Using Computational Clusters

Release 2.3

Lodz University of Technology, Institute of Physics

Feb 19, 2024

Contents
1 Using SLURM 1
1.1 Introduction e e e e e e e 1
1.2 HowtoLog-in. e e e e e e e e 2
1.3 Running Jobs e e 2
1.4 Checking the Status of YourJob Lo 9
1.5 Deleting jobs L e e e e 9
1.6 Environment Variables Available to Execution Scripts 9
1.7 JODAITAYS . . . o o e e e e e e e e e e e e e e 10
1.8 JobDependencies L e e 12
1.9 Running MPIJobs e 12
1.10 Basic SLURM Commands 0 e e e e e e e e e 13
2 Environment Modules User Guide 14
2.1 Check available modules/packages L L 14
2.2 Listloaded modules/packages L e e 15
2.3 Load/add a module to set the environmental variables 15
2.4 Unload/remove a module from the shell environment 16
2.5 Unload all loaded modules e 16
2.6 Save and restore loaded modules 16
2.7 Searchforamodule 16
2.8 ml:aconvenienttool L e e e e e e 17
3 Available Software 18
3.1 PLaSK e 18
32 MPBandMeep o i e e e e e e e e e e e e 18

1 Using SLURM

1.1 Introduction

One of the main purposes of the dragon cluster is to accommodate especially long-running programs. Users who
run long jobs (which take hours or days to run) will need to run these jobs through the SLURM scheduler. SLURM
provides a method for handling these jobs on a first-come first-served basis with additional fairshare policy so all
users can have their jobs started in some reasonable time. In this manner, all jobs will run more efficiently and
finish quicker since each is allowed to have all system resources for the duration of its run. All SLURM jobs must
be launched from the dragon job submission server.

[l _zsh_tmux_plugin_run Q
test2.f90 buffers buffers
t

f90_Lib m

G
(xc_f96_func_info_t) f main()
(8), I
(8) rho(npoints) ,)) , xc_func_type fu
(9) ma (npoints) ’ ’ ’ f rhi
(8) (npoints) sigma[
vmajor, vminor, vmicro, func_id exc[5];

e H
, vmajor, vminor, vmicro, func_id = 1;
xc 90 version(vmajor, vminor, vmicro)

(¥

) vmajor, vminor, vmicro xc_version(&vmajor, &minor, &vmicr
f(

ymajor, vminor, vmicro);
xc_f90_func_init(xc_func, func_id, XC_UNPOLARIZED)

(xc_func_init(&func, func_id, XC_UNPOLARIZED) != 0){
xc_info = xc_f90_func_get_info(xc_func) fprintf(, , func_id);
c_f90_func_info_get_family(xc_info))
fortran " utf-8[unix] ERIEEVErNUINE] testl.c [N 2% = 1/38 In:1

BSD General Commands Manual SSH(1)

— OpenSSH remote login client

[
[
[
[
[

(SSH client) rogram for ing into a remote mact
commands on a remote . It is intended provide s
tions between two unt re

root root 4,6K mar

maciek maciek 4,0K s

root root 728 mar

root root 4,6K mar 21

root root 635 mar 9 mpb. lua
root root 935 sty 3 mpich.lua
root root 4,6K sty 12 3

root root 4,0K wrz 2

root root 4,0K mar 18

root root 4,0K lip

root root 1,7K mar 10 0 turbomole.lua

Fig. 1: Sample ssh terminal session shows tmux multi window possibilities and zsh customizable prompt.

1.2 How to Log-in

You can log-in into dragon or copy your files using SSH protocol. The useful programs for connection are PuTTY
and WinSCP on Windows or ssh and scp commands on Linux. Please refer to their manual for instructions how
to use them. The address of the cluster is dragon.phys.p.lodz.pl. You should use a non-standard port 6010.
For login you should use the username and password that have been provided to you. After the first login it is
recommended to change your password using passwd command. You may put all your files in your home directory.
They will be accessible from all the computing nodes through cluster’s internal network filesystem.

Warning: Use port 6010 (instead of the default) for SSH connection to the cluster.

1.3 Running Jobs

Please do not run application programs directly from the command-line when you connect to the cluster. Doing
so may slow down performance for other users and your commands will be automatically throttled or terminated.
To better understand how applications get submitted as jobs, let’s review the difference between login nodes and
compute nodes.

Login Node

When you connect to the cluster, you are connected to a single shared computer with all your fellow users, known
as the “login node”. The purpose of the “login” node is for you to submit jobs, copy data, edit programs, etc. You
must not launch any computations on this computer directly.

