Kryształy Fotoniczne i Metody ich Modelowania

część III: Fizyka struktur fotonicznych

dr inż. Maciej Dems

Politechnika Łódzka

27 maja 2013

- E - K

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Postawy fizyczne kryształów fotonicznych

Postawy fizyczne kryształów fotonicznych

- Jednowymiarowa struktura periodyczna
- Dwuwymiarowa struktura periodyczna
- Trójwymiarowe kryształy fotoniczne
- Płyty kryształów fotonicznych

2 Niejednorodne kryształy fotoniczne

- Wnęki rezonansowe
- Falowody
- Mody powierzchniowe
- Zintegrowane układy optyczne

3 Praktyczne wykorzystanie kryształów fotonicznych

- Światłowody fotoniczne
- Lasery wykorzystujące kryształy fotoniczne
- Kryształy fotoniczne i siatki dyfrakcyjne jako lustra

< A ▶

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Naprzemienny wielowarstwowy stos

Najprostszy kryształ fotoniczny to wielowarstwowy stos wykonany z naprzemiennie następujących materiałów.

Lord Rayleigh analizował już w 1887 r.. Może zachowywać się jak zwierciadło: Distributed Bragg Reflector w laserach VCSEL.

B b

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Ptyty kryształów fotonicznych

Struktura pasmowa i przerwa fotoniczna

SQA

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przerwa fotoniczna

(a) E-field for mode at top of band 1

(b) E-field for mode at bottom of band 2

(c) Local energy density in E-field, top of band 1

(d) Local energy density in E-field, bottom of band 2

(a) E-field for mode at top of band 1

(b) E-field for mode at bottom of band 2

(c) Local energy density in E-field, top of band 1

(d) Local energy density in E-field, bottom of band 2

<ロト < 同ト < ヨト < ヨト

SQA

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Ptyty kryształów fotonicznych

Twierdzenie Flocqueta

Równanie postaci:

$$\frac{d^2\Psi(z)}{dz^2} + \varepsilon(z)\Psi(z) = 0$$

gdzie $\varepsilon(z + a) = \varepsilon(z)$, ma następujące rozwiązanie:

$$\Psi(z) = \Phi(z) e^{-ikz}$$

gdzie $\Phi(z + a) = \Phi(z)$, zaś k jest dowolną liczbą zespoloną.

Uogólnieniem tego twierdzenia na większą liczbę wymiarów jest twierdzenie Blocha.

< A >

B b d B b

MQ (P

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Twierdzenie Flocqueta

Równanie postaci:

$$\frac{d^2\Psi(z)}{dz^2} + \varepsilon(z)\Psi(z) = 0$$

gdzie $\varepsilon(z + a) = \varepsilon(z)$, ma następujące rozwiązanie:

$$\Psi(z) = \Phi(z) e^{-ikz}$$

gdzie $\Phi(z + a) = \Phi(z)$, zaś k jest dowolną liczbą zespoloną.

Uogólnieniem tego twierdzenia na większą liczbę wymiarów jest twierdzenie Blocha.

Pole magnetyczne w stosie może być zapisane jako:

$$\mathbf{H}_{n,k_z,\mathbf{k}}(\mathbf{r}) = \exp(-i\mathbf{k}\cdot\boldsymbol{\rho})\exp(-ik_z z)\mathbf{\Phi}_{n,k_z,\mathbf{k}}(z)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Ptyty kryształów fotonicznych

Pierwsza strefa Brillouina

Każdą okresowa funkcja f(z) = f(z + a) można także traktować jako funkcję o okresie *na*, gdzie $n \in \mathbb{N}$:

$$f(z) = f(z + na)$$

W szczególności:

$$\exp\left[-ik_{z}z\right] = \exp\left[-i\left(k_{z} + \frac{2\pi n}{a}\right)z\right]$$

Czyli fale o wektorze falowym k_z i $k_z + 2\pi n/a$ <u>należy traktować</u> równoważnie.

Wszystkie wektory falowe można zwinąć do zakresu $k_z \in \left[-\frac{\pi}{a}, +\frac{\pi}{a}\right]$, zwanego **pierwszą strefą Brillouina**.

