
 2010 Microchip Technology Inc. DS51865B

HI-TECH C® for PIC10/12/16
User’s Guide

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
DS51865B-page 2
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-739-2

Microchip received ISO/TS-16949:2002 certification for its worldwide
 2010 Microchip Technology Inc.

headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

HI-TECH C® FOR PIC10/12/16
USER’S GUIDE
Table of Contents
Chapter 1. HI-TECH C Compiler for PIC10/12/16 MCUs
1.1 Introduction ... 5
1.2 Compiler Description and Documentation .. 5
1.3 Device Description ... 5

Chapter 2. PICC Command-line Driver
2.1 Introduction ... 7
2.2 Invoking the Compiler ... 7
2.3 The Compilation Sequence .. 9
2.4 Runtime Files ... 15
2.5 Compiler Output ... 16
2.6 Compiler Messages .. 18
2.7 PICC Driver Option Descriptions .. 22
2.8 MPLAB IDE Universal Toolsuite Equivalents ... 42

Chapter 3. C Language Features
3.1 Introduction ... 47
3.2 ANSI C Standard Issues .. 47
3.3 Processor-related Features .. 47
3.4 Supported Data Types and Variables .. 54
3.5 Memory Allocation and Access .. 70
3.6 Operators and Statements ... 80
3.7 Register Usage ... 82
3.8 Functions .. 82
3.9 Interrupts .. 86
3.10 Psects ... 90
3.11 Main, Runtime Startup and Reset .. 93
3.12 Library Routines ... 96
3.13 Mixing C and Assembly Code .. 97
3.14 Optimizations .. 103
3.15 Preprocessing .. 104
3.16 Linking Programs ... 112

Chapter 4. Macro Assembler
4.1 Assembler Usage ... 115
4.2 Options ... 116
4.3 HI-TECH C Assembly Language .. 119
4.4 Assembly List Files ... 137
 2010 Microchip Technology Inc. DS51865B-page 3

HI-TECH C® for PIC10/12/16 User’s Guide
Chapter 5. Linker
5.1 Introduction ... 141
5.2 Operation .. 141
5.3 Relocation and Psects .. 148
5.4 Map Files .. 149

Chapter 6. Utilities
6.1 Introduction ... 155
6.2 Librarian ... 155
6.3 Objtohex ... 158
6.4 Cref ... 159
6.5 Cromwell .. 162
6.6 Hexmate ... 165

Chapter 7. Library Functions

Chapter 8. Error and Warning Messages ..241

Appendix A. Implementation-Defined Behavior
A.1 Translation (G.3.1) ... 343
A.2 Environment (G.3.2) ... 343
A.3 Identifiers (G.3.3) ... 343
A.4 Characters (G.3.4) ... 344
A.5 Integers (G.3.5) .. 344
A.6 Floating-Point (G.3.6) ... 345
A.7 Arrays and Pointers (G.3.7) ... 345
A.8 Registers (G.3.8) .. 346
A.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9) 346
A.10 Qualifiers (G.3.10) .. 347
A.11 Declarators (G.3.11) .. 347
A.12 Statements (G.3.12) ... 347
A.13 Preprocessing Directives (G.3.13) ... 347
A.14 Library Functions (G.3.14) ... 348

Index ...351

Worldwide Sales and Service ...364
DS51865B-page 4  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Chapter 1. HI-TECH C Compiler for PIC10/12/16 MCUs
1.1 INTRODUCTION

This chapter provides an overview of the HI-TECH C Compiler for PIC10/12/16 MCUs.

1.2 COMPILER DESCRIPTION AND DOCUMENTATION

The HI-TECH C Compiler for PIC10/12/16 MCUs is a free-standing, optimizing ANSI C
compiler. It supports all PIC10, PIC12 and PIC16 series devices, as well as the
PIC14000 device and the enhanced Mid-Range PIC® MCU architecture.

The compiler is available for several popular operating systems, including 32 and 64-bit
Windows®, Linux and Apple OS X.

The compiler can run in one of three operating modes: Lite, Standard or PRO. The
Standard and PRO operating modes are licensed modes and require a serial number
to enable them. Lite mode is available for unlicensed customers. The basic compiler
operation, supported devices and available memory are identical across all modes.
The modes only differ in the level of optimization employed by the compiler.

1.2.1 Conventions

Throughout this manual, the term “the compiler” is often used. It can refer to either all,
or some subset of, the collection of applications that form the HI-TECH C Compiler for
PIC10/12/16 MCUs. Often it is not important to know, for example, whether an action
is performed by the parser or code generator application, and it is sufficient to say it
was performed by “the compiler”.

It is also reasonable for “the compiler” to refer to the command-line driver (or just driver)
as this is the application that is always executed to invoke the compilation process. The
driver for the HI-TECH C Compiler for PIC10/12/16 MCUs package is called PICC. The
driver and its options are discussed in Section 2.7 “PICC Driver Option Descrip-
tions”. Following this view, “compiler options” should be considered command-line
driver options, unless otherwise specified in this manual.

Similarly “compilation” refers to all, or some part of, the steps involved in generating
source code into an executable binary image.

1.3 DEVICE DESCRIPTION

This compiler supports Microchip PIC devices with Baseline, Mid-Range and
Enhanced Mid-Range cores. All are 8-bit devices.

The Baseline core uses a 12-bit wide instruction set and is available in PIC10, PIC12
and PIC16 part numbers. The Mid-Range core utilizes a 14-bit wide instruction set that
includes additional instructions to those provided by Baseline parts. Its data memory
banks and program memory pages are larger than those on Baseline devices. It is
available in PIC12, PIC14 and PIC16 part numbers. The Enhanced Mid-Range core
also uses a 14-bit wide instruction set, but incorporates additional instructions and fea-
tures over the Mid-Range devices. There are both PIC12 and PIC16 part numbers that
are based on the Enhanced Mid-Range core.
 2010 Microchip Technology Inc. DS51865B-page 5

HI-TECH C® for PIC10/12/16 User’s Guide
The compiler takes advantage of the target device’s instruction set, addressing modes
memory and registers where ever possible.

See Section 2.7.21 “--CHIPINFO: Display List of Supported Processors” for infor-
mation on finding the full list of devices supported by your compiler version.
DS51865B-page 6  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Chapter 2. PICC Command-line Driver
2.1 INTRODUCTION

The command-line driver is called PICC and is the application that can be invoked to
perform all aspects of compilation, including C code generation, assembly and link
steps. Even if you use an IDE to assist with compilation, the IDE will ultimately call
PICC.

Although the internal compiler applications can be called explicitly from the command
line, using PICC is the recommended way to use the compiler as it hides the complexity
of all the internal applications used and provides a consistent interface for all compila-
tion steps.

This chapter describes the steps the driver takes during compilation, files that the driver
can accept and produce, as well as the command-line options that control the com-
piler’s operation. It also shows the relationship between these command-line options
and the controls in the MPLAB IDE Build Options dialog.

2.2 INVOKING THE COMPILER

2.2.1 Driver Command-line Format

This section looks at how to use PICC as well as the tasks that it, and the internal appli-
cations, perform during compilation.

PICC has the following basic command format.

PICC [options] files [libraries]

It is assumed in this manual that the compiler applications are either in the console’s
search path, or the full path is specified when executing any application. The compiler’s
location can be added to the search path when installing the compiler by selecting the
Add to environment checkbox in the install program.

It is conventional to supply options (identified by a leading dash “-” or double dash
“–”) before the filenames, although this is not mandatory.

The formats of the options are listed in Section 2.7 “PICC Driver Option Descrip-
tions”, with a detailed description of each option.

The files may be any mixture of C and assembler source files, and precompiled inter-
mediate files, such as relocatable object (.obj) files or p-code (.p1) files. The order
of the files is not important, except that it may affect the order in which code or data
appears in memory, and may affect the name of some of the output files.

Libraries is a list of user-defined object code or p-code library files that will be
searched by the linker in addition to the standard C libraries. The order of these files
will determine the order in which they are searched. They are typically placed after the
source filename, but this is not mandatory.

If you are building code using a make system, ensure you are familiar with the unique
intermediate file format as described in Section 2.3.3 “Multi-step Compilation”.
 2010 Microchip Technology Inc. DS51865B-page 7

HI-TECH C® for PIC10/12/16 User’s Guide
2.2.1.1 LONG COMMAND LINES

The PICC driver is capable of processing command lines exceeding any operating sys-
tem limitation. To do this, the driver may be passed options via a command file. The
command file is specified by using the @ symbol which should be immediately followed
(i.e. no intermediate space character) by the name of the file containing the command
line arguments intended for the driver.

Each command-line argument must be separated by one or more spaces and may be
placed over several lines by using a space and backslash character to separate lines.
The file may contain blank lines, which are simply skipped by the driver.

The use of a command file means that compiler options and project filenames can be
stored along with the project, making them more easily accessible and permanently
recorded for future use, but without involving the complexity of creating a make utility.

For example, a command file xyz.cmd is constructed in any text editor and contains
both the options and file names that are required to compile your project as follows.

--chip=16F877A -m \
--opt=all -g \
main.c isr.c

After it is saved, the compiler may be invoked with the command:

PICC @xyz.cmd

2.2.2 Environment Variables

When hosted on a Windows environment, the compiler uses the registry to store infor-
mation relating to the compiler installation directory and activation details, along with
other configuration settings. Under Linux and Apple OS X, the registry is replaced by
an XML file which stores the same information. This information is necessary regard-
less of whether the compiler is run on the command line or from within an IDE.

The compiler tries to finds the location of this XML file in several ways. First, the com-
piler looks for the presence of an environment variable called HTC_XML. If present, this
variable should contain the full path to the XML file (including the file’s name). If this
variable is not defined, the compiler then searches for an environment variable called
HOME. This variable typically contains the path to the user’s home directory. The com-
piler looks for the XML with a name htsoft.xml in the directory indicated by the HOME
variable. If the HOME environment variable is not defined, the compiler tries to open the
file /etc/htsoft.xml. If none of these methods finds the XML file, an error is gen-
erated.

When running the compiler on the command line, you may wish to set the PATH envi-
ronment variable. This allows you to run the compiler driver without having to specify
the full compiler path with the driver name. Note that the directories specified by the
PATH variable are only used to locate the compiler driver. Once the driver is running, it
uses the registry or XML file, described above, to locate the internal compiler applica-
tions, such as the parser, assembler and linker etc. The directories specified in the
PATH variable do not override the information contained in the registry or XML file. The
MPLAB IDE allows the compiler to be selected via a dialog and execution of the com-
piler does not depend on the PATH variable.
DS51865B-page 8  2010 Microchip Technology Inc.

PICC Command-line Driver
2.2.3 Input File Types

PICC distinguishes source files, intermediate files and library files solely by the file
type, or extension. Recognized file types are listed in Table 2-1. Alphabetic case of the
extension is not important from the compiler’s point of view, but most operating system
shells are case sensitive.

This means, for example, that a C source file must have a .c extension. Assembler
files can use either .as or .asm extensions.

The terms “source file” and “module” are often used when talking about computer
programs. They are often used interchangeably, but they refer to the source code at
different points in the compilation sequence.

A source file is a file that contains all or part of a program. Source files are initially
passed to the preprocessor by the driver. A module is the output of the preprocessor,
for a given source file, after inclusion of any header files (or other source files) which
are specified by #include preprocessor directives. These modules are then passed
to the remainder of the compiler applications. Thus, a module may consist of several
source and header files. A module is also often referred to as a translation unit. These
terms can also be applied to assembly files, as they too can include other header and
source files.