Compute Nodes

These computers do the heavy lifting of running your programs. However you do not directly interact with compute
nodes. You ask for the scheduler for compute nodes to run your application program using SLURM, and then
SLURM will find available compute nodes and run your application program on them.

ssh, ftp, rsync, web

2278 | ||SSD se0co] 2.87B | [|SSD ssoc| 3.8TB
FADOJs RAIDO RAIDO §

Ethernet 1 Gb/s
SSH, HTTPS, FTP, RSYNC

SD 1920 GB

DRAGON IN TOTAL:

« & ¢ ¢
RAM memory 384 GB RAM memory 768 GB RAM memory 1 TB
24 * DDR-4 16 GB 2666 MHz 24 * DDR-4 32 GB 2933 MHz 32 * DDR-4 32 GB 3200 MHz

14 cores 14 cores 18 cores 18 cores 18 cores 18 cores 264
28 threads- 36 thread: 36 thread: 36.threads- 36-threads- computing cores
Intel Xeon Gold 6132 ' Intel Xeon Gold 6132 Intel Xeon Gold 6240 ' Intel Xeon Gold 6240 Intel Xeon Gold 6354 ' Intel Xeon Gold 6354
CPU @ 2.60 GHz CPU @ 2.60 GHz CPU @ 2.60 GHz CPU @ 2.60 GHz CPU @ 3.00 GHz CPU @ 3.00 GHz
5.4TB
total computation
RAM
RAM memory 192 GB
cache -> SSD 11068 12 * DDR-4 16 GB 2400 MHz
logs -> SSD 11068 o 30.7TB
cores
HDD 1.09 78 | HDD 2.18 78 20 threads toltal slpdaci on
nq HDD 1.0978 | HDD 2.18 T8 Intel Xeon Silver 4114 ocal disks
InfiniBand 56 Gb/s — o CPU @ 2.20 GHz
MPI, NFS 2 e A SCRATCH
HDD 1.09 78 | HDD 2.18 78
110 GB
HDD 1.09 78 | HDD 2.18 T8 SATA RAID1 SD 1008 13.8 TB
HDD 1.09 78 | HDD 2.18 T8
HDD space

<« Expandable accessible by NFS

Fig. 2: Dragon’s organization details.

Computing Resources

An HPC cluster is made up of a number of compute nodes, each with a complement of processors, memory,
and (possibly in some future) GPUs. You submit jobs that specify the application(s) you want to run along with
a description of the computing resources needed to run the application(s).

You may submit both serial and parallel jobs. A serial job is executed on a single node using exactly one CPU.
Parallel jobs can either share the memory on a single node or run as separate tasks communicating with each other.
In order to choose a desired type of your job, you need to specify the number of tasks and the number of CPUs per
each tasks. The table below summarizes the possible types of jobs.

Job type Number of tasks Number of CPUs/task
Serial 1 1
Shared parallel (e.g. OpenMP) 1 2-64
Separate parallel (e.g. MPI) 2-64 1-64

Note that the number of tasks multiplied by the number of CPUs per task may not exceed 64, unless you submit
your job in the free QOS.

In addition, for the dragon there is more granularity in available resources. Each user have a possibility to use up
to 1080G of RAM and resources are depending from queue used as specified in table bellow.

Name Priority PreemptMode GrpTRES MaxTRES MaxTRESPerNode MaxWall

normal 5 cluster cpu=64 7-00:00:00
tiny 20 cluster node=1 cpu=2,mem=2G 00:45:00
urgent 100 cluster cpu=48 2-00:00:00
free 0 requeue

long 3 cluster cpu=64 28-00:00:00

The Batch Scheduler and Resource Manager

The batch scheduler and resource manager work together to run jobs on an HPC cluster. The batch scheduler,
sometimes called a workload manager, is responsible for finding and allocating the resources that fulfill the job’s
request at the soonest available time. When a job is scheduled to run, the scheduler instructs the resource manager
to launch the application(s) across the job’s allocated resources. This is also known as “running the job”.

You can specify conditions for scheduling the job. One condition is the completion (successful or unsuccessful)
of an earlier submitted job. Other conditions include the availability of a specific license or access to a specific file
system.

Batch Jobs

To submit a batch script to SLURM, you need to use the sbatch command. It is designed to reject the job at
submission time if it requests resources that cannot be provided as specified. This gives you the opportunity to
examine the job request and resubmit it with the necessary corrections.

Interactive Jobs

An interactive job is a job that returns a command line prompt (instead of running a script) when the job runs. Use
salloc command to submit an interactive job to SLURM. When the requested resources are allocated, a command
line prompt will appear and the you can launch your application(s) using the srun command.

The following example requests a node for one task, and allocates 2GB RAM and 4 CPUs for an interactive job
that is allowed to last one hour. Then a sample command launching your_application on the allocated node is
shown:

user@dragon:~$ salloc --time=1:00:00 --mem=2G -nl -c4
salloc: Granted job allocation 1234
[1234] user@dragon:~$ srun your_application

Anatomy of a Batch Job

A batch job requests computing resources and specifies the application(s) to launch on those resources along with
any input data/options and output directives. You submit the job, usually in the form of a batch job script, to the
batch scheduler. This is the preferred way of using the cluster.

The batch job script is composed of four main components:
* The interpreter used to execute the script
» #SBATCH directives that convey default submission options.
* The setting of environment variables and the modules (if necessary).