・ 同 ト ・ ヨ ト ・ ヨ ト

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Ptyty kryształów fotonicznych

Struktura pasmowa i przerwa fotoniczna

SQA

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przerwa fotoniczna stosu ćwierćfalowego

Rozpatrzmy naprzemienny stos ćwierćfalowych warstw o grubości h_1 i h_2 ($h_1 + h_2 = a$) i współczynnikach załamania n_1 i n_2 . Pole elektryczne w każdej z tych warstw ma postać:

$$E_1(z) = F_1 e^{-in_1 \omega z/c} + B_1 e^{+in_1 \omega z/c}$$

$$E_2(z) = F_2 e^{-in_2 \omega z/c} + B_2 e^{+in_2 \omega z/c}$$

Fakt, że są to warstwy ćwierćfalowe oznacza, że dla określonego ω_0 zachodzi $\omega_0 n_i h_i/c = \pi/2$. Jeżeli oznaczymy $\omega = \omega_0 (1 + 2/\pi \delta)$, to macierz przejścia przez warstwę wynosi:

$$\bar{\mathbf{T}}_{h_1} = \bar{\mathbf{T}}_{h_2} = \bar{\mathbf{T}}_h = \begin{bmatrix} \exp(-i\pi/2 - i\delta) & 0\\ 0 & \exp(i\pi/2 + i\delta) \end{bmatrix} \approx \begin{bmatrix} -i - \delta & 0\\ 0 & i - \delta \end{bmatrix}$$

bo $\exp(i\delta) \approx 1 + i\delta$ dla małego δ .

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przerwa fotoniczna stosu ćwierćfalowego

Macierz przejścia na granicy warstw wynosi ($n = n_1/n_2$):

$$\bar{\mathsf{T}}_{12} = \frac{1}{2n_2} \begin{bmatrix} n_2 + n_1 & n_2 - n_1 \\ n_2 - n_1 & n_2 + n_1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 + n & 1 - n \\ 1 - n & 1 + n \end{bmatrix}$$

Dla całej struktury:

SQA

4 E b

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Ptyty kryształów fotonicznych

Przerwa fotoniczna stosu ćwierćfalowego

Macierz przejścia wynosi zatem:

$$\bar{T} \approx \frac{1}{2n} \begin{bmatrix} n+1 & n-1 \\ n-1 & n+1 \end{bmatrix} \begin{bmatrix} -i-\delta & 0 \\ 0 & i-\delta \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1+n & 1-n \\ 1-n & 1+n \end{bmatrix} \begin{bmatrix} -i-\delta & 0 \\ 0 & i-\delta \end{bmatrix} \\ = \frac{1}{2n} \begin{bmatrix} 2n\delta^2 + i\delta(n+1)^2 - n^2 - 1 & -i\delta(n^2+1) - n^2 + 1 \\ i\delta(n^2-1) - n^2 + 1 & 2n\delta^2 - i\delta(n+1)^2 - n^2 - 1 \end{bmatrix}$$

Zgodnie z tw. Flocqueta:

$$\overline{\mathsf{T}}\mathsf{E} = e^{-ikz}\mathsf{E}$$

Czyli:

$$\left(\bar{\mathsf{T}}-e^{-ikz}\bar{\mathsf{I}}\right)\mathsf{E}=\mathsf{0}$$

Co daje nietrywialne rozwiązanie wyłącznie gdy macierz $\bar{M} = (\bar{T} - e^{-ika}\bar{I})$ jest osobliwa.

