Temat 3. Fizyczne podstawy działania laserów

3.1. Współczynniki Einsteina [1,5]

Rozważmy układ o dwóch poziomach energetycznych E_1 i E_2 , które są obsadzone przez odpowiednio N_1 i N_2 atomów lub cząstek. Możliwe są trzy procesy promieniste zachodzące z częstotliwościami opisanymi przez **współczynniki Einsteina** A_{12} , B_{12} i B_{21} (rys. 3.1).

Rys. 3.1. Trzy procesy promieniste pomiędzy dwoma poziomami energetycznymi.

Szybkość zmian obsadzenia poziomów

$$\frac{dN_1}{dt} = -B_{12}\rho^e N_1 + A_{21}N_2 + B_{21}\rho^e N_2 = -\frac{dN_2}{dt}.$$
(3.1)

<u>W stanie ustalonym</u> $dN_1/dt = 0$ otrzymujemy widmową gęstość energii fotonów [J/(m³·Hz)]

$$\rho^{\rm e}(\nu,T) = \frac{A_{21}}{B_{12}(N_1/N_2) - B_{21}} \,. \tag{3.2}$$

Obsadzenia poziomów o degeneracjach g_1 i g_2 w stanie ustalonym dane są rozkładem Boltzmanna

$$N_1/N_2 = (g_1/g_2) \exp[(E_2 - E_1)/kT] = (g_1/g_2) \exp(h\nu/kT) , \qquad (3.3)$$

T3-1

c.d. współczynniki Einsteina

(3.3)
$$N_1/N_2 = (g_1/g_2) \exp(h\nu/kT)$$
 (3.2)

W przypadku granicznym $T \to \infty$ musi zachodzić $\rho^e(\nu,T) \to \infty$, zatem mianownik w (3.2) musi dążyć do zera i otrzymujemy

$$g_2 B_{21} = g_1 B_{12} , (3.4)$$

$$\rho^{\rm e}(\nu,T) = \frac{A_{21}}{B_{21}} \frac{1}{\exp(h\nu/kT) - 1} \,. \tag{3.5}$$

Rozważając kolejny przypadek graniczny $T \rightarrow 0$ (czyli $\lambda \rightarrow \infty$) możemy zastosować przybliżenie exp(x) – 1 = x, otrzymując

Prawo Rayleigha-Jeansa potwierdzone doświadczalnie dla małych częstotliwości

$$\rho^{e}(\nu,T) = \frac{A_{21}}{B_{21}} \frac{kT}{h\nu} \quad \text{dla} \quad h\nu \ll kT. \quad (3.6) \qquad \rho^{e}(\nu,T) = \frac{8\pi\nu^{2}kT}{c^{3}}. \quad (3.7)$$

$$\frac{A_{21}}{B_{21}} = \frac{8\pi h\nu^{3}}{c^{3}}. \quad (3.8)$$

Związki (3.4) i (3.8) noszą nazwę relacji Einsteina.

Podstawienie wzoru (3.8) do (3.5) prowadzi do rozkładu Plancka dla widmowej gęstości energii

$$\rho^{\rm e}(\nu,T) = \frac{8\pi h\nu^3}{c^3} \frac{1}{\exp(h\nu/kT) - 1} \,. \tag{3.9}$$

3.2. Szerokość linii spektralnej

3.2.1. Funkcja kształtu linii

Dotychczas zakładaliśmy dokładnie określoną energię przejścia hv. W rzeczywistości atomowe linie spektralne charakteryzują się pewną szerokością, a do ich opisu wprowadza się *funkcję kształtu linii g*(v, v_0). Funkcja ta jest unormowana

$$\int_{0}^{\infty} g(v, v_0) \, dv = 1. \tag{3.10}$$

Prawdopodobieństwo absorpcji promieniowana o rozkładzie $\rho^{e}(v)$ z uwzględnieniem skończonych szerokości linii absorpcyjnej

$$W_{12} = B_{12} \int_{0}^{\infty} \rho^{e}(\nu) g(\nu, \nu_{0}) \, d\nu.$$
 (3.11)

Linie emitowane przez laser są zazwyczaj znacznie węższe niż naturalne linie absorpcji i emisji (rys. 3.2) i równanie (3.11) można zastąpić przez

$$W_{12} = B_{12}g(\nu_l, \nu_0)\rho_{\nu l}^{\rm e}, \qquad (3.12)$$

jednostki $\rho_{\nu l}^{e}$ [Jm⁻³], $\rho^{e}(\nu)$ [Jm⁻³s].