* The application(s) to execute along with its input arguments and options.

Here is an example of a batch script that requests 8 task on two nodes, allocating altogether 2GB RAM on each node
and is allowed to run for 1 hour. It is assigned to the QOS normal. When the job is launched, it loads environmental

module my_module and launches the requested tasks of my_application on the allocated nodes:

#!/bin/bash

#SBATCH -n 8 -N 2
#SBATCH --time=1:00:00
#SBATCH --mem=2G
#SBATCH --qos=normal
module add my_module
srun my_application

J

When the job is scheduled to run, the resource manager will execute the batch job script on the first allocated node.

The srun command will launch additional requested tasks on all the allocated nodes.

The specific instruction how to launch available programs, are presented elsewhere.

Resources Specification

On the cluster you must manually specify requested resources. Should you forget to do this, your job will be
allocated 1IKB RAM and will be allowed to run for 1 minute. You specify the resources as command-line arguments

to sbatch or salloc or in the #SBATCH directive of your script.

The basic resources are as follows:

Long (short) option

Resource type

--time (-t)
--mem

--mem-per-cpu

--ntasks (-n)

--cpus-per-task (-c)

--nodes (-N)

Total run time of the job. Your job will be killed once this time elapses.
Memory required for all tasks on each node. The amount for RAM for each
task depends on the number of tasks assigned to a single node.

Memory required per allocated CPU. Each task will be given the specified
amount of RAM multiplied by the number of CPUs per task. This option and
--mem are mutually exclusive.

Maximum number of tasks allowed to run for this job simultaneously. The tasks
themselves are run with the srun command. Default is one.

Number of CPUs per single task. Default is one. Increase this number for
shared-memory parallel jobs. By default SLURM sets OMP_NUM_THREADS to
this value.

Number of distinct nodes allocated to your job. In general you should avoid
specifying this option. Set --ntasks and --cpus-per-task instead.

When submitting your jobs you should carefully consider required resources. Specifying too low values puts your
job at risk of being terminated and setting it too high wastes cluster resources and decreases priority of your job.
Furthermore, small jobs can be launched earlier in order to fill-in the holes is cluster resources, using backfill

algorithm.

How to Estimate How Much Memory My Batch Job Needs?

It is difficult to estimate beforehand the exact needs for jobs. Usually the best thing you can do is to use informa-
tion from similar previous completed jobs. The following command will print a summary of requested and used

resources for both running and finished batch jobs:

[$ seff JOBID

The output of this command looks like this:

$ seff 1592

Job ID: 1592

Cluster: dragon

User/Group: user/user

State: COMPLETED (exit code 0)

Cores: 48

Nodes: 4 (12 cores per node)

Tasks: 24 (2 cores per task)

Elapsed Time: 00:08:02

CPU Utilized: 04:36:28

CPU Efficiency: 71.70% of 06:25:36 core-walltime
Max Memory Utilized: 2.74 GB (up to 934.75 MB/node)
Memory Efficiency: 68.46% of 4.00 GB (1.00 GB/node)

You can find the total elapsed time of your job and the memory used. Set the --time option of your new job
to the value slightly higher than the visible one (--time=10:00 i.e 10 minutes would be reasonable in the above
example). Similarly you can estimate the required memory. Note, however, that for multi-task job you cannot know
how many nodes will be allocated for your job unless you explicitly specify this. So, it may be more reasonable
to require memory per CPU instead of a node. In the above example, the job used 2.74 GB or RAM for 48 cores
(58 MB per core). Hence, it would be quite reasonable to require --mem-per-cpu=64MB.

Another important output of the seff command is the CPU efficiency. If its value is low, it means that you have
required too many CPUs. Try decreasing number of CPUs per task or number of tasks to keep the efficiency as
close to 100% as possible.

Remember that the new job might have different needs. If you estimate the required time too big, your job might
need to queue longer than necessary, but no resources will be wasted. Here the big difference (queuing wise) is
wether the job is less than 3 days or more. Longer jobs queue longer.

If you estimate the memory needs much too big, then resources will likely be wasted. This is because if your job
uses only 4 cores but all the memory in node, then no other jobs fit in that node and all the remaining cores will be
idle.

Note, that if your job NEEDS the memory, then it is perfectly ok to reserve all the memory in the node, but please
don’t reserve that “‘just in case” or because you don’t have any idea how much the job needs. You can get an estimate
from similar previous jobs, and you can query that information with the command shown above. You just need the
SLURM jobid for those jobs. If you don’t know them, there are commands for searching them as well.

Job Names and Output Files

All jobs are given both a job identifier and a name, for easier identification in the batch-system. The default name
given to a job is the file name of the submit script, which can make it difficult to identify your job, if you use a
standard name for your submit scripts. You can give your job a name from inside the script by using the -J option:

[#SBATCH -J parameterTest]

This will name your job “parameterTest”.