▶ < ∃ ▶</p>

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przerwa fotoniczna stosu ćwierćfalowego

Szukamy częstotliwości na krawędzie pierwszej strefy Brillouina. Przyjmijmy zatem $k = \pi/a$. Wtedy $e^{-ika} = -1$, co daje $\overline{M} = \overline{T} + \overline{I}$, czyli:

$$\bar{\mathsf{M}} \approx \frac{1}{2n} \begin{bmatrix} 2n\delta^2 + i\delta(n+1)^2 - n^2 & -i\delta(n^2+1) - n^2 + 1\\ i\delta(n^2-1) - n^2 + 1 & 2n\delta^2 - i\delta(n+1)^2 - n^2 \end{bmatrix}$$

Macierz jest osobliwa gdy:

$$\det(\bar{\mathbf{M}}) \approx \delta^4 + 4\delta^2 - n + 2 - \frac{1}{n} = 0$$

Rozwiązując otrzymujemy:

$$\delta^2 = \pm \frac{n+1}{\sqrt{n}} - 2$$

4 E b

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przerwa fotoniczna stosu ćwierćfalowego

Mamy więc:

$$\delta^2 = -2 \pm \frac{n+1}{\sqrt{n}}$$

Zakładając, że $n \approx 1$, z rozwinięcia Taylora dookoła 1 mamy:

$$\frac{n+1}{\sqrt{n}}\approx 2+\frac{1}{4}(n-1)^2$$

skąd:

$$\delta \approx \pm \frac{1}{2}|n-1|$$
 lub $\delta \approx \pm \sqrt{-4 - \frac{1}{4}(n-1)^2}$

< A ▶

-∢ ≣ ▶

nar

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Ptyty kryształów fotonicznych

Przerwa fotoniczna stosu ćwierćfalowego

Mamy więc:

$$\delta^2 = -2 \pm \frac{n+1}{\sqrt{n}}$$

Zakładając, że $n \approx 1$, z rozwinięcia Taylora dookoła 1 mamy:

$$\frac{n+1}{\sqrt{n}}\approx 2+\frac{1}{4}(n-1)^2$$

skąd:

$$\delta \approx \pm \frac{1}{2}|n-1|$$
 lub $\delta \approx \pm \sqrt{4} \frac{1}{4}(n-1)^2$

Tylko pierwsze rozwiązanie zapewnia δ rzeczywiste.

4 E b

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przerwa fotoniczna stosu ćwierćfalowego

Mamy więc:

$$\delta^2 = -2 \pm \frac{n+1}{\sqrt{n}}$$

Zakładając, że $n \approx 1$, z rozwinięcia Taylora dookoła 1 mamy:

$$\frac{n+1}{\sqrt{n}}\approx 2+\frac{1}{4}(n-1)^2$$

skąd:

$$\delta \approx \pm \frac{1}{2}|n-1|$$

Zatem...

Na granicy strefy Brillouina częstotliwość ω przyjmuje wartości:

$$\omega = \omega_0 \left(1 \pm 2/\pi \, \delta\right) = \omega_0 \left(1 \pm \frac{|n-1|}{\pi}\right)$$

Pomiędzy nimi występuje przerwa fotoniczna!

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Ptyty kryształów fotonicznych

Dwuwymiarowa struktura periodyczna i twierdzenie Blocha

Dla pola będącego rozwiązaniem równania falowego:

$$\varepsilon^{-1} \nabla \times \nabla \times \mathbf{E} = k_0^2 \mathbf{E}$$

zachodzi zależność:

$$\mathsf{E}(\mathsf{r}+\mathsf{g})=\mathsf{E}(\mathsf{r})\exp\left(-i\,\mathsf{k}\cdot\mathsf{r}\right)$$

Analogicznie dla równiana:

$$\nabla \times \varepsilon^{-1} \nabla \times \mathbf{H} = k_0^2 \mathbf{H}$$

mamy:

$$\mathbf{H}(\mathbf{r} + \mathbf{g}) = \mathbf{H}(\mathbf{r}) \exp\left(-i\,\mathbf{k}\cdot\mathbf{r}\right)$$

< ロ > < 同 > < 回 > < 回 >

nar

Jest to twierdzenie Blocha.