2.3 THE COMPILATION SEQUENCE

2.3.1 The Compiler Applications

The main internal compiler applications and files are illustrated in Figure 2-1.

You can consider the large underlying box to represent the whole compiler, which is
controlled by the command line driver, PICC. You may be satisfied just knowing that C
source files (shown on the far left) are passed to the compiler and the resulting output
files (shown here as a HEX and COFF debug file on the far right) are produced; how-
ever internally there are many applications and temporary files being produced. An
understanding of the internal operation of the compiler, while not necessary, does
assist with using the tool.

The driver will call the required compiler applications. These applications are shown as
the smaller boxed inside the large driver box. The temporary file produced by each
application can also be seen in this diagram.

TABLE 2-1: PICC INPUT FILE TYPES

File Type Meaning

.c C source file

.p1 p-code file

.lpp p-code library file

.as or .asm Assembler source file

.obj Relocatable object code file

.lib Relocatable object library file

.hex Intel HEX file
 2010 Microchip Technology Inc. DS51865B-page 9

HI-TECH C® for PIC10/12/16 User’s Guide
FIGURE 2-1: COMPILER APPLICATIONS AND FILES

Table 2-2 lists the compiler applications. The names shown are the names of the exe-
cutables, which can be found in the bin directory under the compiler’s installation
directory.

.as

preprocessor parser
code

generator
assembler .c

.pre .p1 .obj

processed
files (module)

p-code
files assembly file

relocatable
object file

C source
files

or p

linker objtohex

cromwell

hexmate

parser
code

generator
assembler

linker objtohex

cromwell

.obj

absolute
object file

.hex

hex file

.cof

debug file

.hex

hex file

.c

.h

Command-line driver

.lppp-code
libraries

.as
assembly

source
files

.objrelocatable
object files

.hexhex
files

.lib object
libraries

.p1 p-code
files

TABLE 2-2: COMPILER APPLICATION NAMES

Name Description

PICC Command line driver; the interface to the compiler

CLIST Text file formatter

CPP The C preprocessor

P1 C code parser

CGPIC Code generator

ASPIC Assembler

HLINK Linker

OBJTOHEX Conversion utility to create HEX files

CROMWELL Debug file converter

OBJTOHEX Conversion utility to create HEX files

HEXMATE HEX file utility

LIBR Librarian

DUMP Object file viewer

CREF Cross reference utility
DS51865B-page 10  2010 Microchip Technology Inc.

PICC Command-line Driver
For example, C source files (.c files) are first passed to the C preprocessor, CPP. The
output of this application are .pre files. These files are then passed to the parser appli-
cation, P1, which produces a p-code file output with extension .p1. The applications
are executed in the order specified and temporary files are used to pass the output of
one application to the next.

The compiler can accept more than just C source files. Table 2-1 lists all the possible
input file types, and these files can be seen in this diagram, on the top and bottom,
being passed to different compilation applications. They are processed by these
applications and then the application output joins the normal flow indicated in the
diagram.

For example, assembly source files are passed straight to the assembler application1
and are not processed at all by the code generator. The output of the assembler (an
object file with .obj extension) is passed to the linker in the usual way. You can see
that any p-code files (.p1 extension) or p-code libraries (.lpp extension) that are
supplied on the command line are initially passed to the code generator.

Other examples of input files include object files (.obj extension) and object libraries
(.lib extension), both of which are passed initially to the linker, and even HEX files
(.hex extension), which are passed to one of the utility applications, called HEXMATE,
which is run right at the end of the compilation sequence.

Some of the temporary files shown in this diagram are actually preserved and can be
inspected after compilation has concluded. There are also driver options to request that
the compilation sequence stop after a particular application and the output of that
application becomes the final output.

FIGURE 2-2: MULTI-FILE COMPILATION

2.3.2 Single-step Compilation

Figure 2-1 showed us the files that are generated by each application and the order in
which these applications are executed. However this does not indicate how these appli-
cations are executed when there is more than one source file being compiled.

Consider the case when there are two C source files that form a complete project and
that are to be compiled, as is the case shown in Figure 2-2. If these files are called
main.c and io.c, these could be compiled with a single command, such as:

PICC --chip=16F877A main.c io.c

1. Assembly file will be preprocessed before being passed to the assembler if the
-P option is selected.

C file

C file

library
files

preprocess
&

parse

p-
code

code
generation

preprocess
&

parse

p-
code linkassemble

First stage of compilation Second stage of compilation

Intermediate files
 2010 Microchip Technology Inc. DS51865B-page 11

HI-TECH C® for PIC10/12/16 User’s Guide
This command will compile the two source files all the way to the final output, but inter-
nally we can consider this compilation as consisting of two stages.

The first stage involves processing of each source file separately, and generating some
sort of intermediate file for each source file. The second stage involves combining all
these intermediate files and further processing to form the final output. An intermediate
file is a particular temporary file that is produced and marks the mid point between the
first and second stage of compilation.

The intermediate file used by PICC is the p-code (.p1 extension) file output by the
parser, so there will be one p-code file produced for each C source file. As indicated in
the diagram, CPP and then P1 are executed to form this intermediate file. (For clarity
the CPP and P1 applications have been represented by the same block in the diagram.)

In the second stage, the code generator reads in all the intermediate p-code files and
produces a single assembly file output, which is then passed to the subsequent appli-
cations that produce the final output.

The desirable attribute of this method of compilation is that the code generator, which
is the main application that transforms from the C to the assembly domain, sees the
entire project source code via the intermediate files.

Traditional compilers have always used intermediate files that are object files (.obj
extension) output by the assembler. These intermediate object files are then combined
by the linker and further processed to form the final output. This method of compilation
is shown in Figure 2-3 and shows that the code generator is executed once for each
source file. Thus the code generator can only analyze that part of the project that is con-
tained in the source file currently being compiled.

Using object files as the intermediate file format with HI-TECH C Compiler for
PIC10/12/16 MCUs will defeat many features the compiler uses to optimize code.
Always use p-code files as the intermediate file format if you are using a make system
to build projects.

FIGURE 2-3: THE TRADITIONAL COMPILATION SEQUENCE

When compiling files of mixed types, this can still be achieved with just one invocation
of the compiler driver. As discussed in Section 2.3 “The Compilation Sequence”, the
driver will pass each input file to the appropriate compiler application.

For example, the files, main.c, io.c, mdef.as and c_sb.lpp are to be compiled.
To perform this in a single step, the following command line could be used.

PICC --chip=16F877A main.c io.c mdef.as c_sb.lpp

C file

C file

library
files

preprocess
&

parse

.obj
files

preprocess
&

parse

.obj
files link

assemble

First stage of compilation
Second stage
of compilation

Intermediate files

code
generation

code
generation

assemble
DS51865B-page 12  2010 Microchip Technology Inc.

PICC Command-line Driver
As shown in Figure 2-1 and Figure 2-2, the two C files (main.c and io.c) will be com-
piled to intermediate p-code files; these, along with the p-code library file (c_sb.lpp)
will be passed to the code generator. The output of the code generator, as well as the
assembly source file (mdef.as), will be passed to the assembler.

The driver will recompile all source files regardless of whether they have changed since
the last build. IDEs, such as MPLAB IDE, and make utilities must be employed to
achieve incremental builds, if desired. See also Section 2.3.3 “Multi-step Compila-
tion”.

Unless otherwise specified, a HEX file and Microchip COFF file are produced as the
final output. All intermediate files remain after compilation has completed, but most
other temporary files are deleted, unless you use the --NODEL option (see
Section 2.7.39 “--NODEL: Do not remove temporary files”) which preserves all
generated files except the run-time start-up file. Note that some generated files may be
in a different directory to your project source files. See Section 2.7.43 “--OUTDIR:
Specify a directory for output files” and Section 2.7.41 “--OBJDIR: Specify a
directory for intermediate files” which can both control the destination for some
output files.

2.3.3 Multi-step Compilation

Make utilities and IDEs, such as MPLAB IDE, allow for an incremental build of projects
that contain multiple source files. When building a project, they take note of which
source files have changed since the last build and use this information to speed up
compilation.

For example, if compiling two source files, but only one has changed since the last
build, the intermediate file corresponding to the unchanged source file need not be
regenerated.

The Universal Toolsuite plugin that integrates the compiler into MPLAB IDE is aware of
the different compilation sequence employed by PICC and takes care of this for you.
From MPLAB IDE you can select an incremental build (Project->Build), or fully rebuild
a project (Project->Rebuild).

If the compiler is being invoked using a make utility, the make file will need to be con-
figured to recognized the different intermediate file format and the options used to gen-
erate the intermediate files. Make utilities typically call the compiler multiple times: once
for each source file to generate an intermediate file, and once to perform the second
stage compilation.

You may also wish to generate intermediate files to construct your own library files,
although PICC is capable of constructing libraries in a single step, so this is typically
not necessary. See Section 2.7.44 “--OUTPUT= type: Specify Output File Type” for
more information on library creation.

The option --PASS1 (Section 2.7.45 “--PASS1: Compile to P-code”) is used to tell
the compiler that compilation should stop after the parser has executed. This will leave
the p-code intermediate file behind on successful completion.

For example, the files main.c and io.c are to be compiled using a make utility. The
command lines that the make utility should use to compile these files might be some-
thing like:

PICC --chip=16F877A --pass1 main.c
PICC --chip=16F877A --pass1 io.c
PICC --chip=16F877A main.p1 io.p1

If is important to note that the code generator needs to compile all p-code or p-code
library files associated with the project in the one step. When using the --PASS1 option
the code generator is not being invoked, so the above command lines do not violate
this requirement.
 2010 Microchip Technology Inc. DS51865B-page 13

HI-TECH C® for PIC10/12/16 User’s Guide
Using object files as the intermediate file format with HI-TECH C Compiler for
PIC10/12/16 MCUs will defeat many features the compiler uses to optimize code.
Always use p-code files as the intermediate file format if you are using a make system
to build projects.

2.3.4 Compilation of Assembly Source

Since the code generator performs many tasks that were traditionally performed by the
linker, there could be complications when assembly source is present in a project.
Assembly files are traditionally processed after C code, but it is necessary to have this
performed first so that specific information contained in the assembly code can be con-
veyed to the code generator.

The specific information passed to the code generator is discussed in more detail in
Section 3.13.4 “Interaction between Assembly and C Code”.

When assembly source is present, the order of compilation is as shown in Figure 2-4.

FIGURE 2-4: COMPILATION SEQUENCE WITH ASSEMBLY FILES

Any assembly source files are first assembled to form object files. These files, along
with any other objects files that are part of the project, are then scanned by the com-
mand-line driver and information is then passed to the code generator when it
subsequently builds the C files, as has been described earlier.

2.3.4.1 INTERMEDIATE FILES AND ASSEMBLY SOURCE

The intermediate file format associated with assembly source files is the same as that
used in traditional compilers, i.e. an object file (.obj extension). Assembly files are
never passed to the code generator and so the code generator technology does not
alter the way these files are compiled.

The -C option (see Section 2.7.1 “-C: Compile to Object File”) is used to generate
object files and halt compilation after the assembly step.

2.3.5 Printf check

An extra execution of the code generator is performed prior to the actual code genera-
tion phase. This pass is part of the process by which the printf library function is cus-
tomized, see Section 3.12.1 “The printf Routine” for more details.