By default — for jobs submitted with sbatch — the output which your job writes to stdout and stderr is written to
a file named slurm_%j.out. The %j in the file name will be replaced by the job number SLURM assigns to your
job. This ensures that the output file from your job is unique and different jobs do not interfere with each other’s
output file.

In many cases the default file name is not convenient. You might want to have a file name which is more descrip-
tive of the job that is actually running — you might even want to include important meta-data, such as physical
parameters, into the output filename(s). This can be achieved by using the -o and -e options of sbatch. The -o
option specifies the file containing the stdout and the -e option the file containing the stderr. It is good practice
to include the %j string into the filenames. That will prevent jobs from overwriting each other’s output files. The
following gives an example:

#SBATCH -0 calcflow-%j.out
#SBATCH -e calcflow-%j.err

You can give the same filename for both options to get stdout and stderr written to the same file. Also if you simply
skip the -e option, the stderr will be written to the same file as the stdout.

If you use job arrays, you may replace the job identifier %j mark with %a, which gives the whole-array identifier
and %A for the array element number:

[#SBATCH -0 myarray-%a_%A.out }

Partitions

SLURM jobs are executed on compute nodes. Amount and types of resources (CPUs, Memory, disk storage, etc.)
may vary between nodes of the clusters. See the HPC Resources page for an overview. To get an overview of the
nodes and see how they are doing, login to a cluster and execute:

[s sinfo -N -1 }

Partitions are used by SLURM to group nodes with an identical or similar configuration. On our cluster—where
nodes are identical—you should not worry about partitions. Your job will be assigned to the partition best suited
for your purpose.

To manually select a partition use -p option in sbatch or salloc or in the #SBATCH directive of your script:

Job Priorities

When you submit a batch job or request resources for interactive one, it is not necessarily started immediately.
Instead, Jobs will be ordered in the queue of pending jobs based on a number of factors. The scheduler will always
be looking to launch the job that is at the top of the queue. However, if your job does not require many resources, it
may be launched earlier, as long as it does not delay the start of ony higher-priority job (this is known as conservative
backfill).

The factors that contribute to a job’s priority can be seen by invoking the sprio command. These factors include:

¢ Fair-share: a number indicating how much you have been using each cluster recently. This is the most
important factor, as it ensures that all users will be able to have their job started in reasonable time. You can
check your current usage using sshare command:

$ sshare
Account User RawShares NormShares EffectvUsage FairShare
root 1.000000 1.000000 0.500000
physics 1 0.500000 1.000000 0.250000
physics username 1 0.125000 0.874713 0.007825

J

* Job size: a number proportional to the quantity of computing resources the job has requested. Smaller and
shorter jobs will have higher priority.

* Age: a number proportional to the period of time that has elapsed since the job was submitted to the queue.

* QOS: a number assigned to the requested Quality-Of-Service. See below for details.

QoS

When submitting a job you may choose a Quality-Of-Service (QOS). This allows you to differentiate between jobs
with lower versus higher priority. On dragon you have a choice of the following QOSes:

normal
You have no idea what this QOS is about and you only want to have your computations done.

This is a default QOS and should be used most of the time. Within this QOS you can run jobs up to 7 days
long and consuming up to 64 CPUs.

tiny
You could have used your laptop for the job, but you have no battery left.

This QOS is designed for small serial jobs. Jobs are limited to one CPU, 2GB RAM and can last only for 45
minutes. It should be used for draft calculations or new code compilation. Because such small jobs should
not delay other ones significantly, they have increased priority.

free
You are a cheapskate and decided to go Dutch.

You’ll consume whatever resources are available and will accept lowest priority for your jobs. There are
not limits for your job other than physical cluster capabilities and even better, your fair-share factor is not
affected. In other words, you can do any computations free of charge.

The downside is that this QOS has so low priority that your job can be killed any time (this is called job pre-
emption). You must consider this possibility, by writing your partial results to disk often and designing your
code such way that it can be resume from the last saved state when restarted. When your job is preempted,
it will be automatically requeued and restarted once the resources are available again.

It may take some time for this research project to complete, but hey you got it for free!

urgent
You had to submit your PhD thesis or conference abstract yesterday, ooops.

We know how science works and planning can be hard when you expect the unexpected, so we will try to
accommodate your request for this panic mode QOS. However, this is kind of disruptive for others who try
to schedule their “science as usual”. Hence the following rules apply:

* Your job gets a tremendous priority boost. You are almost guaranteed to jump ahead of any other job
waiting in the queue.

* Your fair-share factor is charged 10 times the amount of (normalized) resources as compared to when
using normal or tiny QOS. Because of this penalty, your other jobs will have to wait longer than usual
for their turn. This includes jobs in the urgent QOS, so submitting many job into it is pointless.

* If we notice that you use this QOS more often than once in a blue moon, you will be blocked from
using it. This can be exempt only if you buy all cluster administrators (Maciej and Piotr at the present
time) a beer, a cake, or a beverage of their choice.

long
Sometimes getting what you want can take a long time.