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przestrzeń odwrotna i pierwsza strefa Brillouina

Przestrzeń odwrotna i pierwsza strefa Brillouina

Dla każdej periodycznej przez analogię do periodycznej struktury kryształu możemy wyznaczyć dwa wektory sieci krystalicznej \mathbf{a}_1 i \mathbf{a}_2 oraz zdefiniować sieć odwrotną (w przestrzeni wektora falowego) opisaną przez wektory sieci odwrotnej takie, że

$$\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$$

gdzie δ_{ij} jest deltą Kroneckera. Wektory te można wyznaczyć jako:

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \hat{\mathbf{n}}}{a_1 a_2}$$
 $\mathbf{b}_2 = 2\pi \frac{\hat{\mathbf{n}} \times \mathbf{a}_1}{a_1 a_2}$

gdzie **n** jest wersorem prostopadłym do badanej płaszczyzny. Sieć odwrotna jest periodyczna, tak jak sieć podstawowa, więc wektor falowy zawsze można zawinąć do **pierwszej strefy Brillouina**.

イロト イポト イヨト イヨト

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przestrzeń odwrotna i pierwsza strefa Brillouina

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Zależność dyspersyjna prostokątnego kryształu fotonicznego

Dla określonego wektora falowego k istnieje dyskretny zbiór częstotliwości światła definiujący **zależność dyspersyjną**.

SQA

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Symetria modów

M. Dems Kryształy Fotoniczne i Metody ich Modelowania

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Ptyty kryształów fotonicznych

Dyspersja dwuwymiarowej struktury kratownicowej

Dems Kryształy Fotoniczne i Metody ich

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Powstawanie przerwy fotonicznej

M. Dems Kryształy Fotoniczne i Metody ich Modelowania

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Dwuwymiarowa siatka otworów

- Siatka trójkątnych otworów zawiera zarówno odosobnione pilary jak i łączące je mosty (jak w kratownicy).
- W związku z tym można się spodziewać przerwy zarówno dla modów TE jak i TM.

4 E b

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płuty kryształów fotonicznych

Przerwa fotoniczna w dwuwymiarowej siatce otworów

I. Dems Kryształy Fotoniczne i Metody ich Modelow

nar

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Mapy przerwy fotonicznej

ms Kryształy Fotoniczne i Metody ich N

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Mapy przerwy fotonicznej

ns Kryształy Fotoniczne i Metody ich Modelo

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Mapy przerwy fotonicznej

s Kryształy Fotoniczne i Metody ich Modelowa

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Mapy przerwy fotonicznej

1s Kryształy Fotoniczne i Metody ich Modelov

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Prędkość grupowa

3

Zwolnione światło

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Potencjalne zastosowania:

- Zmniejszenie szumu w układach komunikacyjnych.
- Pętle opóźniające w układach optycznych.
- Interferometry znacznie bardziej czułe na zmiany częstotliwości.
- Zwiększona interakcja światła z materią:
 - przełączniki optyczne o mniejszym poborze energii,
 - lasery o obniżonym progu (lub bezprogowe).

4 E b

Ujemna prędkość grupowa

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płuty kryształów fotonicznych

/home/maciek/Dokumenty/Dydaktyka/KrysztalyFotoniczne/grafika/2-1

M. Dems Kryształy Fotoniczne i Metody ich Modelowania

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

nar

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Ujemny współczynnik załamania

 $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$

 $n_{
m gr} < 0$ pozwala na przekroczenie limitu dyfrakcyjnego, z uwagi na wzmacnianie fal o $k_{\perp} > n\omega/c$ zamiast ich wygaszania. $\sigma \to \pi = \pi + \pi$

nar

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Ujemny współczynnik załamania

▶ < ∃ >

-

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Ujemny współczynnik załamania

イロト イヨト イヨト

SQR
Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Ujemny współczynnik załamania — metamateriały

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Ujemny współczynnik załamania ($v_q > 0$)

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Ujemny współczynnik załamania ($v_q > 0$)

イロト イボト イヨト イヨト

incident beam

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Propagacja wzdłuż otworów

. Dems Kryształy Fotoniczne i Metody ich Modelowan

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Typowe sieci krystaliczne 3D

<ロ> < 四> < 四> < 回> < 三> < 三>

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Typowe sieci krystaliczne 3D

<ロ> < 四> < 四> < 回> < 三> < 三>

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Typowe sieci krystaliczne 3D

<ロ> < 四> < 四> < 回> < 三> < 三>

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Typowe sieci krystaliczne 3D

