
Exercise 112

Determination of Earth's gravity using

Kater's pendulum

March 12, 2009

The aim of this experiment is to determine the Earth gravitational acceleration

using Kater's pendulum.

1 Theoretical perquisites

1. Gravity. Gravitational acceleration.

2. Rigid body dynamics.

3. Harmonic motion.

4. Physical pendulum. Derivation of oscillation period of physical pendulum for small oscil-

lations.

2 Equipment

1. Kater's pendulum.

2. Stopwatch.

3. Calliper for measuring the distance between the suspension edges.

3 Measurement method

One method of determining gravitational acceleration is the use of Kater's pendulum1, which is a

special case of a physical pendulum. In case of small oscillation, the motion of such a pendulum

can be described by the following equation

d2ϕ

dt2 = −mgd
I

ϕ = −ω2ϕ. (1)

where m is the pendulum mass, d is the distance between the suspension point and the centre

of mass S, I is the rigid-body moment of inertia, measured with respect to the suspension point.

The period of the oscillation is

T =
2π
ω

= 2π

√
I

mgd
. (2)

1It was designed and built by British physicist Captain Henry Kater in 1817. For about a century it remained

the standard method for measuring local gravitational acceleration during geographical surveys.
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Figure 1: Physical pendulum with two suspension points.

Gravitational acceleration can be determined directly from the above relation. However, this

would not be su�ciently exact (why? ). Much better approach is determination of pendulum's

reduced length. The pendulum's reduced length lr is the length of a mathematical pendulum

whose period of oscillations is equal to the period of the given physical pendulum, i. e.

T = 2π

√
I

mgd
= 2π

√
lr
g
, (3)

what is a direct consequence of Eq. 2 and well known expression for the period of mathematical

pendulum. The above gives

lr =
I

md
. (4)

It can be shown that each physical pendulum has two suspension points giving the same period

of oscillations and the distance between them is equal to the reduced length of the pendulum.

Consider a physical pendulum (Fig. 1) suspended in point O1, Its period is equal to

T1 = 2π

√
I1
mga

. (5)

Using Steiner's theorem the above equation can be written as

T1 = 2π

√
IS +ma2

mga
, (6)

where IS is the moment of inertia with respect to the axis parallel to the axis at O1 and going

through the centre of the mass S. Let the axis O2 be parallel to O1 and located at the line O1S.

The period of oscillations on this axis is

T2 = 2π

√
IS +mb2

mgb
, (7)

where a and b are depicted in Fig. 1. Assume that periods T1 and T2 are equal. This is possible

only if
IS +ma2

mga
=
IS +mb2

mgb
, (8)

which�after some algebra�gives

(b− a) (IS −mab) = 0. (9)
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Figure 2: Symmetrical (top) and asymmetrical (bottom) reversible pendulum.

Eq. 9 means that the condition T1 = T2 can be ful�lled in one of the two cases: (I) when a = b,
(II) if axis O2 is chosen in such a point that

IS = mab. (10)

Situation I corresponds to the equal periods of identical pendulum, which is a trivial and non-

interesting case. For case II, Eqs. (6), (7), and (10) give

T1 = T2 = 2π

√
mab+mb2

mgb
= 2π

√
a+ b

g
. (11)

This compared with Eq. (3) shows that lr = a+ b. Then

T1 = T2 = 2π

√
lr
g
. (12)

We have shown that the distance between suspension axes�equal to a + b�is the reduced

length of the physical pendulum. This suggest the precise method of determination gravitational

acceleration, without the need to estimate Is, m, nor location of the centre of the mass. As

�nding the location of the axes O1 and O2 can be a challenge, the pendulum has additional

weight attached, which can be used to alter location of the centre of the its mass S and its

moment of inertia Is. It is use to adjust these properties to ful�l the condition T1 = T2.

Fig. 2 shows a construction of such a pendulum. It consists of a metal rod with two knife edges

for suspending and two weights, one of which is movable. By measuring oscillation periods of

the pendulum suspended at both knife edges one can adjust the position of the weight R to ful�l

the condition T1 = T2. However, in case of symmetrical pendulum, it is very hard to estimate

whether the equality of periods means the trivial situation I (i. e. a = b) or the desired situation

II. The solution to this issue is use of asymmetric pendulum which has its centre of mass very

close to one of the axes (e. g. O2). In such a case the undesired case of a = b can be avoided.

By adjusting the position of movable mass R it is possible to �nd the equal periods, corre-

sponding to Eq. (10). As lr = a+ b, Eq. (10) can be expressed as

IS = ma (lr − a) , (13)

where a is an adjusted parameter, which changes the value of IS . Because Eq. (13) is a quadratic
equation, one can expect to have two positions for which T1 = T2. In such a case gravitational

acceleration can be estimated as

g =
4π2lr
T 2

, (14)

where T = T1 = T2 and lr is the distance between the knife edges.
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Figure 3: Illustration of measurements of distance x between movable mass R and axisO1.

4 Measurements

In order to determine gravitational acceleration using Kater's pendulum, you have to adjust the

position of mass R. You begin near the axis O1 and measure oscillation periods for pendulum

suspended on both axes. Next you shift the mass by 1 cm or 2 cm (according to the markings)

and repeat the measurements. You have to note the position x of the moving mass as the distance
between the centre of the mass R and the mark at knife edge O1 (see Fig. 3). The thickness of

the mass is 2 cm and of the nut 1 cm.

In the experiment you have to note periods T1 and T2 for each of the marked positions x of the
movable weight. Considering the fact, that a precision of time measurements with a stopwatch

is no better than 0.2 s�0.5 s, you should �nd the way to measure the oscillation period with

precision of at least 0.02 s. The mass R can be shifted only after releasing the nut. During the

measurements the nut must be locked. Take care that oscillations amplitude is not too high

(max. 5◦), otherwise the oscillations are not harmonic. On the other hand, the oscillations

cannot be too small due to the�very small although present�damping and friction.

Your task is to estimate such position of mass R, for which both periods are equal. They can

be found by making plots of the measured periods T as a function of the movable mass position

x for both axes (see Fig. 4). The desired position is the one, at which the functions T1(x) and
T2(x) coincide. Usually it lies somewhere between the marked measurement points. In such a

case the proper period T = T1 = T2 can be estimated with one of the two methods:

1. The experimental points closest to the cross-sections can be linearly interpolated and the

desired T computed as vertical co-ordinate of the crossing of two straight lines.

2. All the experimental points for each suspension points separately can be approximated by

third- of fourth-order polynomial with least squares method. Next the crossing points can

be found numerically as roots of the function f(x) = P1(x)−P2(x), where P1(x) and P2(x)
are approximated polynomials.

As already stated, there are two points A and B at which T1 = T2. In consequence the periods

in these points, TA and TB, respectively should be equal to each other (which one do you think

is more precise? ) and correspond to the Earth gravitational acceleration g through Eq. 14. This

equation allows to compute g with an absolute error

∆g = g

(
∆lr
lr

+
2∆T
T

)
, (15)
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Figure 4: Plot of relation T (x) for the pendulum suspended from both axes. Horizontal co-

ordinates of the cross-section points ful�l the conditions: TA = T1(xA) = T2(xA),
TB = T1(xB) = T2(xB).

where ∆lr and ∆T are errors of estimation of lr and T , respectively.
During the analysis of your results and preparation of the report pay a special attention to

the possible sources of errors. What e�ects can play some role and have not been considered?

Compare the determined value of g with tabular data and conclude on the accuracy and precision
of the experimental method.
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