This pass is only associated with scanning the C source code for printf placeholder
usage and you will see the code generator being executed if you select the verbose
option when you build, see Section 2.7.15 “-V: Verbose Compile”.

C file

C file

library
files

preprocess
&

parse

p-
code

code
generation

assemble

preprocess
&

parse

p-
code

ASM
file

OBJ
file

link

assemble

driver
DS51865B-page 14  2010 Microchip Technology Inc.

PICC Command-line Driver
2.4 RUNTIME FILES

In addition to the C and assembly source files specified on the command line, there are
also compiler-generated source files and pre-compiled library files which might be
compiled into the project by the driver. These files contain:

• C Standard library routines

• Implicitly called arithmetic routines

• User-defined library routines

• The runtime startup code

• The powerup routine

• The printf routine.

Strictly speaking, the power-up routine is neither a compiler-generated source, nor a
library routine. It is fully defined by the user, however as it is very closely associated
with the runtime startup module, it is discussed with the other runtime files in the
following sections.

2.4.1 Library Files

The names of the C standard library files appropriate for the selected target device, and
other driver options, are determined by the driver and passed to the code generator and
linker. P-code libraries (.lpp libraries) are used by the code generator, and object code
libraries (.lib files) are used by the linker. Most library routines are derived from
p-code libraries.

By default, PICC will search the lib directory under the compiler installation directory
for library files that are required during compilation.

2.4.1.1 STANDARD LIBRARIES

The C standard libraries contain a standardized collection of functions, such as string,
math and input/output routines. The range of these functions are described in
Chapter 7. “Library Functions”. Although it is considered a library function, the
printf function’s code is not found in these library files. C source code for this func-
tion is generated from a special C template file that is customized after analysis of the
user’s C code. See Section “PRINTF, VPRINTF” for more information on using the
printf library function and Section 3.12.1 “The printf Routine” for information on
how the printf function is customized when you build a project.

These libraries also contain C routines that are implicitly called by the output code of
the code generator. These are routines that perform tasks such as floating-point oper-
ations, integer division and type conversions, and that may not directly correspond to
a C function call in the source code.

The general form of the standard library names is htpic -dc.ext. The meaning of
each field is described by:

• The processor type is always pic.

• The double type, d, is "-"for 24-bit doubles, and "d" for 32-bit doubles.

• Library Type is always "c".

• The extension is .lpp for p-code libraries, or .lib for relocatable object libraries.

2.4.1.2 USER-DEFINED LIBRARIES

User-defined libraries may be created and linked in with programs as required. Library
files are more easy to manage and may result in faster compilation times, but must be
compatible with the target device and options for a particular project. Several versions
of a library may need to be created to allow it to be used for different projects.
 2010 Microchip Technology Inc. DS51865B-page 15

HI-TECH C® for PIC10/12/16 User’s Guide
Libraries can be created manually using the compiler and the librarian, LIBR. See
Section 6.2 “Librarian” for more information on the librarian and creating library files
using this application. Alternatively, library files can be created directly from the com-
piler by specifying a library output using the --OUTPUT option, see
Section 2.7.44 “--OUTPUT= type: Specify Output File Type”.

User-created libraries that should be searched when building a project can be listed on
the command line along with the source files.

As with Standard C library functions, any functions contained in user-defined libraries
should have a declaration added to a header file. It is common practice to create one
or more header files that are packaged with the library file. These header files can then
be included into source code when required.

Library files specified on the command line are scanned first for unresolved symbols,
so these files may redefine anything that is defined in the C standard libraries. See also
Section 3.16.1 “Replacing Library Modules”.

2.4.2 Runtime Startup Code

A C program requires certain objects to be initialized and the processor to be in a
particular state before it can begin execution of its function main(). It is the job of the
runtime startup code to perform these tasks. Section Section 3.11.1 “Runtime
Startup Code” details specifically what actions are taken by this code and how it inter-
acts with programs you write. Rather than the traditional method of linking in a generic,
precompiled routine, the HI-TECH C Compiler for PIC10/12/16 MCUs uses a more effi-
cient method which actually determines what runtime startup code is required from the
user’s program.

Both the driver and code generator are involved in generating the runtime startup code.
The driver takes care of device setup and this code is placed into a separate assembly
startup module. The code generator handles initialization of the C environment, such
as clearing uninitialized C variables and copying initialized C variables. This code is
output along with the rest of the C program.

The runtime startup code is generated automatically every time you build a project. The
file created by the driver may be deleted after compilation and this operation can be
controlled with the keep suboption to the --RUNTIME option. The default operation of
the driver is to keep the start up module; however, if using MPLAB IDE to build, it uses
options that will delete the file unless you indicate otherwise in the Build Options dialog.

If the startup module is kept, it will be called startup.as and will be located in the
current working directory. If you are using an IDE to perform the compilation the
destination directory may be dictated by the IDE itself.

Generation of the runtime startup code is an automatic process which does not require
any user interaction; however, some aspects of the runtime code can be controlled, if
required, using the --RUNTIME option. Section 2.7.50 “--RUNTIME: Specify Run-
time Environment” describes the use of this option. See Section 3.11.1 “Runtime
Startup Code” which describes the functional aspects of the code contained in this
module and its effect on program operation.

The runtime startup code is executed before main(), but If you require any special ini-
tialization to be performed immediately after reset, you should use power-up feature
described later in Section 3.11.2 “The Powerup Routine”.

2.5 COMPILER OUTPUT

There are many files created by the compiler during the compilation. A large number of
these are intermediate files and some are deleted after compilation is complete, but
many remain and are used for programming the device, or for debugging purposes.
DS51865B-page 16  2010 Microchip Technology Inc.

PICC Command-line Driver
2.5.1 Output Files

The names of many output files use the same base name as the source file from which
they were derived. For example the source file input.c will create a p-code file called
input.p1.

Some of the output files contain project-wide information and are not directly associ-
ated with any one particular input file, e.g. the map file. If the names of these output
files are not specified by a compiler option, their base name is derived from the first C
source file listed on the command line. If there are no files of this type specified, the
name is based on the first input file (regardless of type) on the command line.

If you are using an IDE, such as MPLAB IDE, to specify options to the compiler, there
is typically a project file that is created for each application. The name of this project is
used as the base name for project-wide output files, unless otherwise specified by the
user. However check the manual for the IDE you are using for more details.

The compiler is able to directly produce a number of the output file formats which are
used by PIC10/12/16 development tools.

The default behavior of PICC is to produce a Microchip format COFF and Intel HEX
output. Unless changed by a driver option, the base names of these files will be the
project name. The default output file types can be controlled by compiler options, e.g.
the --OUTPUT option. The extensions used by these files are fixed and are listed
together with this option’s description in Section 2.7.44 “--OUTPUT= type: Specify
Output File Type”.

The COFF file is used by debuggers to obtain debugging information about the project.

Table 2-13 shows all output format options available with PICC using the --OUTPUT
option. The File Type column lists the filename extension which will be used for the
output file.

2.5.1.1 SYMBOL FILES

PICC creates two symbol files which are used to generate the debug output files, such
as COFF and ELF files. These are the SYM files (.sym extension) produced by the
linker, and the SDB file (.sdb extension) produced by the code generator.

The SDB file contains type information, and the SYM file contains address informa-
tion.These two files, in addition to the HEX file, are combined by the CROMWELL appli-
cation (see Section 6.5 “Cromwell”) to produce the output debug files, such as the
COFF file.

2.5.2 Diagnostic Files

Two valuable files produced by the compiler are the assembly list file, produced by the
assembler, and the map file, produced by the linker.

The compiler options --ASMLIST (Section 2.7.17 “--ASMLIST: Generate Assem-
bler List Files”) generates a list file, and the -M option (Section 2.7.8 “-M: Generate
Map File”) specifies generation of a map file.

The assembly list file contains the mapping between the original source code and the
generated assembly code. It is useful for information such as how C source was
encoded, or how assembly source may have been optimized. It is essential when con-
firming if compiler-produced code that accesses objects is atomic, and shows the
psects in which all objects and code are placed. See Section 4.4 “Assembly List
Files” for more information on the contents of this file.

Note: Throughout this manual, the term project name will refer to either the name
of the project created in the IDE, or the base name (file name without
extension) of the first C source file specified on the command line.
 2010 Microchip Technology Inc. DS51865B-page 17

HI-TECH C® for PIC10/12/16 User’s Guide
There is one list file produced for the entire C program, including C library files, and
which will be assigned the project name and extension .lst. One additional list file is
produced for each assembly source file compiled in the project.

The map file shows information relating to where objects were positioned in memory. It
is useful for confirming if user-defined linker options were correctly processed, and for
determining the exact placement of objects and functions. It also shows all the unused
memory areas in a device and memory fragmentation. See Section 5.4 “Map Files”
for complete information on the contents of this file.

There is one map file produced when you build a project, assuming the linker was exe-
cuted and ran to completion. The file will be assigned the project name and .map
extension.

2.6 COMPILER MESSAGES

All compiler applications, including the command-line driver, PICC, use textual mes-
sages to report feedback during the compilation process. A centralized messaging sys-
tem is used to produce the messages, which allows consistency during all stages of the
compilation process.

2.6.1 Messaging Overview

A message is referenced by a unique number which is passed to the messaging sys-
tem by the compiler application that needs to convey the information. The message
string corresponding to this number is obtained from Message Description Files (MDF),
which are stored in the dat directory in the compiler’s installation directory.

When a message is requested by a compiler application, its number is looked up in the
MDF that corresponds to the currently selected language. The language of messages
can be altered as discussed in Section 2.6.2 “Message Language”.

Once found, the alert system can read the message type and the string to be displayed
from the MDF. There are several different message types which are described in
Section 2.6.3 “Message Type” and the type can be overridden by the user, as
described in the same section.

The user is also able to set a threshold for warning message importance, so that only
those which the user considers significant will be displayed. In addition, messages with
a particular number can be disabled. A pragma can also be used to disable a particular
message number within specific lines of code. These methods are explained in
Section 2.6.5.1 “Disabling Messages”.

Provided the message is enabled and it is not a warning message whose level is below
the current warning threshold, the message string will be displayed.

In addition to the actual message string, there are several other pieces of information
that may be displayed, such as the message number, the name of the file for which the
message is applicable, the file’s line number and the application that issued the mes-
sage, etc.

If a message is an error, a counter is incremented. After a certain number of errors has
been reached, compilation of the current module will cease. The default number of
errors that will cause this termination can be adjusted by using the --ERRORS option,
see Section 2.7.28 “--ERRORS: Maximum Number of Errors”. This counter is reset
for each internal compiler application, thus specifying a maximum of five errors will
allow up to five errors from the parser, five from the code generator, five from the linker,
five from the driver, etc.

Although the information in the MDF can be modified with any text editor, this is not rec-
ommended. Message behavior should only be altered using the options and pragmas
described in the following sections.
DS51865B-page 18  2010 Microchip Technology Inc.

PICC Command-line Driver
2.6.2 Message Language

PICC supports more than one language for displayed messages. There is one MDF for
each language supported.

Under Windows, the default language can be specified when installing the compiler.

The default language may be changed on the command line using the --LANG option,
see Section 2.7.34 “--LANG: Specify the Language for Messages”. Alternatively, it
may be changed permanently by using the --LANG option together with the --SETUP
option which will store the default language in either the registry, under Windows, or in
the XML configuration file on other systems. On subsequent builds, the default lan-
guage used will be that specified.