This QOS is designed for long running jobs (up to 28 days). It has a reduced priority and one user can setup
64 CPUs in this queue. But you can start your job and go for a vacation in Spain. Just remember to buy each
server administrator a bottle of good wine (why it never happened?).

To specify a QOS when submitting a job with sbatch of salloc, use --qos= switch either in the command line
or the #SBATCH declaration.

1.4 Checking the Status of Your Job

To check the status of your job, use the squeue command.

[$ squeue J

Most common arguments to are -u username for listing only user username jobs, and -j jobid for listing job
specified by the job number. Adding -1 (for “long” output) gives more details.

Alternatively, you can use the sacct command. This command accesses the accounting database and can give
useful info about current and past job resources usage. To get job stats for your own jobs that for example started
after 2017-04-14 11:00:00 and finished before 2017-04-14 23:59:59:

[$ sacct -S 2017-04-14T11:00:00 -E 2017-04-14T23:59:59 }

To get job stats for a specific job:

[$ sacct -j 1234 }

1.5 Deleting jobs

The scancel command aborts a job removing it from the queue or killing the job’s processes if it already started:

[$ scancel 1234 }

Deleting all your jobs in one go:

[$ scancel -u username }

1.6 Environment Variables Available to Execution Scripts

In your scripts you can use a number of environmental variables, which are automatically set by SLURM. The most
useful ones are listed below:

Variable Name

Description

SLURM_ARRAY_TASK_COUNT

SLURM_ARRAY_TASK_ID
SLURM_ARRAY_TASK_MAX
SLURM_ARRAY_TASK_MIN
SLURM_ARRAY_TASK_STEP
SLURM_ARRAY_JOB_ID
SLURM_CLUSTER_NAME
SLURM_CPUS_ON_NODE
SLURM_CPUS_PER_TASK

SLURM_JOB_ID

SLURM_JOB_CPUS_PER_NODE

SLURM_JOB_DEPENDENCY
SLURM_JOB_NAME
SLURM_JOB_NODELIST
SLURM_JOB_NUM_NODES
SLURM_JOB_PARTITION
SLURM_JOB_QO0S
SLURM_MEM_PER_CPU
SLURM_MEM_PER_NODE
SLURM_NODEID
SLURM_NTASKS
SLURM_PROCID
SLURM_RESTART_COUNT

SLURM_SUBMIT_DIR
SLURM_SUBMIT_HOST
SLURM_TASKS_PER_NODE

SLURM_TASK_PID
SLURMD_NODENAME

Total number of tasks in a job array.

Job array ID (index) number.

Job array’s maximum ID (index) number.

Job array’s minimum ID (index) number.

Job array’s index step size.

Job array’s master job ID number.

Name of the cluster on which the job is executing.

Number of CPUS on the allocated node.

Number of cpus requested per task. Only set if the --cpus-per-task
option is specified.

The ID of the job allocation.

Count of processors available to the job on this node.

Set to value of the Job Dependencies option.

Name of the job.

List of nodes allocated to the job.

Total number of nodes in the job’s resource allocation.

Name of the partition in which the job is running.

Quality-Of-Service (QOS) of the job allocation.

Same as --mem-per-cpu

Same as --mem

ID of the nodes allocated.

Same as -n, --ntasks

The MPI rank (or relative process ID) of the current process

If the job has been restarted due to system failure or has been explic-
itly requeued, this will be sent to the number of times the job has been
restarted.

The directory from which sbatch was invoked.

The hostname of the computer from which sbatch was invoked.
Number of tasks to be initiated on each node. Values are comma sep-
arated and in the same order as SLURM_NODELIST. If two or more
consecutive nodes are to have the same task count, that count is
followed by “(x#)” where “#“ is the repetition count. For exam-
ple, “SLURM_TASKS_PER_NODE=2(x3),1” indicates that the first three
nodes will each execute three tasks and the fourth node will execute one
task.

The process ID of the task being started.

Name of the node running the job script.

1.7 Job Arrays

To submit a large number of similar cluster jobs, there are two basic approaches. A shell script can be used to
repeatedly call sbatch passing in a customized SLURM script.

The preferred approach—that is simpler and potentially more powerful-would be to submit a job array using one
SLURM script and a single call to sbatch. Job arrays hand-off the management of large numbers of similar jobs to
the Resource Manager and Scheduler and provide a mechanism that allows cluster users to reference an entire set
of jobs as though it were a single cluster job.

10

Submitting Job Arrays

Job arrays are submitted by including the -a or --array option in a call to sbatch, or by including the #SBATCH
-a command in your SLURM script. The -a option takes a comma-delimited list of job ID numbers or of one or
more pairs of job ID numbers separated by a dash.

Each job in the job array will be launched with the same SLURM script and in an identical environment—except
for the value of its array ID. The value of the Array ID for each job in a Job Array is stored in the
SLURM_ARRAY_TASK_ID environment variable.