Rys. 3.2. Funkcja kształtu linii ośrodka oddziaływującego z promieniowaniem laserowym [1].

3.2.2. Poszerzenie jednorodne

Poszerzenie jednorodne linii emisyjnej wynika z procesów związanych z każdą indywidualną cząsteczką emitującą w takich samych warunkach. Każda spoczywająca i izolowana cząsteczka wykazuje tzw. *naturalne poszerzenie*, która wynika z zasady nieoznaczoności Heisenberga

$$\Delta E \,\Delta t \ge \hbar/2,\tag{3.13}$$

gdzie Δt może być równe co najwyżej czasowi przebywania cząsteczki w danym stanie wzbudzonym. Jak widać z równania (3.1) czas ten dla stanu E_2 jest odwrotnością A_{21}

$$t_{\max} \approx \frac{1}{A_{21}} \,. \tag{3.14}$$

Szerokość pasma częstotliwości wynikająca z powyższych wzorów oraz E = hv wynosi

$$\Delta v_{\min} \approx \frac{1}{4\pi t_{\max}} . \tag{3.15}$$

Czasy życia elektronowych stanów wzbudzonych są typowo rzędu $10^{-4}...10^{-9}$ s, co oznacza wartości Δv_{min} rzędu $10^3...10^8$ Hz.

c.d. poszerzenie jednorodne

Jeżeli cząsteczka oddziałuje z otoczeniem, to całkowita szerokość linii wynosi

$$\Delta \nu = \frac{1}{4\pi} \left(\tau_{fl}^{-1} + \tau_{nr}^{-1} \right) = \Delta \nu_{fl} + \Delta \nu_{nr} , \qquad (3.16)$$

gdzie: τ_{fl}^{-1} jest częstotliwością przejść promienistych, τ_{nr}^{-1} częstotliwością przejść bezpromienistych.

Oddziaływanie cząsteczki z intensywnym promieniowaniem skraca czas życia stanu wzbudzonego i jednorodna szerokość linii zwiększa się. Efekt ten nazywany jest *poszerzeniem natężeniowym*.

Poważny wpływ na szerokość linii mają także zderzenia. Efekt ten nosi nazwę *poszerzenia zderzeniowego* lub *ciśnieniowego*.

3.2.3. Poszerzenie niejednorodne

Poszerzenie niejednorodne wynika ze zróżnicowanych warunków emisji dla poszczególnych cząstek, co prowadzi do różnych częstotliwości rezonansowych lub różnych kształtów linii emisyjnych dla tego samego przejścia w poszczególnych cząstkach. Przykładami poszerzenia niejednorodnego są:

Przykładami poszerzenia niejednorodnego są:

1. **Poszerzenie dopplerowskie**. Efekt Dopplera występuje podczas wzajemnego ruchu źródła światła i obserwatora. Częstotliwość odbieranego promieniowania rośnie gdy obserwator i źródło zbliżają się do siebie oraz maleje gdy oddalają się. Połówkowa szerokość dopplerowskiego konturu linii wyraża się wzorem

$$\Delta \nu_{\rm D} = \frac{2\nu_0}{c} \sqrt{\frac{2RT\ln 2}{M}} \approx 7,16 \cdot 10^{-7} \nu_0 \sqrt{\frac{T}{M}} , \qquad (3.17)$$

gdzie *T* jest temperaturą w [K], zaś *M* masą cząsteczkową. Poszerzenie Δv_D może przyjmować znaczne wartości do rzędu 10⁹ Hz.

2. **Poszerzenie izotopowe**. W przyrodzie dany pierwiastek może występować w postaci mieszaniny różnych izotopów. Izotopy charakteryzują się przesunięciem poziomów energetycznych.