Table 2-3 shows the MDF applicable for the currently supported languages.

If a language other than English is selected, and the message cannot be found in the
appropriate non-English MDF, the alert system tries to find the message in the English
MDF. If an English message string is not present, a message similar to:

error/warning (*) generated, but no description available

where * indicates the message number that was generated that will be printed;
otherwise, the message in the requested language will be displayed.

2.6.3 Message Type

There are four types of messages. These are described below along with the com-
piler’s behavior when encountering a message of each type.

Advisory Messages convey information regarding a situation the compiler has en-
countered or some action the compiler is about to take. The information is
being displayed “for your interest” and typically requires no action to be tak-
en. Compilation will continue as normal after such a message is issued.

Warning Messages indicate source code or some other situation that can be com-
piled, but is unusual and may lead to a runtime failure of the code. The code
or situation that triggered the warning should be investigated; however, com-
pilation of the current module will continue, as will compilation of any remain-
ing modules.

Error Messages indicate source code that is illegal or that compilation of this code
cannot take place. Compilation will be attempted for the remaining source
code in the current module, but no additional modules will be compiled and
the compilation process will then conclude.

Fatal Error Messages indicate a situation that cannot allow compilation to proceed
and which requires the compilation process to stop immediately.

2.6.4 Message Format

By default, messages are printed in a human-readable format. This format can vary
from one compiler application to another, since each application reports information
about different file formats.

TABLE 2-3: SUPPORTED LANGUAGES

Language MDF name

English en_msgs.txt

German de_msgs.txt

French fr_msgs.txt
 2010 Microchip Technology Inc. DS51865B-page 19

HI-TECH C® for PIC10/12/16 User’s Guide
Some applications, for example the parser, are typically able to pinpoint the area of
interest down to a position on a particular line of C source code, whereas other appli-
cations, such as the linker, can at best only indicate a module name and record number,
which is less directly associated with any particular line of code. Some messages relate
to issues in driver options which are in no way associated with any source code.

There are several ways of changing the format in which message are displayed, which
are discussed below.

The driver option -E (with or without a filename) alters the format of all displayed mes-
sages. See Section 2.7.3 “-E: Redirect Compiler Errors to a File”. Using this option
produces messages that are better suited to machine parsing, and are less
user-friendly. Typically each message is displayed on a single line. The general form of
messages produced when using the -E option is:

filename line: (message number) message string (type)

The -E option also has another effect. When used, the driver first checks to see if spe-
cial environment variables have been set. If so, the format dictated by these variables
are used as a template for all messages produced by all compiler applications. The
names of these environment variables are given in Table 2-4.

The value of these environment variables are strings that are used as templates for the
message format. Printf-like placeholders can be placed within the string to allow the
message format to be customized. The placeholders and what they represent are
indicated in Table 2-5.

If these options are used in a DOS batch file, two percent characters will need to be
used to specify the placeholders, as DOS interprets a single percent character as an
argument and will not pass this on to the compiler. For example:

SET HTC_ERR_FORMAT=”file %%f: line %%l”

Environment variables, in turn, may be overridden by the driver options: --MSGFOR-
MAT, --WARNFORMAT and --ERRFORMAT, see Section 2.7.27 “--ERRFORMAT:
Define Format for Compiler Messages”. These options take a string as their argu-
ment. The option strings are formatted, and can use the same placeholders, as their
variable counterparts.

For example, a project is compiled, but, as shown, produces a warning from the parser
and an error from the linker (numbered 362 and 492, respectively).

main.c: main()
 17: ip = &b;
 ^ (362) redundant "&" applied to array (warning)

TABLE 2-4: MESSAGING ENVIRONMENT VARIABLES

Variable Effect

HTC_MSG_FORMAT All advisory messages

HTC_WARN_FORMAT All warning messages

HTC_ERR_FORMAT All error and fatal error messages

TABLE 2-5: MESSAGING PLACEHOLDERS

Placeholder Replacement

%a Application name

%c Column number

%f Filename

%l Line number

%n Message number

%s Message string (from MDF)
DS51865B-page 20  2010 Microchip Technology Inc.

PICC Command-line Driver
(492) attempt to position absolute psect "text" is illegal

Notice that the parser message format identifies the particular line and position of the
offending source code.

If the -E option is now used and the compiler issues the same messages, the compiler
will output:

main.c: 12: (362) redundant "&" applied to array (warning)
(492) attempt to position absolute psect "text" is illegal (error)

The user now uses the --WARNFORMAT in the following fashion:

--WARNFORMAT="%a %n %l %f %s"

When recompiled, the following output will be displayed:

parser 362 12 main.c redundant "&" applied to array
(492) attempt to position absolute psect "text" is illegal (error)

Notice that the format of the warning was changed, but that of the error message was
not. The warning format now follows the specification of the environment variable. The
application name (parser) was substituted for the %a placeholder, the message num-
ber (362) substituted the %n placeholder, etc.

2.6.5 Changing Message Behavior

Both the attributes of individual messages and general settings for the messaging sys-
tem can be modified during compilation. There are both driver options and C pragmas
that can be used to achieve this.

2.6.5.1 DISABLING MESSAGES

Each warning message has a default number indicating a level of importance. This
number is specified in the MDF and ranges from -9 to 9. The higher the number, the
more important the warning.

Warning messages can be disabled by adjusting the warning level threshold using the
--WARN driver option, see Section 2.7.59 “--WARN: Set Warning Level”. Any warn-
ings whose level is below that of the current threshold are not displayed.

The default threshold is 0 which implies that only warnings with a warning level of 0 or
higher will be displayed by default. The information in this option is propagated to all
compiler applications, so its effect will be observed during all stages of the compilation
process.

Warnings may also be disabled by using the --MSGDISABLE option, see
Section 2.7.37 “--MSGDISABLE: Disable Warning Messages”. This option takes a
comma-separated list of message numbers. Those warnings listed are disabled and
will never be issued, regardless of the current warning level threshold.

Some warning messages can also be disabled by using the warning pragma. This
pragma will only affect warnings that are produced by either the parser or the code gen-
erator, i.e. errors directly associated with C code. See Section 3.15.3.8 “The #pragma
warning Directive” for more information on this pragma.

Error messages can also be disabled; however, a more verbose form of the command
is required to confirm the action. To specify an error message number in the --MSG-
DISABLE command, the number must be followed by :off to ensure that it is disabled.
For example: --MSGDISABLE=195:off will disable error number 195.

Note: Disabling error or warning messages in no way fixes the condition which
triggered the message. Always use extreme caution when exercising these
options.
 2010 Microchip Technology Inc. DS51865B-page 21

HI-TECH C® for PIC10/12/16 User’s Guide
2.6.5.2 CHANGING MESSAGE TYPES

It is also possible to change the type of some messages. This can only be done for
messages generated by the parser or code generator. See Section 3.15.3.8 “The
#pragma warning Directive” for more information on this pragma.

2.7 PICC DRIVER OPTION DESCRIPTIONS

Most aspects of the compilation can be controlled using the command-line driver,
PICC. The driver will configure and execute all required applications, such as the code
generator, assembler and linker.

PICC recognizes the compiler options which are tabled below and explained in detail
in the following sections. The case of the options is not important, however command
shells in most operating systems are case sensitive when it comes to names of files.

TABLE 2-6: DRIVER OPTIONS

Option Meaning

-C Compile to object file and stop

-Dmacro Define preprocessor macro symbol

-Efilename Redirect compile errors

-G[filename] Generate symbolic debug information

-Ipath Specify include path

-Largument Set linker option

-M[filename] Generate map file

-Nnumber Specify identifier length

-Ofile Specify output filename and type

-P Preprocess assembly source

-Q Quiet mode

-S Compile to assembly file and stop

-Umacro Undefine preprocessor macro symbol

-V Verbose mode

-X Strip local symbols

--ADDRQUAL=qualifier Specify address space qualifier handling

--ASMLIST Generate assembly list file

--CHAR=type Default character type (defunct)

--CHECKSUM=specification Calculate a checksum and store the result in program
memory

--CHIP=device Select target device

--CHIPINFO Print device information

--CODEOFFSET=value Specify ROM offset address

--CR=file Generate cross reference file

--DEBUGGER=type Set debugger environment

--DOUBLE=size Size of double type

--ECHO Echo command line

--ERRFORMAT=format Set error format

--ERRORS=number Set maximum number of errors

--FILL=specification Specify a ROM-fill value for unused memory

--FLOAT=size Size of float type

--GETOPTION=argument Get advanced options

--HELP=option Help
DS51865B-page 22  2010 Microchip Technology Inc.

PICC Command-line Driver
2.7.0.1 OPTION FORMATS

All single letter options are identified by a leading dash character, “-”, e.g. -C. Some
single letter options specify an additional data field which follows the option name
immediately and without any whitespace, e.g. -Ddebug. In this manual, options are
written in upper case and suboptions are in lower case.

Multi-letter, or word, options have two leading dash characters, e.g. --ASMLIST.
(Because of the double dash, the driver can determine that the option --DOUBLE, for
example, is not a -D option followed by the argument OUBLE.)

Some of these word options use suboptions which typically appear as a comma-sepa-
rated list following an equal character, =, e.g. --OUTPUT=hex,cof. The exact format
of the options varies and are described in detail in the following sections.

Some commonly used suboptions include default, which represent the default spec-
ification that would be used if this option was absent altogether; all, which indicates
that all the available suboptions should be enabled as if they had each been listed; and
none, which indicates that all suboptions should be disabled. For example:

--OPT=none

--IDE=name Set development environment

--LANG=language Specify language

--MEMMAP=type Display memory map

--MODE=mode Choose operating mode

--MSGDISABLE=list Disable warning messages

--MSGFORMAT=specification Set advisory message format

--NODEL Do not remove temporary files

--NOEXEC Do not execute compiler applications

--OBJDIR=path Set object files directory

--OPT=optimizations Control optimization

--OUTDIR=path Set output directory

--OUTPUT=path Set output formats

--PASS1 Produce HI-TECH intermediate p-code file and stop

--PRE Produce preprocessed source files and stop

--PROTO Generate function prototypes

--RAM=ranges Adjust RAM ranges

--ROM=ranges Adjust ROM ranges

--RUNTIME=options Specify runtime options

--SCANDEP Scan for dependencies

--SERIAL=specification Insert a hexadecimal code or serial number

--SETOPTION=argument Set advanced options

--SETUP=specification Setup the compiler

--SHROUD Shroud (obfuscate) generated p-code files

--STRICT Use strict ANSI keywords

--SUMMARY=type Summary options

--TIME Report compilation times

--VER Show version information

--WARN=number Set warning threshold level

--WARNFORMAT=specifica-
tion

Set warning format

TABLE 2-6: DRIVER OPTIONS (CONTINUED)

Option Meaning
 2010 Microchip Technology Inc. DS51865B-page 23

HI-TECH C® for PIC10/12/16 User’s Guide
will turn off all optimizers.

Some suboptions may be prefixed with a plus character, +, to indicate that they are in
addition to the other suboptions present, or a minus character “-”, to indicate that they
should be excluded. For example:

--OPT=default,-asm

indicates that the default optimization be used, but that the assembler optimizer should
be disabled. If the first character after the equal sign is + or -, then the default keyword
is implied. For example:

--OPT=-asm

is the same as the previous example.