For example, if a job array is submitted with 10 elements, numbered from 1 to 10, the submission command would
be the following:

[$ sbatch -a 1-10 array_script.sh J

.9

You may also specify explicit array indices separated by commas of add a step to the specified range, using “:”.
Hence, the following commands are equivalent:

$ sbatch --array 0-20:4 array_script.sh
$ sbatch -a 0,4,8,12,16,20 array_script.sh

An optional parameter, the slot limit, can be added to the end of the -a option to specify the maximum number of
job array elements that can run at one time. The slot limit is specified by appending a “%” to the -a option followed
by the slot limit value. A twelve element job array with non-sequential array IDs and a slot limit of 3 could be
specified as follows:

[$ sbatch -a 1-3,5-7,9-11,13-15%3 array_script.sh }

Each job included in the job array has its own unique array element value stored in the SLURM_ARRAY_TASK_ID
environment variable. The value of each job array element’s array ID can be accessed by the job script just like
any other shell environment variable. If the job ran a bash shell script, the job’s array ID information could printed
to STDOUT using the following command:

[echo "Current job array element's Array ID: SLURM_ARRAY_TASK_ID}"]

Customizing Data for Job Array Elements

A more useful task for the array ID—and the real power of job arrays—would be to use the job’s Array ID as a direct
or indirect index into the data being processed by the job array.

One approach to accomplish this would be to use the SLURM_ARRAY_TASK_ID value to provide a custom set of
input parameters for job in the job array. To do this, a text file would be created containing multiple lines each of
which would consist of a series of space delimited values. In this approach, each line in the data file would contain
the input parameters needed by one element of the job array. The SLURM script would then be modified to include
a command that would read in the correct line of the data file-based on the SLURM_ARRAY_TASK_ID value of that
particular job. While there are many ways to read the appropriate line from the data file, the following serves as
a sample implementation assuming that the data file was called data.dat and was located in the same directory as
the script that was run for each element of the job array:

[PARAMETERS=$(Sed "${SLURM_ARRAY_TASK_ID}q;d" data.dat) }

Assuming that the executable program/script for the jobs in this array was called command. sh, the SLURM script
would launch the program with a line like the following:

[./command. sh ${PARAMETERS }

An alternate approach is possible if the unique input parameters needed by each job in the array can be calculated
arithmetically. For example, if each instance of the command. sh script needed to loop over a range of values,
the SLURM script could calculate the max and min values needed for each job directly—based on the value in the

11

SLURM_ARRAY_TASK_ID environment variable. If each job’s range needed to include 1000 values, this could be

done by including commands like the following in the SLURM script:

MAX=$(echo "${SLURM_ARRAY_TASK_ID}*1000" | bc)
MIN=$(echo "(${SLURM_ARRAY_TASK_ID}-1)*1000" | bc)

|

The data file referred to above (data.dat) would not be needed in this approach, and the SLURM script call to

command . sh would be something like the following:

[./command. sh ${MIN MAX

1.8 Job Dependencies

Sometimes it is useful to make a job dependent on another job. Job dependencies are used to defer the start of a job
until the specified dependencies have been satisfied. They are specified with the --dependency (-d for shoer)

option to the sbatch command line or #SBATCH directive.

[$ sbatch --dependency=<type:job_id[:job_id][,type:job_id[:job_id]]> ...

There are the following dependency types:

Dependency

Description

after:jobid[:jobid...]
afterany: jobid[:jobid...]
afternotok: jobid[: jobid...]
afterok:jobid[:jobid...]

singleton

job can begin after the specified jobs have started

job can begin after the specified jobs have terminated

job can begin after the specified jobs have failed

job can begin after the specified jobs have run to completion with
an exit code of zero

jobs can begin execution after all previously launched jobs with
the same name and user have ended. This is useful to collate
results of a swarm or to send a notification at the end of a swarm.

To set up pipelines using job dependencies the most useful types are afterany, afterok and singleton. The
simplest way is to use the afterok dependency for single consecutive jobs. For example:

$ sbatch jobl.sh
12345

$ sbatch --dependency-=afterok:12345 job2.sh

Now when job1l ends with an exit code of zero, job2 will become eligible for scheduling. However, if job1 fails
(ends with a non-zero exit code), job2 will not be scheduled but will remain in the queue and needs to be canceled

manually.

As an alternative, the afterany dependency can be used and checking for successful execution of the prerequisites

can be done in the job script itself.

1.9 Running MPI Jobs

MPI jobs are natively supported by SLURM. On both clusters two MPI flavours are available: MPICH and Open-

MPI. You can select one of them by loading the proper module, using one of the following commands:

[$ module add openmpi

or

[$ module add mpich

12

The recommended way of launching applications differ depending on the chosen MPI flavour. If you are using
OpenMPI, you should use mpirun in your batch script or interactive shell. For MPICH, you can simply launch
your application with srun command. In either case, you need not manually specify the number of processes nor
the nodes. This information is automatically provided by SLURM, depending on the number of allocated tasks.

