BULLETIN OF PHYSICS AND APPLIED MATHEMATICS Vol. 1, No. 1 (2025)

MICHAE WASIAK!

AN ANALYSIS OF THE THEORY OF TRANSFER
LENGTH METHOD

I nstitute of Physics, Lodz University of Technology, ul. Wélczaniska 227/221, 63-005 £6d%, Poland

In this paper we present derivation of the equations describing the resistance
between the electrodes used in The Transfer Length Method, both for the linear
and circular configurations. For the circular configuration, we have obtained an
approximated formula which is more accurate than the most widely used formula.
Conditions allowing for verification if the approzimations can be applied are also
presented.
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1. INTRODUCTION

Since the 1960s the Transmission Line Method (TLM) has been a basic method for deremi-
nantion of the contact resistivity of metalic electrodes deposited on a semiconductor [1-4]. It
allows also for determination of the sheet resistance of the semiconductor material on which
the electrode is deposited. Usually, the measurement of the resistivity of the semiconduc-
tor is performed if the semiconductor layer is thin relative to the lateral dimensions of the
electrodes because in this case the theory and hence the interpretation of the experimental
data is much simpler than in a more general case [2].

TLM measurements are performed using a set of either rectangular electrodes (usually
called simply a TLM measurement), or using electrodes in form of concentric rings (circular
TLM or ¢TLM). In this paper, a detailed derivation of the formulas used for interpretation
of the experimental data and a discussion of the important approximations often used in
practical applications is presented.

The solutions for equations describing the current flow between the TLM electrodes are
distinctly different in the case of linear and cylindrical configurations. First, a simpler case
will be analysed.

2. LINEAR TLM

A linear TLM structure consists of a series of rectangular electrodes separated by a distance
which is different for each to adjacent electrodes. In Figure 1 a top view of a part of such a
structure is presented.

For each of the electrode pair, a current-voltage (I-V') curve is measured. Assuming
that this curve is linear, the electrical resistance R for this pair can be determined. This
resistance is a result of the resistance caused by the contact between the metal electrode and
the semiconductor it is deposited on, and by the resistance of the semiconductor itself. The
resistance of the metal can be neglected. In what follows, we will derive a formula for R.
We will use the following approximation (see Figure 1 for the definitions of the symbols):
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Figure 1. On the top: Top view of part of a linear TLM structure. On the bottom: a side

cross-section of an area between two neighbouring electrodes
Source: own work.

h

‘----)

7

I
a

e The thickness h of the semiconductor layer is very small, so that we can assume
that current flows uniformly in the vertical direction and hence we can neglect this
dimension in our calculations;

The current density does not depend on y. This can be true if the distances between
the electrodes are much smaller than their width, or if the TLM structure is fabricated
in such a way that the current cannot spread beyond the area determined by the
electrodes’ width;

The electrodes are semi-infinite in the x direction (i.e. in Figure 1 s = 00); the potential
of the left electrode if Vj, and 0 on the right electrode. Later, we will discuss the case
in which s < oo.

The density of the vertical current which flows from the electrode into the semiconductor
(or the other way round) depends on = and can be expressed as:

Jp(@) = s (Ve = u(2)) (1)

where u(z) is the local electric potential; V. is the electrode potential (equal to either Vp
or 0); and ¢, is the surface conductivity of the electrode-semiconductor interface (the unit
of ¢, is S/m?). The above formula is valid if = refers to a point covered by the electrode,
otherwise j, = 0. The horizontal current I; and its density j; for any x are given by the
following formula:

Ji(x) = —osu/ () 2
I,(z) = hwji(z) (3)



M. Wasiak BPAM Vol. 1, No. 1 (2025)

where o, is the electrical conductivity of the semiconductor material. On the other hand,
the horizontal current in the area below an electrode (i.e. for |z| > a) is related to j, in the
following manner:

w/x Jp(§) d¢ for z < —a
Il(l') = - " (4)
Il(a)+w/ Jp(§)d¢ forz>a

We differentiate both sides of the above equation with respect to z, substitute (3) and we
get the following equation (valid both for > a and z < —a):

hwji(z) = wjp(x) (5)