3.3. Układ dwupoziomowy

Rozważmy ponownie układ dwupoziomowy.

Założenie: rozważając akcję laserową można pominąć emisję spontaniczną, bo:

- charakteryzuje się losowym rozkładem kierunków emitowanych fotonów,
- przy dużych gęstościach promieniowania zdecydowanie dominuje emisja wymuszona.

Ze wzorów (3.1) i (3.4) otrzymujemy równanie kinetyczne

Rys. 3.1. Trzy procesy promieniste pomiędzy dwoma poziomami energetycznymi.

$$\frac{dN_2}{dt} = -B_{21} \left(N_2 - \frac{g_2}{g_1} N_1 \right) \rho^e.$$
(3.18)

Stąd, uwzględniając kształt linii ośrodka przy wąskiej linii światła lasera jak na rys. 3.2

$$\frac{dN_2}{dt} = -B_{21}g(\nu_l,\nu_0)\Delta N\rho_{\nu l}^{\rm e} = -\sigma\Delta N\Phi, \qquad (3.19)$$

gdzie

przekrój czynny na emisje wymuszoną [m²]:

$$\sigma(v_l, v_0) = \frac{n}{c} h v B_{21} g(v_l, v_0) , \qquad (3.20)$$

$$\Phi = \frac{c}{n} \frac{\rho_{\nu l}^{\rm e}}{h\nu} , \qquad (3.21)$$

różnica obsadzeń poziomów [1/m³]:

$$\Delta N = N_2 - \frac{g_2}{g_1} N_1. \tag{3.22}$$

c.d. układ dwupoziomowy

$$\frac{dN_2}{dt} = -\sigma\Delta N\Phi,\tag{3.19}$$

Ośrodek jest wzmacniaczem światła gdy $dN_2/dt < 0$ i ze wzoru (3.19) wynika, że

$$\Delta N = N_2 - \frac{g_2}{g_1} N_1 > 0 . ag{3.23}$$

Stan (powyższy) nosi nazwę *inwersji obsadzeń*, tzn. obsadzenie górnego poziomu jest większe niż dolnego. Zgodnie z rozkładem Boltzmanna (3.3)

$$N_1/N_2 = (g_1/g_2) \exp[(E_2 - E_1)/kT] = (g_1/g_2) \exp(h\nu/kT) , \qquad (3.3)$$

inwersja obsadzeń odpowiada T < 0, co jest niemożliwe do uzyskania w równowadze termodynamicznej.

Wniosek: w układzie dwupoziomowym nie można zbudować lasera o pracy ciągłej.

3.4. Układ trójpoziomowy [1,2] Przy równej degeneracji stanów $g_1 = g_2$:

Zakładamy:

1). Czas życia stanu E_3 jest bardzo krótki i zachodzi bardzo wydajnie przejście spontaniczne bezpromieniste $3 \rightarrow 2$

$$\kappa_{32} \gg \kappa_{31}, \qquad (3.24)$$

gdzie κ_{ij} jest prawd. przejścia na jednostkę czasu, co prowadzi do $N_3 \approx 0$.

2). Równa degeneracja stanów.

Rys. 3.3. Trójpoziomowy model ośrodka czynnego. Φ jest gęstością promieniowania dla przejść 2 \leftrightarrow 1.

$$\frac{dN_1}{dt} = -PN_1 + \kappa_{21}N_2 + \sigma\Phi(N_2 - N_1), \quad (3.25)$$
$$N_1 + N_2 = N. \quad (3.26)$$

Stąd, w stanie stacjonarnych

$$N_{1} = \frac{\kappa_{21} + \sigma\Phi}{P + \kappa_{21} + 2\sigma\Phi} N,$$
 (3.27)

$$N_2 = \frac{P + \sigma\Phi}{P + \kappa_{21} + 2\sigma\Phi} N. \tag{3.28}$$

$$\Delta N = N_2 - N_1 = \frac{P - \kappa_{21}}{P + \kappa_{21} + 2\sigma\Phi} N. \quad (3.29)$$

w przypadku małego natężenia Φ

$$\Delta N = N_2 - N_1 = \frac{P - \kappa_{21}}{P + \kappa_{21}} N.$$
 (3.30)

Inwersję obsadzeń osiągniemy gdy

$$P > \kappa_{21}. \tag{3.31}$$

3.5. Układ czteropoziomowy [1]

Zakładamy:

➤ dwa typy pompowania ze stałymi P₁ i P₂,
➤ bardzo szybkie przejście 3→2, czyli N₃ ≈ 0.