See the –-HELP option, Section 2.7.32 “--HELP: Display Help”, for more information
about options and suboptions.

2.7.1 -C: Compile to Object File

The -C option is used to halt compilation after executing the assembler, leaving a relo-
catable object file as the output. It is frequently used when compiling assembly source
files using a make utility.

See Section 2.3.3 “Multi-step Compilation” for more information on generating and
using intermediate files.

2.7.2 -D: Define Macro

The -D option is used to define a preprocessor macro on the command line, exactly as
if it had been defined using a #define directive in the source code. This option may
take one of two forms, -Dmacro which is equivalent to:

#define macro 1

placed at the top of each module compiled using this option, or -Dmacro= text which
is equivalent to:

#define macro text

where text is the textual substitution required. Thus, the command:

PICC --CHIP=16F877AA -Ddebug -Dbuffers=10 test.c

will compile test.c with macros defined exactly as if the C source code had included
the directives:

#define debug 1
#define buffers 10

Defining macros as C string literals requires bypassing any interpretation issues in the
operating system that is being used. To pass the C string, "hello world", (including
the quote characters) in the Windows environment, use: "-DMY_STRING=\\\"hello
world\\\"" (you must include the quote characters around the entire option as there
is a space character in the macro definition). Under Linux or Mac OS X, use:
-DMY_STRING=\"hello\ world\".

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.3 -E: Redirect Compiler Errors to a File

This option has two purposes. The first is to change the format of displayed messages.
The second is to optionally allow messages to be directed to a file as some editors do
not allow the standard command line redirection facilities to be used when invoking the
compiler.

The general form of messages produced with the -E option in force is:
DS51865B-page 24  2010 Microchip Technology Inc.

PICC Command-line Driver
filename line_number: (message number) message string (type)

If a filename is specified immediately after -E, it is treated as the name of a file to which
all messages (errors, warnings etc) will be printed. For example, to compile x.c and
redirect all errors to x.err, use the command:

PICC --CHIP=16F877AA -Ex.err x.c

The -E option also allows errors to be appended to an existing file by specifying an
addition character, +, at the start of the error filename, for example:

PICC --CHIP=16F877AA -E+x.err y.c

If you wish to compile several files and combine all of the errors generated into a single
text file, use the -E option to create the file then use -E+ when compiling all the other
source files. For example, to compile a number of files with all errors combined into a
file called project.err, you could use the - E option as follows:

PICC --CHIP=16F877AA -Eproject.err -O --PASS1 main.c
PICC --CHIP=16F877AA -E+project.err -O --PASS1 part1.c
PICC --CHIP=16F877AA -E+project.err -C asmcode.as

Section 2.6 “Compiler Messages” has more information regarding this option as well
as an overview of the messaging system and other related driver options.

2.7.4 -G: Generate Source-level Symbol File

The -G option allows specification of the filename used for the source-level symbol file
(.sym extension) for use with supported debuggers and simulators such as MPLAB
IDE. See also Section 2.5 “Compiler Output”.

If no filename is given, the symbol file will have the project name (see
Section 2.2 “Invoking the Compiler”), and an extension of .sym. For example, the
option -Gtest.sym generates a symbol file called test.sym. Symbol files generated
using the -G option include source-level information for use with source-level debug-
gers.

2.7.5 -I: Include Search Path

Use -I to specify an additional directory to search for header files which have been
included using the #include directive. The directory can either be an absolute or rel-
ative path. The -I option can be used more than once if multiple directories are to be
searched.

The compiler’s include directory containing all standard header files is always
searched, even if no -I option is present. If header filenames are specified using quote
characters rather than angle brackets, as in #include "lcd.h", then the current
working directory is searched in addition to the compiler’s include directory. Note that
if compiling within MPLAB IDE, the search path is relative to the output directory, not
the project directory.

These default search paths are searched after any user-specified directories have
been searched. For example:

PICC --CHIP=16F877AA -C -Ic:\include -Id:\myapp\include test.c

will search the directories c:\include and d:\myapp\include for any header files
included into the source code, then search the default include directory.

This option has no effect for files that are included into assembly source using the
assembly INCLUDE directive. See Section 4.3.10.3 “INCLUDE”.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.
 2010 Microchip Technology Inc. DS51865B-page 25

HI-TECH C® for PIC10/12/16 User’s Guide
2.7.6 -L: Scan Library

The -L option is used to specify additional libraries which are to be scanned by the
linker. Libraries specified using the -L option are scanned before the standard C library,
allowing additional versions of standard library functions to be accessed.

The argument to -L is a library keyword to which the prefix pic ; numbers representing
the processor range, number of ROM pages and the number of RAM banks; and the
suffix .lib are added.

Thus the option -Ll when compiling for a 16F877A will, for example, scan the library
pic42c-l.lib and the option -Lxx will scan a library called pic42c-xx.lib.

All libraries must be located in the lib directory of the compiler installation directory.

As indicated, the argument to the -L option is not a complete library filename. If you
wish the linker to scan libraries whose names do not follow the above naming conven-
tion or whose locations are not in the lib subdirectory, simply include the libraries’
names on the command line along with your source files, or add these to your project.

2.7.7 -L-: Adjust Linker Options Directly

The -L driver option can be used to specify an option which will be passed directly to
the linker. If -L is followed immediately by text starting with a dash character “-”, the
text will be passed directly to the linker without being interpreted by PICC. If the -L
option is not followed immediately by a dash character, it is assumed the option is the
library scan option, Section 2.7.6 “-L: Scan Library”.

For example, if the option -L-N is specified, the -N option will be passed on to the linker
without any subsequent interpretation by the driver. The linker will then process this
option, when, and if, it is invoked, and perform the appropriate operation.

Take care with command-line options. The linker cannot interpret command-line driver
options; similarly the driver cannot interpret linker options. In most situations, it is
always the command-line driver, PICC, that is being executed. If you need to add alter-
nate linker settings in the Linker tab in the Project>MPLAB Build options... dialogue,
you must add driver options (not linker options). These driver options will be used by
the driver to generate the appropriate linker options during the linking process. The -L
option is a means of allowing a linker option to be specified via a driver option.

The -L option is especially useful when linking code which contains non-standard pro-
gram sections (or psects), as may be the case if the program contains hand-written
assembly code which contains user-defined psects (see 4.3.9.3 “PSECT”), or C code
which uses the #pragma psect directive (see 3.15.3.5 “The #pragma psect Direc-
tive”). Without this -L option, it would be necessary to invoke the linker manually to
allow the linker options to be adjusted.

This option can also be used to replace default linker options. If the string starting from
the first character after the -L up to the first equal character, "=", matches a psect or
class name in the default options, then (the reference to the psect or class name in the
default option, and the remainder of that option, are deleted) that default linker option
is replaced by the option specified by the -L. For example, if a default linker option was:

-preset_vec=00h,intentry,init,end_init

the driver option -L-pinit=100h would result in the following options being passed
to the linker: -pinit=100h -preset_vec=00h. Note the end_init linker option
has been removed entirely. If there are no characters following the first equal character
in the -L option, then no replacement will be made for the default linker options that will
be deleted. For example, the driver option -L-pinit= will adjust the default options
passed to the linker, as above, but the -pinit linker option would be removed entirely.

No warning is generated if such a default linker option cannot be found. The default
option that you are deleting or replacing must contain an equal character.
DS51865B-page 26  2010 Microchip Technology Inc.

PICC Command-line Driver
2.7.8 -M: Generate Map File

The -M option is used to request the generation of a map file. The map file is generated
by the linker and includes detailed information about where objects are located in mem-
ory. See Section 5.4 “Map Files” for information regarding the content of these files.

If no filename is specified with the option, then the name of the map file will have the
project name (see Section 2.3 “The Compilation Sequence”), with the extension
.map.

This option is on by default when compiling from within MPLAB IDE and using the
HI-TECH Universal Toolsuite.

2.7.9 -N: Identifier Length

This option allows the C identifier length to be increased from the default value of 31.
Valid sizes for this option are from 32 to 255. The option has no effect for all other val-
ues.

This option also controls the length of identifiers used by the preprocessor, such as
macro names. The default length is also 31, and can be adjusted to a maximum of 255.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.10 -O: Specify Output File

This option allows the basename of the output file(s) to be specified. If no -O option is
given, the base name of output file(s) will be the same as the project name, see
Section 2.3 “The Compilation Sequence”. The files whose names are affected by
this option are those files that are not directly associated with any particular source file,
such as the HEX file, MAP file and SYM file.

The -O option can also change the directory in which the output file is located by includ-
ing the required path before the filename. This will then also specify the output directory
for any files produced by the linker or subsequently run applications. Any relative paths
specified are with respect to the current working directory.

For example, if the option -Oc:\project\output\first is used, the MAP and
HEX file, etc., will use the base name first, and will be placed in the directory
c:\project\output.

Any extension supplied with the filename will be ignored.

The options that specify MAP file creation (-M, see Section 2.7.8 “-M: Generate Map
File”), and SYM file creation (-G, see Section 2.7.4 “-G: Generate Source-level
Symbol File”) override any name or path information provided by -O relevant to the
MAP and SYM file.

To change the directory in which all output and intermediate files are written, use the
--OUTDIR option, see Section Section 2.7.43 “--OUTDIR: Specify a directory for
output files”. Note that if -O specifies a path which is inconsistent with the path
specified in the --OUTDIR option, this will result in an error.

2.7.11 -P: Preprocess Assembly Files

The -P option causes assembler source files to be preprocessed before they are
assembled, thus allowing the use of preprocessor directives, such as #include, and
C-style comments with assembler code.

By default, assembler files are not preprocessed.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.
 2010 Microchip Technology Inc. DS51865B-page 27

HI-TECH C® for PIC10/12/16 User’s Guide
2.7.12 -Q: Quiet Mode

This option places the compiler in a quiet mode which suppresses the Microchip
Technology Incorporated copyright notice from being displayed.

2.7.13 -S: Compile to Assembler Code

The -S option stops compilation after generating an assembly output file. One
assembly file will be generated for all the C source code, including p-code library code.

The command:

PICC --CHIP=16F877A -S test.c

will produce an assembly file called test.as, which contains the assembly code gen-
erated from test.c. The generated file is valid assembly code which could be passed
to PICC as a source file, however this should only be done for exploratory reasons. To
take advantage of the benefits of the compilation technology in the compiler, it must
compile and link all the C source code in a single step. See the --PASS1 option
(Section 2.7.45 “--PASS1: Compile to P-code”) to generate intermediate files if you
wish to compile code using a two step process or use intermediate files.

This option is useful for checking assembly code output by the compiler. The file pro-
duced by this option differs to that produced by the --ASMLIST option (see
Section 2.7.17 “--ASMLIST: Generate Assembler List Files”) in that it does not
contain op-codes or addresses and it may be used as a source file in subsequent com-
pilations. The assembly list file is more human readable, but is not a valid assembly
source file.

2.7.14 -U: Undefine a Macro

The -U option, the inverse of the -D option, is used to undefine predefined macros.
This option takes the form -Umacro, where macro is the name of the macro to be
undefined

The option, -Udraft, for example, is equivalent to:

#undef draft

placed at the top of each module compiled using this option.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.15 -V: Verbose Compile

The -V option specifies verbose compilation. When used, the compiler will display the
command lines used to invoke each of the compiler applications described in
Section 2.3 “The Compilation Sequence”.