<ロ> < 四> < 四> < 回> < 三> < 三>

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Typowe sieci krystaliczne 3D

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Pasma fotoniczne 3D — FCC

<ロ> < 四> < 四> < 回> < 三> < 三>

Э

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Całkowita przerwa fotoniczna — diament

M. Dems Kryształy Fotoniczne i Metody ich Modelowani.

A D > A A + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- - ∃ →

-

Yablonovite

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

<ロト <回ト < 回ト < 回ト

3

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Yablonovite — przerwa fotoniczna

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Э

"Stos drewna"

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

<ロト <回ト < 回ト < 回ト

Э

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

"Stos drewna" — przerwa fotoniczna

A. Dems Kryształy Fotoniczne i Metody ich Modelowani

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

900

Э

Odwrócony opal

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

<ロ> < 四> < 四> < 回> < 三> < 三>

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Odwrócony opal przerwa fotoniczna

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Э

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa

イロト イポト イヨト イヨト

ednowymiarowa struktura periodyczna Owuwymiarowa struktura periodyczna **frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa— przerwa fotoniczna

イロト イボト イヨト イヨト

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Metody wytwarzania... że co?

F. Garcia-Santamaria et al., Adv. Mater. 14, p.1144 (2002).

4-warstwowa sieć diamentowa [111] SiO2

A 3

SQA

6-warstwowa sieć diamentowa [001] SiO₂

<<p>Image: 1

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa

イロト イポト イヨト イヨト

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa — wytwarzanie

<ロト <回ト < 回ト < 回ト

Э

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa — wytwarzanie

<ロト <回ト < 回ト < 回ト

Э

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa — wytwarzanie

<ロト <回ト < 回ト < 回ト

Э

ednowymiarowa struktura periodyczna Owuwymiarowa struktura periodyczna **frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa — wytwarzanie

<ロト <回ト < 回ト < 回ト

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa — wytwarzanie

<ロト <回ト < 回ト < 回ト

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa — wytwarzanie

イロト イポト イヨト イヨト

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa — wytwarzanie

M. Dems Kryształy Fotoniczne i Metody ich Modelowania

< □ > < @ >

→ < ∃→

-

Э

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Struktura wielowarstwowa — wytwarzanie

500 nm

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Э

"Stos drewna"

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

<ロト <回ト < 回ト < 回ト

Э

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

"Stos drewna" — wytwarzanie metodą wafer fussion

ednowymiarowa struktura periodyczna Owuwymiarowa struktura periodyczna **frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

"Stos drewna" — wytwarzanie metodą wafer fussion

ednowymiarowa struktura periodyczna Owuwymiarowa struktura periodyczna **frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

"Stos drewna" — wytwarzanie metodą wafer fussion

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

"Stos drewna" — wytwarzanie metodą wafer fussion

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

"Stos drewna" — wytwarzanie metodą wafer fussion

"Stos drewna" — wytwarzanie metodą mikromanipulacji

K. Aoki et al., Appl Phys Lett. 81, p. 3122 (2002)

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

"Stos drewna" — wytwarzanie metodą mikromanipulacji

∃ →

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

"Stos drewna" — wytwarzanie metodą mikromanipulacji

/home/maciek/Dokumenty/Dydaktyka/KrysztalyFotoniczne/gra

・ロト ・ 同ト ・ ヨト ・ ヨト

SQC

Yablonovite

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

<ロト <回ト < 回ト < 回ト

3

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Yablonovite — FIB

E

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Yablonovite — FIB

nar

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Litografia dwufotonowa (bestia)

nar

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Litografia dwufotonowa

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Litografia dwufotonowa

M. Dems Kryształy Fotoniczne i Metody ich Modelowania

Litografia dwufotonowa

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Litografia dwufotonowa

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Frójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

- Dowolne geometrie.
- Nie jest potrzebna żadna maska.
- Wada: nisko współczynnik załamania (1,5)

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Litografia dwufotonowa

<ロ> < 四> < 四> < 回> < 三> < 三>

Э

Litografia dwufotonowa

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

<ロト <回ト < 回ト < 回ト

590

E

Litografia holograficzna

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

<ロト <回ト < 回ト < 回ト

Э

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Litografia holograficzna

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

Produkcja z koloidów

nar

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

Produkcja z koloidów

Odwrócone opale

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płutu kruształów fotonicznuch

- Kulki na sieci FCC nie mają przerwy fotonicznej.
- Posiadają ją otwory na tej sieci.