Rys. 3.4. Czteropoziomowy model ośrodka czynnego.

$$\frac{dN_1}{dt} = P_1 N_0 - \kappa_{10} N_1 + \kappa_{21} N_2 + \sigma \Phi (N_2 - N_1),$$
(3.32)

$$\frac{dN_2}{dt} = P_2 N_0 - \kappa_{21} N_2 - \sigma \Phi (N_2 - N_1), \qquad (3.33)$$

$$N_0 + N_1 + N_2 = N, (3.34)$$

Stąd, w stanie stacjonarnych

$$\Delta N = \frac{P_2(\kappa_{10} - \kappa_{21}) - P_1\kappa_{21}}{P_1\kappa_{21} + P_2\kappa_{10} + \kappa_{10}\kappa_{21} + 2\sigma\Phi(P_1 + P_2 + \kappa_{10})}N.$$
(3.35)

Najkorzystniejsze jest
$$P_1 = 0$$

$$\Delta N = \frac{P_2(\kappa_{10} - \kappa_{21})}{P_2\kappa_{10} + \kappa_{10}\kappa_{21} + 2\sigma\Phi(P_2 + A_{10})}N$$
(3.36)

w przypadku małego natężenia Φ

$$\Delta N = \frac{P_2(\kappa_{10} - \kappa_{21})}{P_2 \kappa_{10} + \kappa_{10} \kappa_{21}} N.$$
(3.37)

Inwersję obsadzeń osiągniemy gdy

$$\kappa_{10} - \kappa_{21} > 0.$$
 (3.38)
T3-10

3.6. Graniczna stała pompowania w układzie trój- i czteropoziomowym

Znalezione warunki inwersji obsadzeń poziomów (3.31) i (3.38), oraz związanego z tym wzmocnienia, są warunkami granicznymi, które nie uwzględniający strat energii w ośrodku i rezonatorze optycznym

Układ trójpoziomowyUkład czteropoziomowy $P > \kappa_{21}$.(3.31) $\kappa_{10} - \kappa_{21} > 0$.(3.38)

Aby akcja laserowa mogła się rozpocząć wymagane jest by układ osiągnął pewną dodatnią wartość ΔN_t nazywaną progową inwersją obsadzeń, z której wynika progowa stała pompowania P_t

Układ trójpoziomowy

Układ czteropoziomowy

$$\Delta N = N_2 - N_1 = \frac{P - \kappa_{21}}{P + \kappa_{21}} N. \quad (3.30) \qquad \Delta N = \frac{P_2(\kappa_{10} - \kappa_{21})}{P_2 \kappa_{10} + \kappa_{10} \kappa_{21}} N. \quad (3.37)$$

$$P_{\rm t} = \frac{N + \Delta N_{\rm t}}{N - \Delta N_{\rm t}} \kappa_{21}.$$
 (3.39)
$$P_{\rm t} = \frac{\Delta N_{\rm t}}{(1 - \kappa_{21}/\kappa_{10})N - \Delta N_{\rm t}} \kappa_{21}.$$
 (3.40)

Wniosek: ponieważ typowo $N \gg \Delta N_t$, to progowa szybkość pompowania układu czteropoziomowego jest znacznie mniejsza niż układu trójpoziomowego.