By reducing w and substituting (1) and (2) we get:

() = 7u(z) +7°Ve =0 (6)
where c
2 C

7= o (M

We could assume that the conductivities of the left and the right electrode are different (gcm

and % respectively). Then we would have coefficients v for x < —a and 2 for z > a. The
general solutions in these two areas are as follows:

w1 () = Cy exp(m1z) + C1 exp(—m1z) + Vo forz < —a (8)
ug(x) = Cy exp(ya) + Cy exp(—7a) forx >a 9)

For © — —oo potential u has to tend to Vj, while for  — oo to 0 (which are the potential of
the respective electrodes). Otherwise, an infinite current would flow through the structure.
It means that both coefficients C' must vanish and hence:

ui(z) = Cyexp(niz) + Vo forz < —a (10)
ug(z) = Cy exp(—722) for z > a (11)

Between the electrodes (for |z| < a), current I;(z) and hence its density j;(z) must
be constant and equal, respectively, to I (which is the total current flowing between the
electrodes) and j. Using Eq. (2) we conclude that in this area «”(z) = 0 which means that
u is a linear function:

u(z) = fUi x+b for|z|<a (12)

s

Continuity of j;(x) end Egs. (2), (10) and (11) give us the following relation:

—Crosm exp(—m1a) = j = Ca0472 exp(—2a) (13)
and hence: o
1 V2
“1__ 2 — — 14
Cs " exp ( (72 ’Yl)a) ( )
Continuity of u(z) at + = —a and = = a provides further two equations which can be used

to determine parameters Cy, Cs, b, j. The parameter we really need is j, since it gives us the
total current I. After some elementary calculations we get:

Vo 1 -1 1
- (2 15
j Us(a""h + 7% ) (15)
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Let L = 2a denote the distance between the electrodes. The resistance between them is
equal to Vp/I, so after substituting (7) we obtain:

L 1 1 1 L N
R(L) = + ( S ) = Ve (16)
hwos — wvhos \\/Se1 /Sea hwos  w\/ho,
where
2./0c = ! + ! (17)
N \/Se1 \/Se2

Since Eq. (15) v; Land Yo L are simply added, in the linear TLM experiment it is impossible
to determine separately the resistivities of the individual electrodes. Instead, we can use a
single 7. However, in principle these resistivities should be the same, so this is not considered
a problem.

In the TLM experiment R(L) is measured for several values of L. This relation should
be linear, as predicted by Eq. (16), and the experimental data provide parameters « and Ry
in the following relation:

R(L) =aL + Ry (18)

Combining the above experimental parameters and the theoretical relation we obtain two
relations for the semiconductor electrical conductivity (in the horizontal direction) and the
contact resistivity:

1
— 3 1
75 = hwa (192)
1 45 5 wR%
== = 1
0c 4R0w hos 1o (19b)

The simple and practical formula (19) was derived under the assumption that the elec-
trodes can be considered semi-infinite along x direction. Now we will provide a criterion to
verify if this assumption is valid in individual cases.

2.1. Verification if the semi-infinite electrodes assumption is valid

The relations derived so far assume that the current flowing from an electrode to the semi-
conductor uses the whole infinite length of the electrode, while in fact the available length is
equal to s. Let us calculate the current which flows through the part of an electrode which
in fact does not exist. Integrating formula (1) with the proper limits and using Eq. (13) and
(2) we obtain the following formulas for the total current I and the current injected to the
actually existing part of the second electrode (equal to the current injected by the actually
existing part of the first electrode):

I /a“ () = 01:’52 (20)
a-+s wi
L= [ suta) = 250 = exp(=9) (21)