The name of the compiler application being executed will be displayed, plus all the
command-line arguments to this application. This option is useful for confirming options
and files names passed to the compiler applications.

If this option is used twice (-V -V), it will display the full path to each compiler applica-
tion as well as the full command line arguments. This would be useful to ensure that
the correct compiler installation is being executed, if there is more than one compiler
installed.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.
DS51865B-page 28  2010 Microchip Technology Inc.

PICC Command-line Driver
2.7.16 -X: Strip Local Symbols

The option -X strips local symbols from any files compiled, assembled or linked. Only
global symbols will remain in any object files or symbol files produced. This option is
not normally required for most projects.

2.7.17 --ASMLIST: Generate Assembler List Files

The --ASMLIST option tells PICC to generate assembler listing files for the C and
assembly source modules being compiled. One assembly list file is produced for the
entire C program, including code from the C library functions.

In addition, one assembly list file is produced for each assembly source file in the proj-
ect, including the runtime startup code (see Section 2.4.2 “Runtime Startup Code”).

Assembly list files use a .lst extension and, due to the additional information placed
in these files, cannot be used as assembly source files.

In the case of listings for C source code, the list file shows both the original C code and
the corresponding assembly code generated by the compiler. See
Section 4.4 “Assembly List Files” for full information regarding the content of these
files.

The same information is shown in the list files for assembly source code.

This option is on by default when compiling under MPLAB IDE and using the HI-TECH
Universal Toolsuite.

2.7.18 --ADDRQUAL: Set Compiler Response to Memory Qualifiers

The --ADDRQUAL option indicates the compiler’s response to non-standard memory
qualifiers in C source code.

By default these qualifiers are ignored, i.e. they are accepted without error, but have no
effect. Using this option allows these qualifiers to be interpreted differently by the com-
piler.

The qualifiers affected by this option are the bankx qualifiers (bank0, bank1, bank2
etc) and near.

The suboptions are detailed in Table 2-7.

For example, the option:

--ADDRQUAL=request

2.7.19 --CHECKSUM: Calculate a checksum

The --CHECKSUM option indicates that the compiler should try to honor the bankx and
near qualifiers, if present in C source code, but if they cannot be met (e.g. if near is
used and there is no common memory, or a bankx qualifier is used and the indicated
bank is full) then they are silently ignored.

This option will perform a checksum over the address range specified and store the
result at the destination address specified. Additional specifications can be appended
as a comma-separated list to this option. Such specifications are:

TABLE 2-7: COMPILER RESPONSES TO MEMORY QUALIFIERS

Selection Response

require The qualifiers will be honored. If they cannot be met, an error will be issued.

request The qualifiers will be honored, if possible. No error will be generated if they
cannot be followed.

ignore The qualifiers will be ignored and code compiled as if they were not used.

reject If the qualifiers are encountered, an error will be immediately generated.
 2010 Microchip Technology Inc. DS51865B-page 29

HI-TECH C® for PIC10/12/16 User’s Guide
width=n selects the width of the checksum result in bytes. A negative width will store
the result in little-endian byte order. Result widths from one to four bytes are
permitted.

offset=nnnn specifies an initial value or offset to be added to this checksum.

algorithm=n select one of the checksum algorithms implemented in HEXMATE. The
selectable algorithms are described in Table 6-9.

code=nn is a hexadecimal code that will trail each byte in the checksum result. This
can allow each byte of the checksum result to be embedded within an
instruction.

The start, end and destination attributes can be entered as word addresses as
this is the native format for PICC program space. If an accompanying --FILL option
has not been specified, unused locations within the specified address range will be
filled with FFFh for Baseline devices, or 3FFFh for Mid-Range devices. This is to
remove any unknown values from the equation and ensure the accuracy of the check-
sum result.

For example:

--checksum=800-fff@20,width=1,algorithm=8

will calculate a 1 byte checksum from address 0x800 to 0xfff and store this at address
0x20. Fletcher's algorithm will be used. See Section 6.6.1.5 “-CK”.

The checksum calculations are performed by the HEXMATE application. The informa-
tion in this driver option is passed to the HEXMATE application when it is executed.

2.7.20 --CHIP: Define Processor

This option must be used to specify the target processor, or device, for the compilation.
This is the only compiler option that is mandatory when compiling code.

To see a list of supported processors that can be used with this option, use the
--CHIPINFO option described in Section 2.7.21 “--CHIPINFO: Display List of Sup-
ported Processors”.

2.7.21 --CHIPINFO: Display List of Supported Processors

The --CHIPINFO option displays a list of devices the compiler supports. The names
listed are those chips defined in the chipinfo file and which may be used with the
--CHIP option.

Compilation will terminate after this list has been printed.

2.7.22 --CODEOFFSET: Offset Program Code to Address

In some circumstances, such as bootloaders, it is necessary to shift the program image
to an alternative address. This option is used to specify a base address for the program
code image and to reserve memory from address 0 to that specified in the option.

When using this option, all code psects (including reset and interrupt vectors and con-
stant data) will be adjusted to the address specified. The address is assumed to be a
hexadecimal constant. A leading 0x, or a trailing h hexadecimal specifier can be used,
but is not necessary.

This option differs from the --ROM option in that it will move the code associated with
the reset and interrupt vectors which cannot be done using the --ROM option, see
Section 2.7.49 “--ROM: Adjust ROM Ranges”.

For example, if the option --CODEOFFSET=600 is specified, the reset vector will be
moved from address 0 to address 600h; the interrupt vector will be moved from address
4 to 604h. No code will be placed between address 0 and 600h.
DS51865B-page 30  2010 Microchip Technology Inc.

PICC Command-line Driver
See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.23 --CR: Generate Cross Reference Listing

The --CR option will produce a cross reference listing. If the file argument is omitted,
the raw cross reference information will be left in a temporary cross reference file, leav-
ing the user to run the CREF utility. If a filename is supplied, for example
--CR=test.crf, PICC will invoke CREF to process the cross reference information
into the listing file, in this case test.crf.

If multiple source files are to be included in the cross reference listing, all must be com-
piled and linked with the one PICC command. For example, to generate a cross refer-
ence listing which includes the source modules main.c, module1.c and nvram.c,
compile and link using the command:

PICC --CHIP=16F877AA --CR=main.crf main.c module1.c nvram.c

Thus, this option cannot be used when using any compilation process that compiles
each source file separately using the -C or --PASS1 options. Such is the case for most
IDEs, including MPLAB IDE, and make utilities.

See Section 6.4 “Cref” for information on the CREF utility.

2.7.24 --DEBUGGER: Select Debugger Type

This option is intended for use for compatibility with development tools which can act
as a debugger. PICC supports several debuggers and using this option will configure
the compiler to conform to the requirements of that selected. The possible selections
for this option are defined in Table 2-8.

For example:

PICC --CHIP=16F877AA --DEBUGGER=icd2 main.c

Choosing the correct debugger is important as they can use memory resources which
might be used by the project if this option is omitted. Such a conflict would lead to run-
time failure.

If the debugging features of the development tool are not to be used, for example the
MPLAB ICD 3 is only being used as a programmer, then the debugger option can be
set to none as no memory resources will be used by the tool when operating in this
way.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

TABLE 2-8: SELECTABLE DEBUGGERS

Suboption Debugger selected

none No debugger (default)

icd or icd1 MPLAB® ICD

icd2 MPLAB ICD 2

icd3 MPLAB ICD 3

pickit2 PICkit™ 2

pickit3 PICkit 3

realice MPLAB REAL ICE™ in-circuit emulator
 2010 Microchip Technology Inc. DS51865B-page 31

HI-TECH C® for PIC10/12/16 User’s Guide
2.7.25 --DOUBLE: Select kind of Double Types

This option allows the kind of double-precision floating-point types to be selected. By
default the compiler will choose the truncated IEEE754 24-bit implementation for dou-
ble types. With this option, this can be changed to the full 32-bit IEEE754 implemen-
tation.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.26 --ECHO: Echo command line before processing

Use of this option will result in the driver command line being echoed to the stdout
stream before compilation commences. Each token of the command line will be printed
on a separate line and will appear in the order in which they are placed on the com-
mand line.

2.7.27 --ERRFORMAT: Define Format for Compiler Messages

If the --ERRFORMAT option is not used, the default behavior of the compiler is to dis-
play any errors in a “human readable” form. This standard format is perfectly accept-
able to a person reading the error output, but is not generally usable with environments
which support compiler error handling.

This option allows the exact format of printed error messages to be specified using spe-
cial placeholders embedded within a message template. See Section 2.6 “Compiler
Messages” for full details of the messaging system employed by PICC, and the place-
holders which can be used with this option.

This section is also applicable to the --WARNFORMAT and --MSGFORMAT options,
which adjust the format of warning and advisory messages, respectively.

If you are compiling using MPLAB IDE, the format of the compiler messages is auto-
matically configured to what the IDE expects. It recommended that you do not adjust
the message formats if compiling using this IDE.

2.7.28 --ERRORS: Maximum Number of Errors

This option sets the maximum number of errors each compiler application, as well as
the driver, will display before execution is terminated. By default, up to 20 error mes-
sages will be displayed by each application.

See Section 2.6 “Compiler Messages” for full details of the messaging system
employed by PICC.

2.7.29 --FILL: Fill Unused Program Memory

This option allows specification of a hexadecimal opcode that can be used to fill all
unused program memory locations. Multi-byte codes should be entered in little endian
byte order.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.
DS51865B-page 32  2010 Microchip Technology Inc.

PICC Command-line Driver
2.7.30 --FLOAT: Select kind of Float Types

This option allows the size of float types to be selected. The types available to be
selected are given in Table 2-9.

See also the --DOUBLE option in Section 2.7.25 “--DOUBLE: Select kind of Double
Types”.

2.7.31 --GETOPTION: Get Command-line Options

This option is used to retrieve the command line options which are used for named
compiler application. The options are then saved into the given file. This option is not
required for most projects, and is disabled when the compiler is operating in Lite mode
(see Section 2.7.36 “--MODE: Choose Compiler Operating Mode”).

The options take an application name and a filename to store the options, for example:

--GETOPTION=hlink,options.txt

2.7.32 --HELP: Display Help

This option displays information on the PICC compiler options. The option --HELP will
display all options available. To find out more about a particular option, use the option’s
name as a parameter. For example:

PICC --help=warn

will display more detailed information about the --WARN option, the available subop-
tions, and which suboptions are enabled by default.

2.7.33 --IDE: Specify the IDE being used

This option is used to automatically configure the compiler for use by the named Inte-
grated Development Environment (IDE). The supported IDEs are shown in Table 2-10.

2.7.34 --LANG: Specify the Language for Messages

This option allows the compiler to be configured to produce error, warning and some
advisory messages in languages other than English.

English is the default language unless this has been changed at installation, or by the
use of the --SETUP option. Some messages are only ever printed in English regard-
less of the language specified with this option. See Section 2.6.2 “Message Lan-
guage” for more information.

TABLE 2-9: FLOATING-POINT SELECTIONS

Suboption Effect

double Size of float matches size of double type

24 24-bit float

32 32-bit float (IEEE754)

TABLE 2-10: SUPPORTED IDES

Suboption IDE

hitide HI-TECH’s HI-TIDE™

mplab Microchip’s MPLAB® IDE
 2010 Microchip Technology Inc. DS51865B-page 33

HI-TECH C® for PIC10/12/16 User’s Guide
Table 2-11 shows those languages currently supported.