3.7. Wzmocnienie światła

Przy zaniedbaniu emisji spontanicznej i przejść bezpromienistych obsadzenie stanu wzbudzonego zależy od czasu następująco

$$\frac{dN_2}{dt} = -\sigma(\nu)\Delta N\Phi. \qquad (3.41)$$

Każde przejście $2 \rightarrow 1$ wiąże się z emisją wymuszoną fotonu, a każde przejście $2 \leftarrow 1$ z absorpcją, stąd gęstość fotonów ρ [m⁻³]

$$\frac{dN_2}{dt} = -\frac{d\rho}{dt} \,. \tag{3.42}$$

Stąd, uwzględniając, że: - w czasie dt światło przebywa w ośrodku drogę dz = (c/n)dt,

- objętościowa gęstość energii fotonów wynosi $\rho^{\rm e}$ = ρ $h\nu$

otrzymujemy:

$$\frac{c}{n}\frac{1}{h\nu}\frac{d\rho^{e}}{dz} = \sigma(\nu)\Delta N\Phi.$$
(3.43)

Ponieważ natężenie światła $I [W/m^2]$ jest związane ze strumieniem i z gęstością fotonów

$$I = \Phi h \nu, \quad dI = \frac{c}{n} d\rho^{e}, \tag{3.44}$$

równość (3.43) można zapisać

$$\frac{dI}{dz} = \sigma(\nu)\Delta N I = \gamma(\nu) I.$$
(3.45)

Wielkość

$$\gamma(\nu) = \sigma(\nu)\Delta N \tag{3.46}$$

nosi nazwę współczynnika wzmocnienia.

T3-12

c.d. Wzmocnienie światła

$$\frac{dI}{dz} = \sigma(\nu)\Delta N I = \gamma(\nu) I.$$
(3.45)

Dla małych natężeń światła

inwersja obsadzeni ΔN niemal nie zależy od natężenia, i w konsekwencji

 $\gamma(\nu) = \text{const.}$

i po scałkowaniu równania (3.45) otrzymujemy

$$I(L) = I_0 \exp[\gamma_0(\nu) L],$$
 (3.47)

gdzie $\gamma_0(v)$ nosi nazwę współczynnika wzmocnienia małego sygnału.

Wniosek: przy małych natężeniach światła natężenie rośnie wykładniczo w funkcji przebytej drogi.

Przy dużych natężeniach światła

inwersja obsadzeni zmniejsza się. Zgodnie ze wzorami (3.29) i (3.36), zależność ΔN i wzmocnienia od natężenia *I* ma postać

$$\gamma(\nu) = \frac{\gamma_0(\nu)}{1 + I/I_s}$$
, (3.48)

gdzie $I_{\rm s}$ jest parametrem ośrodka nazywanym *natężeniem nasycenia*.

W przypadku granicznym $I \gg I_s$ ze wzorów (3.45) i (3.48) wynika równanie

$$\frac{dI}{dz} = \gamma_0 I_s, \qquad (3.49)$$

$$I(L) = I_0 \left(1 + \frac{I_s}{I_0} \gamma_0 L \right).$$
 (3.50)

Wniosek: przy bardzo dużych natężeniach wzrost jest liniowy

c.d. Wzmocnienie światła

W ośrodku czynnym mogą występować straty promieniowania wynikające np. z rozpraszania i dyfrakcji, które opisujemy *współczynnikiem strat* $\chi(v)$ na jednostkę długości. Uwzględniając straty otrzymujemy *efektywny współczynnik wzmocnienia*

$$\gamma_{\rm ef}(\nu) = \gamma(\nu) - \chi(\nu). \tag{3.51}$$

$$\gamma(\nu) = \frac{\gamma_0(\nu)}{1 + I/I_s},$$
 (3.48)

Uwzględniając efektywny współczynnik γ_{ef} zamiast γ w (3.45) otrzymujemy

$$\frac{dI}{dz} = I\left(\frac{\gamma_0}{1 + I/I_s} - \chi\right).$$
(3.52)

W przypadku dużego natężenia $I(0) \gg I_s$, $I(L) \gg I_s$, i małych strat $\chi \ll \gamma_0$ można podać rozwiązanie równania (3.52) [1]

$$I(L) = I_{\rm s} \frac{\gamma_0}{\chi} [1 - \exp(-\chi L)] + I_0 \exp(-\chi L).$$
 (3.53)

Wniosek: ze wzoru (3.53) wynika stabilizacja natężenia przechodzącego promieniowania