If the difference between those two currents is negligibly small (relative to the total current),
the simplification we used can be considered valid. This gives the following criterion which
can be used for such a validation:

2
W) — exp (_?) <1 (22)

What if one cannot apply the considered simplification?

exp(—vs) K 1 <= exp (—
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2.2. Solution for finite electrodes

The problem with finite electrodes can be solved. The differential equations derived above
are still valid. What is different is the boundary conditions. Instead of

i i(z) =0 =

now we have to use
lim i(x) =0 24
z—+(a+s) ]l( ) ( )

In this case, we will use a more convenient form of the general solution (6)

uy(z) = Aj cosh (vi(z — 21)) + Ay sinh (— 1 (z — 21)) + Vo for z < —a (25)
us(z) = Ay cosh (v2(z — x2)) + Agsinh ( — y2(x — 22)) forz >a (26)

where 1 = —a — s and 29 = a+ s are the outer boundaries of the electrodes. Then,
using (24) one can see that Ay = Ay = 0. The properties of the hiperbolic functions allow
us to write (13) in the following way:

—Aj0s71sinh(y18) = j = As0s7y2 sinh(yas) (27)

Relation (12) remains true and combining it with the above formula we obtain a more general
version of Eq. (15):

\% 1
70 = (2a +~; " coth(y18) + 75 ' coth(72s)) (28)

Because coth(z) —— 1, under condition (22) the above formula reduces to the form
€T—r0o0

presented in Eq. (15).

The exact solution does not change the formula for o, however g, is given in an implicit
form. The non-simplified version of relations (19) can be expressed in the following form,
assuming that v = v = 7:

1
— 2
o o (29a)
NP war
Ry = 20th(ys) _ 2\/% coth (S —) (29b)
hwao sy w Qc

In the analysis of linear TLM presented above, we always assumed that the current
flow is bounded to the area of the width equal to the electrodes’ width. This is a sound
assumption only if the distance between the electrodes is much smaller than the electrode
width. However, if the conductivity of the semiconductor material is high, the resistance
between the electrodes can be vary small relative to the contact resistance. This can severely
deteriorate the accuracy of the determination of the semiconductor conductivity. In such a
case, a cTLM measurement may be a better choice.

3. CIRCULAR TLM
A single ¢TLM electrode pair has a form of two concentric rings, where the inner ring

is usually a full disk, as shown in Figure 2. In a ¢TLM experiment the resitivities for
several such pairs, with different dimensions, are measured. In this section, we will derive
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a theoretical formula for the resistivity of such a pair. In our derivation we will use
polar co-ordinates. We will also use the first of the three approximations used in section 2.

@ @
Figure 2. A top view of two posible configurations of an electrode pair

used in the ¢TLM experiment
Source: own work.

The density of the (horizontal) current flowing between the electrodes through the semi-
conductor has only the radial component j;, which is independent from the angle, because
of the rotational symmetry of the system. Similarly, the electrical potential v depends only
on the radial co-ordinate r. In polar co-ordinates, the analogues to formulas (1) and (2)
have the following form:

Jp(r) = se(Ve —u(r)) (30a)
Gilr) = —osu'(r) (30b)

where the symbols have the same meaning as in section 2. We will consider a circular sector
with its central angle ¢. For ¢ = 27 we will get the whole plane. The formula that describes
the relation between the current flowing through this sector and its density looks as follows:

Ii(r) = hreji(r) (31)

In the area beneath the electrodes we additionally have the following relations:

Lp/ Ep(§) d€ for rg <r <ry

Il(r) 3
Ii(ra) + gp/ Ejp(€)dE forrg <r <rg

(32)

By differentiating formulas (31) and (32), substituting Eq. (30) and (7) we obtain the fol-
lowing equation (valid below the electrodes):

2 (r) + ru/ (r) — ¥ (u(r) = V) = 0 (33)

The general solution for this equation has the following form
u(r) = Brly(yr) + Bk Ko(yr) + Ve (34)
where I i Ky are the modified Bessel functions. The equation for the potential between the

electrodes is much simpler: , .
u'(r)+ru’(r)=0 (35)
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Its solution, for ¢ = 27 can be expressed using the total current I in the following way:

(1) = ——L 10 (f) (36)

a 2whog P

where p is a parameter whose value we are yet to determine.