2.7.35 --MEMMAP: Display Memory Map

This option will display a memory map for the specified map file. This option is seldom
required, but would be useful if the linker is being driven explicitly, i.e. instead of in the
normal way through the command-line driver. This command would display the mem-
ory summary which is normally produced at the end of compilation by the driver.

2.7.36 --MODE: Choose Compiler Operating Mode

This option selects the basic operating mode of the compiler. The available types are
pro, std and lite. A compiler operating in PRO mode uses full optimization and pro-
duces the smallest code size. Standard mode uses limited optimizations, and LITE
mode only uses a minimum optimization level and will produce relatively large code.

Only those modes permitted by the compiler license status will be accepted. For exam-
ple if you have purchased a Standard compiler license, that compiler may be run in
Standard or Lite mode, but not the PRO mode.

2.7.37 --MSGDISABLE: Disable Warning Messages

This option allows warning or advisory messages to be disabled during compilation of
a project. The messagelist is a comma-separated list of warning numbers that are
to be disabled. If the number of an error is specified, it will be ignored by this option. If
the message list is specified as 0, then all warnings are disabled. See
Section 2.6.5 “Changing Message Behavior” for other ways to disable messages.

For full information on the compiler’s messaging system, see Section 2.6 “Compiler
Messages”.

2.7.38 --MSGFORMAT: Set Advisory Message Format

This option sets the format of advisory messages produced by the compiler. Warning
and error messages are controlled separately by other options. See
Section 2.7.27 “--ERRFORMAT: Define Format for Compiler Messages” and
Section 2.7.60 “--WARNFORMAT: Set Warning Message Format” for information
on changing the format of these sorts of messages.

See Section 2.6 “Compiler Messages” for full information on the compiler’s messag-
ing system.

If you are compiling using MPLAB IDE, the format of the compiler messages is auto-
matically configured to what the IDE expects. It recommended that you do not adjust
the message formats if compiling using this IDE.

2.7.39 --NODEL: Do not remove temporary files

Specifying --NODEL when building will instruct PICC not to remove the intermediate
and temporary files that were created during the build process.

2.7.40 --NOEXEC: Don’t Execute Compiler

The --NOEXEC option causes the compiler to assemble all the command lines for the
compiler applications, but not to perform any compilation or produce any output.

TABLE 2-11: SUPPORTED LANGUAGES

Suboption Language

en, english English

fr, french, francais French

de, german, deutsch German
DS51865B-page 34  2010 Microchip Technology Inc.

PICC Command-line Driver
This may be useful when used in conjunction with the -V option (Section 2.7.15 “-V:
Verbose Compile”) in order to see all of the command lines the compiler uses to drive
the compiler applications.

2.7.41 --OBJDIR: Specify a directory for intermediate files

This option allows a directory to be nominated in PICC to locate its intermediate files.
If this option is omitted, intermediate files will be created in the current working direc-
tory.

This option will not set the location of output files, instead use --OUTDIR. See
Section 2.7.43 “--OUTDIR: Specify a directory for output files” and
Section 2.7.10 “-O: Specify Output File” for more information.

2.7.42 --OPT: Invoke Compiler Optimizations

The --OPT option allows control of all the compiler optimizers. If this option is not spec-
ified, or it is specified as --OPT=all, all optimizations are enabled. Optimizations may
be disabled by using --OPT=none, or individual optimizers may be controlled, e.g.
--OPT=asm will only enable some assembler optimizations.

Table 2-12 lists the available optimization types. The optimizations that are controlled
through specifying a level 1 through 9 affect optimization during the code generation
stage. The level selected is commonly referred to as the global optimization level.

These optimizations are primarily concerned with getting variables into registers and
the value in the option indicates how hard the compiler tries to make this happen.

Note that different suboptions control assembler optimizations of assembly source files
and intermediate assembly files produced from C source code.

The speed and space suboptions are contradictory. Space optimizations are the
default. If speed and space suboptions are both specified, then speed optimizations
takes precedence. These optimizations affect procedural abstraction, which is per-
formed by the assembler, and other optimizations at the code generation stage.

2.7.43 --OUTDIR: Specify a directory for output files

This option allows a directory to be nominated for PICC to locate its output files. If this
option is omitted, output files will be created in the current working directory. See also
Section 2.7.41 “--OBJDIR: Specify a directory for intermediate files” and
Section 2.7.10 “-O: Specify Output File” for more information.

2.7.44 --OUTPUT= type: Specify Output File Type

This option allows the type of the output file(s) to be specified. If no --OUTPUT option
is specified, the output file’s name will be the same as the project name (see
Section 2.3 “The Compilation Sequence”).

TABLE 2-12: OPTIMIZATION OPTIONS

Option name Function

1...9 Select global optimization level (1 through 9)

asm Select optimizations of assembly code derived from C source

asmfile Select optimizations of assembly source files

debug Favor accurate debugging over optimization

speed Favor optimizations that result in faster code

space Favor optimizations that result in smaller code

all Enable all compiler optimizations

none Do not use any compiler optimizations
 2010 Microchip Technology Inc. DS51865B-page 35

HI-TECH C® for PIC10/12/16 User’s Guide
The available output file format are shown in Table 2-13. More than one output format
may be specified by supplying a comma-separated list of tags. Not all formats are sup-
ported by Microchip development tools.

Those output file types which specify library formats stop the compilation process
before the final stages of compilation are executed. Hence specifying an output file for-
mat list containing, e.g. lib or all will prevent the other formats from being created.

So, for example:

PICC --CHIP=16F877AA --OUTPUT=lpp lcd_init.c lcd_data.c lcd_msgs.c

will compile the three names files into an LPP (p-code) library.

2.7.45 --PASS1: Compile to P-code

The --PASS1 option is used to generate p-code intermediate files (.p1 file) from the
parser, then stop compilation. Such files need to be generated if creating p-code library
files, however the compiler is able to generate library files in one step, if required. See
Section 2.7.44 “--OUTPUT= type: Specify Output File Type” for specifying a library
output file type.)

2.7.46 --PRE: Produce Preprocessed Source Code

The --PRE option is used to generate preprocessed C source files (also called mod-
ules or translation units) with an extension .pre. This may be useful to ensure that pre-
processor macros have expanded to what you think they should. Use of this option can
also create C source files which do not require any separate header files. If the .pre
files are renamed to .c files that can be passed to the compiler for subsequent pro-
cessing. This is useful when sending files to a colleague or to obtain technical support
without having to send all the header files, which may reside in many directories.

If you wish to see the preprocessed source for the printf() family of functions, do
not use this option. The source for this function is customized by the compiler, but only
after the code generator has scanned the project for printf() usage. Thus, as the
–-PRE option stops compilation after the preprocessor stage, the code generator will
not execute and no printf() code will be processed. If this option is omitted, the pre-
processed source for printf() will be automatically retained in the file doprnt.pre.

TABLE 2-13: OUTPUT FILE FORMATS

Type tag File format

lib Object library file

lpp P-code library file

intel Intel HEX

tek Tektronic

aahex American Automation symbolic HEX file

mot Motorola S19 HEX file

ubrof UBROF format

bin Binary file

mcof Microchip COFF

cof Common Object File Format

cod Bytecraft COD file format

elf ELF/DWARF file format (not supported by HI-TECH C Com-
piler for PIC10/12/16 MCUs)
DS51865B-page 36  2010 Microchip Technology Inc.

PICC Command-line Driver
2.7.47 --PROTO: Generate Prototypes

The --PROTO option is used to generate .pro files containing both ANSI C and K&R
style function declarations for all functions within the specified source files. Each .pro
file produced will have the same base name as the corresponding source file. Proto-
type files contain both ANSI C-style prototypes and old-style C function declarations
within conditional compilation blocks.

The extern declarations from each .pro file should be edited into a global header file,
which can then be included into all the C source files in the project. The .pro files may
also contain static declarations for functions which are local to a source file. These
static declarations should be edited into the start of the source file.

To demonstrate the operation of the --PROTO option, enter the following source code
as file test.c:

#include <stdio.h>
add(arg1, arg2)
int * arg1;
int * arg2;
{
 return *arg1 + *arg2;
}

void printlist(int * list, int count)
{
 while (count--)
 printf("d " *list++);
 putchar(’\n’);
}

If compiled with the command:

PICC --CHIP=16F877AA --PROTO test.c

PICC will produce test.pro containing the following declarations which may then be
edited as necessary:

/* Prototypes from test.c */
/* extern functions - include these in a header file */
#if PROTOTYPES
extern int add(int *, int *);
extern void printlist(int *, int);
#else /* PROTOTYPES */
extern int add();
extern void printlist();
#endif /* PROTOTYPES */

2.7.48 --RAM: Adjust RAM Ranges

This option is used to adjust the default RAM, which is specified for the target device.
The default memory will include all the on-chip RAM specified for the target
PIC10/12/16 device, thus this option only needs be used if there are special memory
requirements. Typically this option is used to reserve memory (reduce the amount of
memory available). Specifying additional memory that is not in the target device will typ-
ically result in a successful compilation, but may lead to code failures at runtime.

The default RAM memory for each target device is specified in the chipinfo file,
PICC.INI.

Strictly speaking, this option specifies the areas of memory that may be used by writ-
able (RAM-based) objects, and not necessarily those areas of memory which contain
physical RAM. The output that will be placed in the ranges specified by this option are
typically variables that a program defines.
 2010 Microchip Technology Inc. DS51865B-page 37

HI-TECH C® for PIC10/12/16 User’s Guide
For example, to specify an additional range of memory to that already present on-chip,
use:

--RAM=default,+100-1ff

This will add the range from 100h to 1ffh to the on-chip memory. To only use an external
range and ignore any on-chip memory, use:

--RAM=0-ff

This option may also be used to reserve memory ranges already defined as on-chip
memory in the chipinfo file. To do this, supply a range prefixed with a minus character,
-, for example:

--RAM=default,-100-103

will use all the defined on-chip memory, but not use the addresses in the range from
100h to 103h for allocation of RAM objects.

This option will adjust the memory ranges used by linker classes, see
Section 5.2.1 “-Aclass =low-high,...”, and hence any object which is in a psect is
placed in this class. Any objects contained in a psect that are explicitly placed at a
memory address by the linker (see Section 5.2.18 “-Pspec”) i.e., are not placed into
a memory class, are not affected by the option.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.49 --ROM: Adjust ROM Ranges

This option is used to change the default ROM which is specified for the target device.
The default memory will include all the on-chip ROM specified for the target
PIC10/12/16 device, thus this option only needs to be used if there are special memory
requirements. Typically this option is used to reserve memory (reduce the amount of
memory available). Specifying additional memory that is not in the target device will typ-
ically result in a successful compilation, but may lead to code failures at runtime.

The default ROM memory for each target device is specified in the chipinfo file,
PICC.INI.

Strictly speaking, this option specifies the areas of memory that may be used by
read-only (ROM-based) objects, and not necessarily those areas of memory which
contain physical ROM. When producing code that may be downloaded into a system
via a bootloader, the destination memory may be some sort of (volatile) RAM. The out-
put that will be placed in the ranges specified by this option are typically executable
code and any data variables that are qualified as const.