- → wzmocnienie światła $I(L) > I_0$ dla niezbyt dużych wartości I_0 ,
- ≻tłumienie światła $I(L) < I_0$ dla wielkich wartości I_0 ,
- ➤ dla długich wzmacniaczy (znaczna wartość χL) natężenie osiąga ustaloną wartość: $I \approx I_s \frac{\gamma_0}{\chi}.$ (3.54)
 T3-14

3.8. Rezonatory optyczne

Rezonatory optyczne stosowane w laserach są układami optycznymi złożonymi ze zwierciadeł różnego rodzaju i liczby. Światło odbijając się od zwierciadeł rezonatora tworzy stabilną falę stojącą. Ze względu na geometrię rezonatory dzieli się na:

- liniowe i pierścieniowe (rys. 3.5),
- wewnętrzne ograniczające ośrodek czynny i zewnętrzne oddalone od ośrodka. Zwierciadła wewnętrzne są zazwyczaj płaskie, zewnętrzne mogą być sferyczne.

Rys. 3.5. Schemat lasera z rezonatorem liniowym (a) i pierścieniowym (b) [1].

Rezonator optyczny w laserze ma następujące zadania:

- > zapewnia dodatnie sprzężenie zwrotne, co wpływa na moc wyjściową i rozmiary lasera,
- wymusza oscylacje na częstotliwościach rezonansowych,
- ogranicza szerokość spektralną emitowanej wiązki,
- kształtuje poprzeczny rozkład promieniowania.

3.8.2. Dobroć rezonatora

Dobroć rezonatora definiuje się jako

$$Q = 2\pi \frac{W_{\rm c}}{W_{\rm s}} = \frac{W_{\rm c}}{P} \ \omega, \tag{3.55}$$

gdzie: $W_{\rm c}$ - energia całkowita w układzie, $W_{\rm s}$ energia tracona w czasie jednego okresu,

P - moc strat, ω - częstość rezonansu.

Rozważmy rezonator Fabry'ego-Perota o długości *L*, ze zwierciadłami o natężeniowych współczynnikach odbicia R_1 i R_2 . Jeżeli ośrodek w rezonatorze nie wzmacnia światła i wykazuje współczynnik strat χ , to po przejściu jednego pełnego cyklu światła w czasie $T = 2Ln/c = 2L/c^*$ gęstość energii zmniejsza się według wzoru

$$\rho^{\rm e}(t+T)/\rho^{\rm e}(t) = R_1 R_2 \exp(-2L\chi) = \exp(-T/\tau_{\rm c}).$$
(3.56)

Równanie (3.56) definiuje *czas życia fotonów* τ_c *we wnęce pasywnej*

$$\frac{1}{\tau_{\rm c}} = \chi \, c^* + \frac{c^*}{2L} \ln \frac{1}{R_1 R_2} \,. \tag{3.57}$$

Ponieważ energia w układzie $W_c = \rho^e V$, ze związku (3.56) wynika, że

$$W_{\rm c}(t) = W_{\rm c}(0) \exp\left(-\frac{t}{\tau_{\rm c}}\right), \qquad (3.58) \qquad \square \qquad P(t) = \frac{dW_{\rm c}}{dt} = -\frac{1}{\tau_{\rm c}}W_{\rm c}(t) . \qquad (3.59)$$

$$Q = \omega \tau_{\rm c} = 2\pi\nu \tau_{\rm c} . \qquad (3.60)$$
T3-16

c.d. Dobroć rezonatora

$$W_{\rm c}(t) = W_{\rm c}(0) \exp\left(-\frac{t}{\tau_{\rm c}}\right)$$
(3.58)

Zależność pola elektrycznego fali świetlnej od czasu można zapisać na podstawie wzoru (3.58), biorąc pod uwagę $W \sim |E|^2$, oraz że bez tłumienia fala miałaby dokładnie częstotliwość rezonansu ω

$$E(t) = E_0 \exp(i \,\omega t) \exp\left(-\frac{\omega t}{2Q}\right). \tag{3.61}$$

rezonatora według wzoru (3.62).