In what follows we will simplify our considerations assuming that 7o = 0 (which is how
the inner electrode is usually fabricated) and that r3 — co. The latter condition is very
similar to the third approximation used in section 2. Then, using the following properties
of the Bessel function:

lim Ky(§) = lim Ip(§) = o0 (37)
£—=0 £—o0
Jim To(€) = Jim Ko(§) =0 (38)
we obtain
ui(r) = Bilo(nir) + V4 (39a)
ug(r) = BaKo(var) + V2 (39b)

where wuq, ug are the electrical potentials in the semiconductor below, respectively, the inner
and the outer electrode, while Vi, V5 are the respective electrode potentials. Continuity of
the current at r; and ro provides the following equations:

—hOSBl’YlQ?TTlI{)('YlTl) =] = —}LO’SBQ’YQZTFTQK()(’YQT‘Q) (40)

Using the following properties of the modified Bessel function [5]:

1
I, = 5 In—1 4 Int1) (41a)
1
K;L = _i(anl + Kn+1) (41b)
171 = Il (41C)
K 1=K (41d)
we obtain the following formula:

—osBim2rrili(nr) = I = 03Byy22mr2 K1 (y2r2) (42)

The resistance between the electrodes (Vi3 — V2)/I can be expressed, using Eqs. (36), (39)

and (40) in the following way:
(ln (E) 41 I?(T‘Wl) _ 1 K?(T‘ﬂz)) (43)
ri)  mm Lh(rm) e Kg(rave)

R(ri,m2) = 2rho

or, using Eq. (41):
1 7’2) 1 Io(rim) 1 Ko(rﬂz))
R(ry,rg) = ——(In(—= |+ — ——F—F 4+ — ———=£ 44
(ri,r2) 27”“’5( (7’1 rim Li(riv) o reve Ki(reye) (44)

Neither of the two relations is very convenient. Let us try to get rid of the modified
Bessel functions using an approximation which is valid if |z| is sufficiently large [6]:

x

(@)~ —— (45)
Ko(z) ~ /%eﬂ” (46)
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It allows us to find a convenient estimation of the Bessel function to their derivatives:

Io(z) = 2z
Ih(x) ~ 2 -1 (47)

In the literature, often the above two ratios is approximated simply by 1 [7,8]. Below we
present three formulas for the resistance, starting from the most accurate and ending on the
least accurate of them:

1 7"2) 1 Io(rim) 1 Ko(rﬂz))
R(r1,mo) = In{—=)+ —_— s —— 49
(ri;r2) 2mwhos ( (7'1 rim Li(rim)  reye Ki(raye) (49)
1 T 2 2
~ In{— 50
277'}10'5 (n(T1>+2T17171+2T2’72+1> ( )
1 ro 1 1
S 1 — _t — 51
2mho (n (7‘1) * 17 * T2“/2) o1

Unlike in the linear TLM case, in the above formulas the contributions from the individual
electrodes (described by v, and 72) is not the same. If, hypothetically, the electrode resis-
tivity depended on the direction of the current flow (but otherwise were perfectly linear), a
measurement of the IV curve for a ¢cTLM structure, would show a difference in slope between
the negative and positive current side. If this in not the case, we can say that vy = vo = 7,
and the above formulas can be written in the following form:

1 T2 1 IQ(Tl’y) 1 Ko(TQ’y)
) = n(=2)+— — —ovzp 2
Bir,r) 2mhos <n (T1> " r1y I1(r17) * r2y Ki(ra7) (52)
1 T 2 2
= In{—=
2who, <n (7'1> + 2ry — 1 + 2roy + 1) (53)

