 
3. Try to simplify your Boolean function using the Karnaugh map method. Consider a 

grouping of “1s” (see example shown in Fig. 3.a) as well as grouping of “0s” (Fig. 3.b). 
4. Use the laws of Boolean algebra to transform simplified function. After transformation the 

function must be written employing only these elementary operators, which are directly 
implemented in available hardware (the table of NOT and two- and three-inputs NAND 

gates allow to use only A , BA ⋅ , and CBA ⋅⋅  operators). If more than one output is 
necessary in the circuit, find common expressions in the Boolean functions related to the 
individual outputs. Try to simplify the circuit by implementing the common expressions 
only ones. 
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5. Switch on the power supply. 
6. Construct the combinational circuit according to the functions derived in step 4. Do not 

assume, that not connected inputs of gates have any specific logic state. Use jumpers to 
connect redundant inputs to any other input of the same gate. Alternatively, wire 
redundant inputs to the sockets, which has fixed 0 or 1 logic state. The changes in 
connections may be made safely when the power is switched on. The devices are protected 
from wrong connections between some outputs of gates or outputs in the block of 
switches. 

7. Write down experimental truth table for all outputs of the circuit. 
8. Check out if the experimental truth tables is consistent with this developed in point 2. In 

the case of any discrepancies try to find their reasons. First, try to move plugs in sockets 
and look for any broken wire or jumper. Next, analyze again the transformations made in 
steps 3 and 4 and check out the connections made in point 6. Investigate again the circuit 
after correction and write down the new truth table. If the discrepancies between the 
assumptions and experimental results still exists, report the problem to the supervisor. 

9. Switch off the power supply and draw the schematic diagram of the circuit. 
10. Disconnect the circuit and clean up your work area. 
 

5.3. Examples of problems to solve by combinational logic circuit 
 
The number of multiplication marks in brackets describes the difficulty of the task. The 
assessment for the complete and correct report depend on the total number of marks received 
for the solved problems (the assessment principles are described at the end of Chapter 6). 
1. (*) Design and implement the circuit indicating divisibility of three-bits binary number by 

3. Let note whether zero was considered as divisible by 3 or not. 
2. (*) Design and implement the circuit working as a four-input NOR gate using only NOT 

and NAND gates with at most three inputs. 
3. (*) Design and implement the driver controlling the line consisting of three LEDs, which 

are turned on sequentially. Number of currently shining LEDs is given by the two-bits 
binary value at the input of controller. 

4. (**) Design and implement the driver, which allows to switch on and switch off the light 
in a large room using any single switch from among three switches mounted in three 
different places. The driver should change the state of its output after any change made on 
any single input, i.e. the driver should work as a three-bit even (or odd) parity generator. 
Tip: in case of a simpler system with only two switches the problem may be solved by a 
single EX-OR or EX-NOR gate shown in Fig. 2. 

5. (**) Design and implement two-bit comparator of two binary values BA and DC (where A, 
B, C, D means the individual bits). The circuit should maintain the state 1 on the output for 
DC ≥ BA and state 0 for DC < BA. 

6. (**) Design and implement the circuit indicating a failure of electric contact thermometer, 
which has four contacts A, B, C, D. When the temperature increases the contacts change 
its state from 0 to 1 in mentioned order. All non-sequential combinations, i.e. when any 
contact stay opened below the closed contact, should be interpreted as the failure of the 
thermometer. 
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7. (***) Design and implement the control system for a dryer 

equipped with two heaters G1 and G2 with a power 4 kW and 2 
kW, respectively. The heaters can be connected in different 
ways by electromagnetic switches w1, w2, and w3. The settings 
of switches shown in the diagram is related to the logical 0, 
while the position opposed consider as a logical 1. The 
temperature in a drying chamber is measured by an electric 
contact thermometer, which has four contacts A, B, C, D. When 
the temperature is increasing the contacts change its state from 
0 to 1 in mentioned order. Let ti denote the temperature of 
switching of the i-th contact. Mode of action of the control 
system will be as follows: 
t < tA – both heaters are connected in parallel, 
tA ≤ t < tB – only the heater G1 is switched on, 
tB ≤ t < tC – only the heater G2 is switched on, 
tC ≤ t < tD – both heaters are connected in series, 
tD ≤ t – both heaters are switched off. 

8.  (***) Design and implement the driver controlling the line consisting of four LEDs, which 
are turned on sequentially. Number of currently shining LEDs is given by the four-bit 
binary value at the input of controller. When this value is greater than 0100 (4 in decimal 
code) all LEDs should be lit up. 

9.  (****) Design and implement a 1-bit full adder. The circuit performs an addition operation 
on three binary digits Ai, Bi, and carry-in Ci-1. The latter input allows to take into account 
the carry-out of the previous adder. The adder produces a sum Si and carry-out signal Ci 
for the next adder operating on more significant bits. 

 

6. Report elaboration 
 
Report has to be composed of: 

1. Front page (by using a pattern). 
2. Description of experiment purpose. 
3. List of used instruments and devices (id number and type). In the case of the table of 

logic gates provide full specification of available gates (types of gates, number of inputs, 
number of available gates). 

4. Description of De Morgan’s law verification. 
5. Description of the problem, which should be solved by your combinational circuit. 
6. Theoretical truth table for each output. 
7. Minimization of logical function, e.g. using Karnaugh map method or laws of Boolean 

algebra. 
8. Transformation of obtained minimized functions to the form, which may be directly 

implemented using available gates. 
9. Schematic diagrams of designed combinational circuits. 
10. Experimental truth table. 
11. Discussion and conclusions. Compare the results obtained with your theoretical 

assumptions. In the case of any discrepancy, describe your attempts to remove them, 
found errors and finally obtained result. Have you found the Karnaugh map method 
helpful for finding non-trivial simplification of your circuit? 

 

w1

G1

4 kW

w2

G2

2 kW

w3

 

Circuit 
diagram 

for task 7 
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The report will be evaluated for the language, completeness, correctness, clarity of 
presentation of the results (in the form of tables, functions and circuit diagrams together with 
descriptions) and quality of discussion and conclusions. All of the components listed above 
will be evaluated in the report. Theoretical introduction is not required and is not included in 
the assessment. 

Moreover, the assessment for the complete and correct report depend on the total 
number of marks received for the solutions documented in the scratchpad and approved by the 
supervisor. Unless the supervisor has specified otherwise, the following table applies: 
 

The sum of marks for solved problems The highest score of the report 
on a scale of 0 ... 5 points 

   0 failed 
   1 2 pts 
   2 3 pts 
   3 4 pts 
≥ 4 5 pts 
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