T3-17

Znajdując transformatę Fouriera funkcji E(t) otrzymujemy kształt linii rezonansowej pasywnego rezonatora [1]

$$|E(v)|^{2} = \frac{E_{0}^{2}}{4\pi^{2}} \frac{1}{(v - v_{q})^{2} + (v_{q}/2Q)^{2}},$$
gdzie $v_{q} = \omega/2\pi$. (3.62)
Szerokość połówkowa funkcji (3.62)
 $\Delta v_{1/2} = \frac{v_{q}}{Q} = \frac{1}{2\pi\tau_{c}}.$ (3.63)
Stąd i ze wzoru (3.57)
 $\Delta v_{1/2} = \frac{c^{*}}{4\pi L} (2L\chi - \ln R_{1}R_{2}).$ (3.64)
Wniosek: $\Delta v_{1/2}$ rośnie ze wzrostem
Wniosek: $\Delta v_{1/2}$ rośnie ze wzrostem
Rys. 3.6. Przykładowe linie pasywnego

strat opisanych przez χ , R_1 , R_2 .

3.8.3. Mody podłużne rezonatora

Modem rezonatora nazywamy każdą falę stojącą powstającą w rezonatorze.

W rezonatorze Fabry'ego-Perota od długości *L* rezonans podłużny następuje dla fal o długościach λ_a wpisujących się całkowitą liczbę razy w drogę 2*L*

$$2L = q\lambda_q = q\frac{c^*}{\nu_q}, \quad q = 1, 2, 3, \dots,$$
 (3.65)

gdzie
 \mathbf{v}_q jest częstotliwością modu. Stąd różnica między częstotliwości
ami modów

$$f = v_q - v_{q+1} = \frac{c^*}{2L}$$
(3.66)

Linie emisji i absorpcji ośrodka mają pewną skończoną szerokość (poszerzenia linii). Jeżeli pasmo wzmocnienia ośrodka ma szerokość większą od różnicy (3.66), to możliwa jest jednoczesna generacja wielu modów,

a ich liczbę można oszacować jako

$$N = q_{\max} - q_{\min}$$

= $2L \left(\frac{1}{\lambda_{\min}} - \frac{1}{\lambda_{\max}} \right) \approx 2L \frac{\Delta \lambda}{\lambda_0^2}$. (3.67)

3.8.4. Mody poprzeczne rezonatora

Zwierciadła znajdują się w dużej odległości w porównaniu do ich rozmiarów. W tych warunkach występują efekty dyfrakcyjne na krańcach zwierciadeł, które powodują, że:

- fale pomiędzy lustrami nie są płaskie,
- > na powierzchni zwierciadeł amplituda i faza zależą od współrz. poprzecznych x i y.

Efekty te powodują powstawanie poprzecznych, czyli nie skierowanych wzdłuż osi lasera, drgań własnych, zwanych *modami poprzecznymi* i oznaczanych symbolem TEM_{mn}:

- > TEM jest skrótem od *Transverse Electro-Magnetic*,
- indeksy m i n określają rzędy drgań poprzecznych [4]:
 - *m* i *n* węzłów wzdłuż osi *x* i *y* zwierciadła kwadratowego albo prostokątnego,
 - *m* węzłów wzdłuż współrzędnej azymutalnej o nachyleniu od 0 do π ,

n węzłów wzdłuż promienia zwierciadła okrągłego.

Rys. 3.8. Przykładowe mody poprzeczne dla zwierciadeł kwadratowych [1].

c.d. Mody poprzeczne rezonatora

Z każdym rodzajem drgań poprzecznych jest związane wiele rodzajów drgań podłużnych, różniących się liczbą *q* połówek fal na długości rezonatora *L*, lecz mających jednakową strukturę pola poprzeczną pola elektromagnetycznego. W związku z tym stosuje się także oznaczenie:

TEM_{mng},

gdzie trzeci indeks q odnosi się rzędu drgań podłużnych.

W laserach szczególnie pożądane jest uzyskanie pracy jednomodowej typu TEM₀₀. Im wyższy jest rząd modu poprzecznego, tym większy jest jego przekrój poprzeczny. Dlatego w przypadku laserów gazowych jeden mod można selekcjonować poprzez odpowiednio małą średnicę rury wyładowczej.