Examples:

#!/bin/bash

#SBATCH -n 8

#SBATCH --time=1:00:00
#SBATCH --mem=2G

#SBATCH --qos=normal

module add openmpi

mpirun my_openmpi_application

#!/bin/bash

#SBATCH -n 8

#SBATCH --time=1:00:00
#SBATCH --mem=2G

#SBATCH --qos=normal
module add mpich

srun my_mpich_application

1.10 Basic SLURM Commands

Action Command
Job submission sbatch
Job deletion scancel
List all jobs in queue squeue
List all nodes sinfo

Show information about nodes
Job start time
Job information

scontrol show nodes
squeue --start
scontrol show job

Most Common Environmental Variables

Description Variable

Job ID $SLURM_JOB_ID

Submit directory $SLURM_SUBMIT_DIR
Submit Host $SLURM_SUBMIT_HOST
Node List $SLURM_JOB_NODELIST
Job Array Index $SLURM_ARRAY_TASK_ID

13

Job Specification

Description Directive

Script directive #SBATCH

Queue -p [partition] --qos=[qos]
Wall Clock Limit -t [days-hh:mm:ss]

Standard Output File -0 [file_name]

Standard Error File -e [file_name]

Combine stdout/err (use -o without -e)

Event Notification --mail-type=[events]

Email Address --mail-user=[address]

Job Name -] [name]

Job Restart --requeue --no-requeue
Memory Size --mem=[M|G|T] --mem-per-cpu=[M|G|T]
Node Count -N [min[-max]]

CPU Count -n [count] -c [count]

Job Dependency -d [state:job_id]

Job Arrays -a [array_spec]

Generic Resources --gres=[resource]

2 Environment Modules User Guide

Environment Modules is a utility for the dynamic modification of a user’s environment via modulefiles. There
is a modulefile for each of available software packages installed on the system. Therefore, users may use the
module command to check available software on the system. Users can issue a module command to dynamically
set or remove shell environment variables such as PATH, INCLUDE, LD_LIBRARY_PATH, MANPATH, etc. for the
corresponding software package/version. Users may put a module command in the job script file as needed, and
can also add a module command into their ~/.bashrc.

2.1 Check available modules/packages

The command to check the module files for installed software packages is

[$ module avail

More module files will become available when software packages are added.

Example:

$ module avail

crystal/09.1.0.1 intel/2019.1.144 mkl/2019.1.144 mpich o
. plask/openblas gchem/mpich

crystal/09.2.0.1 intel/2021.1.1 (L,D) mk1/2020.0.166 openmpi/2.1.
0 python/default gchem/openmp

crystal/17.1.0.2 (D) meep a@w mkl/2021.1.1 (L,D) openmpi/4.0.
—3rc4 (D) python/2.7 gchem/serial (D)

intel/2013.2.146 mkl/default mpb L plask/mkl .
< (L,D) python/3.8 (D) turbomole

(continues on next page)

14

(continued from previous page)

Imod/6.6 settarg/6.6

Where:
L: Module is loaded
D: Default Module

2.2 List loaded modules/packages

The command to list loaded modules/packages is module list

$ module list

Currently Loaded Modules:
1) intel/2021.1.1 2) meep 3) mpb 4) mkl/2021.1.1 5) plask/mkl

2.3 Load/add a module to set the environmental variables

The command to set the environmental variables for a software package is module load [modulefile]. You
may check the loaded modules using module list after you load a module/package.

$ module load crystal
$ module list

Currently Loaded Modules:
1) intel/2021.1.1 2) meep 3) mpb 4) mkl/2021.1.1 5) plask/mkl 6).
—.crystal/17.1.0.2

J

To display what environmental variables have been set in a module use command module display
[modulename]:

$ module display crystal

—

help([[

This module loads CRYSTAL.
1D
whatis("Name: crystal ")
whatis("Description: This module loads CRYSTAL. ")
whatis("Version: 17.1.0.2 ")
setenv("CRY_EXEDIR","/opt/crystal/Linux-ifortl7_XE_emt64/v1.0.2")
setenv("CRY_SCRDIR","/tmp")
setenv("CRY_MPIBIN","/opt/openmpi-2.1.0/bin/mpirun")
prepend_path("PATH","/opt/crystal/bin")
family("crystal")

To display basic help information for a module use help subcommand:

[$ module help [modulefile] }

15

2.4 Unload/remove a module from the shell environment

The command to unset the environmental variables for a software package is module unload [modulefile].
You may check the loaded modules using module 1list after you unload the module/package.

$ module unload crystal
$ module list

Currently Loaded Modules:
1) intel/2021.1.1 2) meep 3) mpb 4) mkl/2021.1.1 5) plask/mkl

2.5 Unload all loaded modules

The command to unload all the loaded modules is module purge.

[$ module purge }

2.6 Save and restore loaded modules

The command to save the loaded modules/packages is module save [filename]. This command will save the
loaded modules/packages in a file filename in ~/.1mod.d. You can load the saved modules/packages using
module restore [filename]. If the filename is omitted, then the default file ~/.1mod.d/default is used.