SQA

< ∃⇒

Odwrócony opal

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Ptyty kryształów fotonicznych

<ロ> < 四> < 四> < 回> < 三> < 三>

Kryształy fotoniczne w naturze

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna **Trójwymiarowe kryształy fotoniczne** Płyty kryształów fotonicznych

<ロ> < 四> < 四> < 回> < 三> < 三>

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne **Płyty kryształów fotonicznych**

Płaski dielektryczny falowód planarny

Całkowite wewnętrzne odbicie:

 $\sin \alpha \geq n_0/n_1$

 $W = U \operatorname{tq} U$

 $W = -U \operatorname{ctg} U$ $n_1^2 W = n_0^2 U \operatorname{tg} U$

 $n_1^2 W = n_0^2 U \operatorname{ctg} U$

Falowo:

- Parzyste TE:
- Nieparzyste TE:
- Parzyste TM:
- Nieparzyste TM:

gdzie:

$$U = \frac{h}{2}\sqrt{n_1^2 \left(\frac{\omega}{c}\right)^2 - \beta^2} \qquad W = \frac{h}{2}\sqrt{\beta^2 - n_0^2 \left(\frac{\omega}{c}\right)^2}$$

4 E b

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Płaski dielektryczny falowód planarny — zależność dyspersyjna

M. Dems Kryształy Fotoniczne i Metody ich Modelowa

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne **Płyty kryształów fotonicznych**

Płyty kryształów fotonicznych

イロト イボト イヨト イヨト

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Model pasmowy płyt kryształów fotonicznych, stożek światła

< A ▶

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Frójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Wpływ grubości płyty na przerwę

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne **Płyty kryształów fotonicznych**

Optymalna grubość płyty

Optymalną grubością płyty jest pół długości fali: $\lambda/2$.

Pytanie: długości fali w jakim materiale?

< ロ > < 同 > < 回 > < 回 > < 回 > <

SQR

Optymalna grubość płyty

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne **Płyty kryształów fotonicznych**

Optymalną grubością płyty jest pół długości fali: $\lambda/2$.

Pytanie: długości fali w jakim materiale? **Odpowiedź:** W materiale o efektywnym współczynniku załamania płyty.

$$\begin{array}{c} a \\ \epsilon_{1} \\ \epsilon_{0} \\ \epsilon_{0} \\ \epsilon_{1} \\ \epsilon_{$$

Stąd:

$$\langle \varepsilon_{\text{TE}}
angle pprox \varepsilon_1 > \langle \varepsilon_{\text{TM}}
angle pprox \varepsilon_0$$

nar

・ 同 ト ・ ヨ ト ・ ヨ ト

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Frójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Wpływ grubości płyty na przerwę

ednowymiarowa struktura periodyczna Owuwymiarowa struktura periodyczna Frójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Mody rezonujące ponad linią światła

. Dems Kryształy Fotoniczne i Metody ich Modelowania

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Rozkład pola w płycie kryształu fotonicznego

 $\mathbf{k} = 0,25 \,\pi/a \,\hat{\mathbf{x}} \quad \omega = 0,344 \cdot 2\pi c/a$

$$\mathbf{k} = 0,25 \,\pi/a \,\hat{\mathbf{x}} \quad \omega = 0,425 \cdot 2\pi c/a$$

< A ▶

▶ < ⊒ ▶

-

SQA

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne **Płyty kryształów fotonicznych**