3.9. Warunek progowy akcji laserowej

Rozważmy rezonator liniowy o długości *L* składający się ze zwierciadeł o natężeniowych współczynnikach transmisji R_1 i R_2 . Wnęka rezonatora wypełniona jest ośrodkiem czynnym o współczynniku wzmocnienia $\gamma(\nu)$ i współczynniku strat χ .

Rys. 3.9. Rozkład natężenia światła we wnęce rezonatora z ośrodkiem czynnym w warunkach równowagi.

Jeżeli początkowe natężenie światła wynosi I_0 , to po jednym obiegu w rezonatorze

$$I = R_1 R_2 I_0 \exp\{2L[\gamma(\nu) - \chi]\}.$$
 (3.68)

Warunkiem progowym akcji laserowej jest aby wzmocnienie równoważyło straty

$$I = I_0.$$
 (3.69)

Stąd *wzmocnienie progowe* (t - *threshold*) $\gamma_t(v) = \chi + \frac{1}{2L} \ln \frac{1}{R_1 R_2}$. (3.70) T3-21

c.d. Warunek progowy akcji laserowej

Wcześniej pokazano, że wsp. wzmocnienia jest związany z inwersją obsadzeń wzorem

$$\gamma(\nu) = \sigma(\nu)\Delta N \tag{3.46}$$

Podstawiając wzór (3.46) do (3.71) można wyznaczyć progową inwersję obsadzeń ΔN_t

$$\Delta N_{t} = \frac{1}{c^{*}\sigma(\nu)\tau_{c}}$$
(3.72)
przekrój czynny (3.20) relacja Einsteina (3.8)

$$\sigma(\nu,\nu_{0}) = \frac{n}{c}h\nu B_{21}g(\nu,\nu_{0}), \qquad \frac{A_{21}}{B_{21}} = \frac{8\pi h\nu^{3}}{c^{3}} . \qquad \tau_{2} = \frac{1}{A_{21}}, \quad (3.73)$$

Po podstawieniach otrzymujemy $\Delta N_{\rm t} = \frac{8\pi\nu^2}{c^3 g(\nu, \nu_0)} \frac{\tau_2}{\tau_{\rm c}}$. (3.74)

c.d. Warunek progowy akcji laserowej

progowa inwersja obsadzeń $\Delta N_{\rm t} = \frac{8\pi\nu^2}{c^3 g(\nu, \nu_0)} \frac{\tau_2}{\tau_{\rm c}} . \qquad (3.74)$

Jeżeli akcja laserowa zachodzi w centrum linii wzmocnienia $v = v_0$, wtedy $g(v, v_0) = g_0/\Delta v$, gdzie Δv jest szerokością połówkową linii przejścia laserowego (rys. 3.7). Wówczas równanie (3.74) przyjmuje postać <u>warunku Schawlowa-Townesa:</u>

$$\Delta N_{\rm t} = \frac{8\pi\nu_0^2 \,\Delta\nu \,\tau_2}{c^3 g_0 \tau_{\rm c}} \,. \tag{3.75}$$

Wnioski z warunku (3.75):

- Progowa inwersja obsadzeń jest funkcją kwadratową częstotliwości generowanego promieniowania, co oznacza, że lasery emitujące w podczerwieni są łatwiejsze do uruchomienia niż emitujące promieniowanie widzialne i UV.
- > Ośrodki z wąskimi liniami fluorescencyjnymi są korzystniejsze,
- $\blacktriangleright Im lepszy rezonator, tzn. dłuższy czas życia fotonów we wnęce \tau_c, tym mniejsza inwersja progowa.$

Literatura do tematu 3

- [1] B. Ziętek, Lasery, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń 2009.
- [2] F. Kaczmarek, "Wstęp do fizyki laserów", wydanie 2, PWN, Warszawa 1986.
- [4] H. Klejman, "Lasery", wydanie 2, PWN, Warszawa 1979.
- [5] H. Haken, H.Ch. Wolf, Atomy i kwanty. Wprowadzenie do współczesnej spektroskopii atomowej, PWN, W-wa 2002.