Q

1 1/1 1
n(2)+=(=+= (54)
2whog 1 y\r1 T2

3.1. Validity of the Bessel functions approximations

Let us analyze when the approximations considered above are valid. The exact solution
Eq. (49) (however assuming that the outer ring is semi-infinite) contains terms in the form
B(z)/B’(xz) where B is a modified Bessel function: either Iy or Ky. In the approxima-
tion (50) and (51) we used the following sequence of simplifications:

(x) _ Io(z) N

Ij(x) Ii(z) 22-1 1 (55)
Ko(z) Ko(z) = 2@

K@) Ki(x) 2w+l (56)
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The accuracy for both approximations improves with || — co. However, we do not know
yet when z is sufficiently large. Now, we will try to answer this question. Let us denote:

2
1.8
1.6
1.4
1.2

1
0.8
0.6

T

o)~ 15
ri(z) =

ri(z) =

Functions r and 7 are simply the relative error of approximation g and § respectively. Figure 3
presents a comparison of the approximations used in this paper. If we assume that an error
below 1% is acceptable, we can see that approximation ¢, and hence formula (50) is valid if
~r1 > 4.5, while formula (51) should not be used be used unless yr; > 50. Since formula (50)
is only slightly more complicated than formula (51), there is probably no reason to use the
latter at all for fitting to experimental data. However, it seems that Eq. (50) does not appear
in the literature and only Eqs. (49) and (51) are reported.

_ a(x)
Qr(z)

gk (z)
Qi ()

Figure 3. Left: Comparison of the considered approximations of the ratios of the Bessel
functions; Right: The relative errors of the approximations
Source: own work.

The above estimations are important not only to validate if the formula used for deter-

mination of parameters vy and oy was correct. If Eq. (50) is to be used, then one has to
accept that for the radii of the outer rings greater than ~ 1.4ry the combined resistance
of both electrodes is less than 10% of the total resistance. This greatly (and negatively)
impacts the accuracy of determination of the contact resistance in such an experiment.
Of course, whether or not the contact resistance can be reliably determined in such an ex-
periment depends on the system geometry and the material parameters. If yro > 50, the
cTLM configuration itself is not ideal to determine the contact resistance. On the other
hand, when the material conductivity is high, that it is hard to measure in the linear TLM
configuration, cTLM can be a suitable method. Whatever the situation, since Eq. (51) com-
pared with Eq. (50) does not seem to provide any significant simplification, there is probably
no reason to use Eq. (51).

qr(x) =
qx ()

7:[(33)

relative error [%)]

29

:23:—1-1

rK(x) =

100

—_
=]

[y

o
=

2x — 1
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4. SUMMARY

No we will summarize the paper presenting the procedure of experimental data analysis. We
assume that a set of I-V curves have been measured—one curve for each pair of electrodes,
and provided that they are linear, for each of them the resistance was determined. If the
I-V curves are not linear, then the electrode deposition was faulty, and the TLM theory
presented here cannot be applied. If we want to determine o we also need to know the
thickness of the semiconductor layer.

4.1. Linear TLM

In the case of linear TLM, the experimental data give us a relation R(L), where R is the
resistance between electrodes separated by a distance L. A linear function f(L) = oL + Ry
is fitted to the experimental data. Then, the condition given in Eq. (22) should be verified.
If this condition is fulfilled, formulas (19) can be used to determine the investigated material
parameters. If not, formulas (29) should be used, however in order to find g, a numerical
root-finding will be necessary.

4.2. Circular TLM

When ¢TLM is used, we measure a function R(r1,72). Often, 71 is identical in all the
measured electrode pairs, and the we can assume that we have a function R(r2). Then we
fit relation (53) to the experimental data, obtaining the values for o, and . If r1y > 4.5,
formula (53) can be considered valid. If not, we have to perform least-square fitting again,
using this time Eq. (52). Using Eq. (54) should be avoided.
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