Dobroć modów ponad linią światła

Dobroć rezonatora:

$$U(t) = U_0 \exp\left[-\frac{\omega_r t}{Q}\right]$$

Ponieważ

$$\omega = \omega_r + i\alpha$$

oraz:

$$U(t) \sim \langle |E(t)|^2 \rangle = \langle |E \exp(i\omega t)|^2 \rangle = \langle |E \exp(i\omega_r t) \exp(-2\alpha t)|^2 \rangle$$
$$\approx \exp(-2\alpha t) \langle |E|^2 \rangle$$

To:

$$-2\alpha t = -\omega_r t/Q$$

Skąd:

$$Q = \frac{\omega_r}{2\alpha} = \frac{\operatorname{Re}(\omega)}{2\operatorname{Im}(\omega)}$$

イロト イボト イヨト イヨト

nar

lednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne **Płyty kryształów fotonicznych**

Periodyczna "płyta" kryształu fotonicznego

Zwierciadło DBR z otworami (kryształ fotoniczny trójwymiarowy)

- Naprzemienne struktury o wysokim ($n_h = 3.5$) i niskim ($n_l = 1.5$) współczynniku załamania.
- Dwuwymiarowa sieć trójkątna w płaszczyźnie*xy* (*r* = 0.3*a*).

sieć odwrotna

- 4 同 ト 4 目 ト

M

Przerwa fotoniczna dla modów TE (parzystych)

SQA

M

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne **Płyty kryształów fotonicznych**

Przerwa fotoniczna dla modów TE (o dodatniej parzystości)

M. Dems

nar

M

Jednowymiarowa struktura periodyczna Dwuwymiarowa struktura periodyczna Trójwymiarowe kryształy fotoniczne Płyty kryształów fotonicznych

Przerwa fotoniczna dla modów TE (o dodatniej parzystości)

nar

Niejednorodne kryształy fotoniczne

Postawy fizyczne kryształów fotonicznych

- Jednowymiarowa struktura periodyczna
- Dwuwymiarowa struktura periodyczna
- Trójwymiarowe kryształy fotoniczne
- Płyty kryształów fotonicznych

2 Niejednorodne kryształy fotoniczne

- Wnęki rezonansowe
- Falowody
- Mody powierzchniowe
- Zintegrowane układy optyczne

Praktyczne wykorzystanie kryształów fotonicznych

- Światłowody fotoniczne
- Lasery wykorzystujące kryształy fotoniczne
- Kryształy fotoniczne i siatki dyfrakcyjne jako lustra

Praktyczne wykorzystanie kryształów fotonicznych

Postawy fizyczne kryształów fotonicznych

- Jednowymiarowa struktura periodyczna
- Dwuwymiarowa struktura periodyczna
- Trójwymiarowe kryształy fotoniczne
- Płyty kryształów fotonicznych

2 Niejednorodne kryształy fotoniczne

- Wnęki rezonansowe
- Falowody
- Mody powierzchniowe
- Zintegrowane układy optyczne

8 Praktyczne wykorzystanie kryształów fotonicznych

- Światłowody fotoniczne
- Lasery wykorzystujące kryształy fotoniczne
- Kryształy fotoniczne i siatki dyfrakcyjne jako lustra
Wyprowadzenie zależności wzmocnienia progowego od prędkości

イロト イボト イヨト イヨト

grupowej z Sakody

Pokazanie zjawiska (dużo slajdów)

< □ > < 同 > < 三

▶ < ∃ >

Ogólna teoria

Kryształy fotoniczne i siatki dyfrakcyjne jako lustra

<ロト <回ト < 回ト < 回ト

3

Kryształy fotoniczne i siatki dyfrakcyjne jako lustra

Teoria interferencji dwóch fal

M. Dems Kryształy Fotoniczne i Metody ich Modelowania

<ロ> < 四> < 四> < 回> < 三> < 三>

3

Kryształy fotoniczne i siatki dyfrakcyjne jako lustra

Rezonans Fano

M. Dems Kryształy Fotoniczne i Metody ich Modelowania

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Kryształy fotoniczne i siatki dyfrakcyjne jako lustra

Podstawy teorii modów sprzężonych

M. Dems Kryształy Fotoniczne i Metody ich Modelowania

<ロ> < 四> < 四> < 回> < 三> < 三>

Э