$ module save
$ module list

Currently Loaded Modules:
1) intel/2021.1.1 2) meep 3) mpb 4) mkl/2021.1.1 5) plask/mkl

$ module purge
$ module list

Currently Loaded Modules:

$ module restore
$ module list

Currently Loaded Modules:
1) intel/2021.1.1 2) meep 3) mpb 4) mkl/2021.1.1 5) plask/mkl

2.7 Search for a module
The module spider command searches for modules that match the regular expression. If the regular expression
is omitted, then all modules are listed. The output of module spider is a table with the following columns:

* Module: The name of the module.

* Version: The version of the module.

* Description: A brief description of the module.

* Keywords: A list of keywords that are used to search for the module.

e URL: A URL that can be used to get more information about the module.

Themodule spider command isapowerful tool that can be used to search for modules. It is important to note that
the module spider command is not the same as the module avail command. The module avail command

16

lists the modules that are available to the user. The module spider command searches for modules that match
the regular expression. If the regular expression is omitted, then all modules are listed.

The module spider command is useful when you are trying to find a module for a particular software package.
For example, if you are looking for a module for the FFTW package, you can use the following command

[$ module spider fftw }

This will list all the modules that are available for FFTW. The module spider command is case insensitive, so
you can also use the following command

[$ module spider FFTW }

If you know the name of the module, but you are not sure what version is available, you can use the following
command

[$ module spider fftw/3.3 }

This will list all the modules that are available for FFTW 3.3.

2.8 ml: a convenient tool

For those of you who can’t type the mdoule, moduel, err module command correctly, Lmod has a tool for you. With
ml you won’t have to type the module command again. The two most common commands are module list*and
*module load <something> and m1 does both

[$ ml }

means module list. And

[$ ml foo]

means module load foo while

[$ ml -bar }

means module unload bar. It won’t come as a surprise that you can combine them

[$ ml foo -bar }

means module unload bar; module load foo. You can do all the module commands

$ ml save

$ ml avail

$ ml spider

$ ml show foo

If you ever have to load a module name spider you can do

[$ ml load spider }

If you are ever force to type the module command instead of ml then that is a bug and should be reported.

17

3 Available Software

3.1 PLaSK

PLaSK is available through the module plask. You can use either PLaSK compiled with OpenBLAS or Intel
MKL. To do so type module load plask/openblas or module load plask/mkl, respectively.

You also have access to most past versions of PLaSK. To be able to use them, you need to type module load
oldplask and then you can select old PLaSK versions with module load plask/version.

Example:

$ module load oldplask
$ module load plask/2019.01.01

To see all the old versions available, type:

module load oldplask
module avail

3.2 MPB and Meep
MPB

MPB is a free and open-source software package for computing electromagnetic band structures and modes. To
use it, load the mpb module. If you want to use MPI version of MPB (either MPICH or OpenMPI), just load the
appropriate MPI module in addition to mpb and start your computations with mpirun. In such case, you should
use the mpb-mpi executable.

Example:

#!/bin/bash

#SBATCH --ntasks=8
#SBATCH --time=1:00:00
#SBATCH --mem=2G
#SBATCH --qos=normal

module add mpich
module add mpb

srun mpb-mpi your_file.scm

To use Python interface to MPB you need to load meep module.

Meep

Meep is a free and open-source software package for electromagnetics simulation via the finite-difference time-
domain (FDTD) method. To use it, load the meep module. If you want to use MPI version of Meep (either MPICH
or OpenMPI), just load the appropriate MPI module in addition to meep and start your computations with mpirun.

Example:

#!/bin/bash

#SBATCH --ntasks=8
#SBATCH --time=6:00:00
#SBATCH --mem=8G
#SBATCH --qos=normal

(continues on next page)

18

(continued from previous page)

module add mpich
module add meep

srun python your_meep_code.py

19

	Using SLURM
	Introduction
	How to Log-in
	Running Jobs
	Login Node
	Compute Nodes
	Computing Resources
	The Batch Scheduler and Resource Manager

	Batch Jobs
	Interactive Jobs
	Anatomy of a Batch Job
	Resources Specification
	How to Estimate How Much Memory My Batch Job Needs?

	Job Names and Output Files
	Partitions
	Job Priorities
	QOS

	Checking the Status of Your Job
	Deleting jobs
	Environment Variables Available to Execution Scripts
	Job Arrays
	Submitting Job Arrays
	Customizing Data for Job Array Elements

	Job Dependencies
	Running MPI Jobs
	Basic SLURM Commands
	Most Common Environmental Variables
	Job Specification

	Environment Modules User Guide
	Check available modules/packages
	List loaded modules/packages
	Load/add a module to set the environmental variables
	Unload/remove a module from the shell environment
	Unload all loaded modules
	Save and restore loaded modules
	Search for a module
	ml: a convenient tool

	Available Software
	PLaSK
	MPB and Meep
	MPB
	Meep