For example, to specify an additional range of memory to that on-chip, use:

--ROM=default,+100-2ff

This will add the range from 100h to 2ffh to the on-chip memory. To only use an external
range and ignore any on-chip memory, use:

--ROM=100-2ff

This option may also be used to reserve memory ranges already defined as on-chip
memory in the chip configuration file. To do this supply a range prefixed with a minus
character, -, for example:

--ROM=default,-100-1ff

will use all the defined on-chip memory, but not use the addresses in the range from
100h to 1ffh for allocation of ROM objects.
DS51865B-page 38  2010 Microchip Technology Inc.

PICC Command-line Driver
This option will adjust the memory ranges used by linker classes, see
Section 5.2.1 “-Aclass =low-high,...”, and hence any object which is in a psect
placed in this class. Any objects which are contained in a psect that are explicitly placed
at a memory address by the linker (see Section 5.2.18 “-Pspec”), i.e., are not placed
into a memory class, are not affected by the option.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.50 --RUNTIME: Specify Runtime Environment

The --RUNTIME option is used to control what is included as part of the runtime envi-
ronment. The runtime environment encapsulates any code that is present at runtime
which has not been defined by the user, instead supplied by the compiler, typically as
library code or compiler-generated source files.

All required runtime features are enabled by default and this option is not required for
normal compilation.

Note that the code that clears or initializes variables, which is included by default, will
clobber the contents of the STATUS register. If you need to check the cause of reset
using the TO or PD bits in this register, then you must enable the resetbits subop-
tion as well. See 3.11.1.3 “STATUS Register Preservation” for how this feature is
used.

The usable suboptions include those shown in Table 2-14.

TABLE 2-14: RUNTIME ENVIRONMENT SUBOPTIONS

Suboption Controls On (+) Implies

init The code present in the main pro-
gram module that copies the
ROM-image of initial values to RAM
variables.

The ROM image is copied into RAM
and initialized variables will contain
their initial value at main().

clib The inclusion of library files into the
output code by the linker.

Library files are linked into the
output.

clear The code present in the main pro-
gram module that clears uninitialized
variables.

Uninitialized variables are cleared
and will contain 0 at main().

download Conditioning of the Intel HEX file for
use with bootloaders.

Data records in the Intel HEX file are
padded out to 16 byte lengths and
will align on 16 byte boundaries.
Startup code will not assume reset
values in certain registers.

osccal Initialize the oscillator with the
oscillator constant.

Oscillator will be calibrated.

oscval:value Set the internal clock oscillator
calibration value.

Oscillator will be calibrated with
value supplied.

keep Whether the start-up module source
file is deleted after compilation.

The start-up module and main
program are not deleted.

resetbits Preserve Power-down and Time-out
STATUS bits at start up.

STATUS bits are preserved.

stackcall Allow function calls to use a table
look-up method once the hardware
stack has filled.

Functions called via CALL instruc-
tion while stack not exhausted, then
called via a look-up table.
 2010 Microchip Technology Inc. DS51865B-page 39

HI-TECH C® for PIC10/12/16 User’s Guide
2.7.51 --SCANDEP: Scan for Dependencies

When this option is used, a .dep (dependency) file is generated. The dependency file
lists those files on which the source file is dependant. Dependencies result when one
file is #included into another.

2.7.52 --SERIAL: Store a Value at this Program Memory Address

This option allows a hexadecimal code to be stored at a particular address in program
memory. A typical task for this option might be to position a serial number in program
memory.

The byte-width of data to store is determined by the byte-width of the hexcode param-
eter in the option. For example, to store a one byte value, 0, at program memory
address 1000h, use --SERIAL=00@1000. To store the same value as a four byte
quantity use --SERIAL=00000000@1000.

This option is functionally identical to the corresponding HEXMATE option. For more
detailed information and advanced controls that can be used with this option, refer to
Section 6.6.1.15 “-SERIAL”.

The driver will also define a label at the location where the value was stored, and which
can be referenced from C code as _serial0. To enable access to this symbol,
remember to declare it, for example:

extern const int _serial0;

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.53 --SETOPTION: Set The Command-line Options for Application

This option is used to supply alternative command line options for the named
application when compiling. The general form of this option is:

--SETOPTION=app,file

where the app component specifies the application that will receive the new options,
and the file component specifies the name of the file that contains the additional options
that will be passed to the application. This option is not required for most projects.

If specifying more than one option to a component, each option must be entered on a
new line in the option file. This option can also be used to remove an application from
the build sequence. If the file parameter is specified as off, execution of the named
application will be skipped. In most cases, this is not desirable as almost all applications
are critical to the success of the build process. Disabling a critical application will result
in catastrophic failure. However, it is permissible to skip a non-critical application such
as CLIST or HEXMATE if the final results are not reliant on their function.

2.7.54 --SHROUD: Obfuscate p-code Files

This option should be used in situations where either p-code files or p-code libraries
are to be distributed and are built from confidential source code.

C comments, which are normally included into these files, as well as line numbers and
variable name will be removed or obfuscated so that the original source code cannot
be reconstructed from distributed files.

2.7.55 --STRICT: Strict ANSI Conformance

The --STRICT option is used to enable strict ANSI C conformance of all special,
non-standard keywords.
DS51865B-page 40  2010 Microchip Technology Inc.

PICC Command-line Driver
The HI-TECH C compiler supports various special keywords (for example the persis-
tent type qualifier). If the --STRICT option is used, these keywords are changed to
include two underscore characters at the beginning of the keyword (e.g.
__persistent) so as to strictly conform to the ANSI standard. Thus if you use this
option, you will need to use the qualifier __persistent in your code, not persis-
tent.

Be warned that use of this option may cause problems with some standard header files
(e.g. <htc.h>) as they contain special keywords.

2.7.56 --SUMMARY: Select Memory Summary Output Type

Use this option to select the type of memory summary that is displayed after compila-
tion. By default, or if the mem suboption is selected, a memory summary is shown. This
shows the total memory usage for all memory spaces.

A psect summary may be shown by enabling the psect suboption. This shows individ-
ual psects, after they have been grouped by the linker, and the memory ranges they
cover. Table 2-15 shows what summary types are available.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.57 --TIME: Report Time Taken for Each Phase of Build Process

Adding the --TIME option when building generates a summary which shows how
much time each stage of the build process took to complete.

2.7.58 --VER: Display The Compiler’s Version Information

The --VER option will display what version of the compiler is running and then exit the
compiler.

2.7.59 --WARN: Set Warning Level

The --WARN option is used to set the compiler warning level threshold. Allowable warn-
ing levels range from -9 to 9. The warning level determines how pedantic the compiler
is about dubious type conversions and constructs. Each compiler warning has a des-
ignated warning level; the higher the warning level, the more important the warning
message. If the warning message’s warning level exceeds the set threshold, the warn-
ing is printed by the compiler. The default warning level threshold is 0 and will allow all
normal warning messages.

TABLE 2-15: MEMORY SUMMARY SUBOPTIONS

Suboption Controls On (+) Implies

psect Summary of psect usage. A summary of psect names and the
addresses where they were linked will
be shown.

mem General summary of memory used. A concise summary of memory used
will be shown.

class Summary of class usage. A summary of all classes in each
memory space will be shown.

hex Summary of address used within the
HEX file.

A summary of addresses and HEX
files which make up the final output
file will be shown.

file Whether summary information is
shown on the screen or shown and
saved to a file.

Summary information will be shown
on screen and saved to a file.
 2010 Microchip Technology Inc. DS51865B-page 41

HI-TECH C® for PIC10/12/16 User’s Guide
Use this option with care as some warning messages indicate code that is likely to fail
during execution, or compromise portability.

Warning message can be individually disabled with the --MSGDISABLE option, see
Section 2.7.37 “--MSGDISABLE: Disable Warning Messages”. See also
Section 2.6 “Compiler Messages” for full information on the compiler’s messaging
system.

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

2.7.60 --WARNFORMAT: Set Warning Message Format

This option sets the format of warning messages produced by the compiler. See
Section 2.7.27 “--ERRFORMAT: Define Format for Compiler Messages” for more
information on this option. For full information on the compiler’s messaging system, see
Section 2.6 “Compiler Messages”.

If you are compiling using MPLAB IDE, the format of the compiler messages is auto-
matically configured to what the IDE expects. It recommended that you do not adjust
the message formats if compiling using this IDE.

2.8 MPLAB IDE UNIVERSAL TOOLSUITE EQUIVALENTS

When compiling from within Microchip’s MPLAB IDE, it is still the compiler’s com-
mand-line driver, PICC, that is being executed and compiling the program. The
HI-TECH Universal Toolsuite plugin manages the MPLAB IDE Build Options dialog that
is used to access the compiler options, and most of these graphical controls ultimately
adjust the driver’s command-line options. You can see the command-line options being
used when building in the Output window in MPLAB IDE.

The following dialogs and descriptions identify the mapping between the dialog controls
and command-line options. As the toolsuite is universal across all HI-TECH compilers,
not all options are applicable for the HI-TECH C Compiler for PIC10/12/16 MCUs.

2.8.1 Directories Tab

The options in this dialog control the output and search directories for some files. See
Figure 2-5 in conjunction with the following command line option equivalents.
DS51865B-page 42  2010 Microchip Technology Inc.

PICC Command-line Driver
FIGURE 2-5: THE DIRECTORIES TAB

1. The output directory: This selection uses the buttons and fields grouped in the
bracket to specify an output directory for files output by the compiler. This selec-
tion is handled internally by MPLAB IDE and does not use a driver option; how-
ever, it is functionally equivalent to the --OUTDIR driver option (see
Section 2.7.43 “--OUTDIR: Specify a directory for output files”).

2. Include Search path: This selection uses the buttons and fields grouped in the
bracket to specify include (header) file search directories. See Section 2.7.5 “-I:
Include Search Path”.

2.8.2 Compiler Tab

The options in this dialog control the aspects of compilation up to code generation. See
Figure 2-6 in conjunction with the following command line option equivalents.

1. Define macros: The buttons and fields grouped in the bracket can be used to
define preprocessor macros. See Section 2.7.2 “-D: Define Macro”.

2. Undefine macros: The buttons and fields grouped in the bracket can be used to
undefine preprocessor macros. See Section 2.7.14 “-U: Undefine a Macro”.

3. Preprocess assembly: This checkbox controls whether assembly source files are
scanned by the preprocessor. See Section 2.7.11 “-P: Preprocess Assembly
Files”.

1

2

 2010 Microchip Technology Inc. DS51865B-page 43

HI-TECH C® for PIC10/12/16 User’s Guide
FIGURE 2-6: THE COMPILER TAB

4. Optimization settings: These controls are used to adjust the different optimiza-
tions the compiler employs. See Section 2.7.42 “--OPT: Invoke Compiler Opti-
mizations”.

5. Identifier length: This selector controls the maximum identifier length in C source.
See Section 2.7.9 “-N: Identifier Length”.

6. Verbose: This checkbox controls whether the full command-lines for the compiler
applications are displayed when building. See Section 2.7.15 “-V: Verbose
Compile”.

7. Warning level: This selector allows the warning level print threshold to be set.
See Section 2.7.59 “--WARN: Set Warning Level”.

8. Operation Mode: This selector allows the user to force another available operat-
ing mode (e.g. Lite, Standard or PRO) other than the default. See
Section 2.7.36 “--MODE: Choose Compiler Operating Mode”

9. Address Qualifier: This selector allows the user to select the behavior of the
address qualifier. See Section 2.7.18 “--ADDRQUAL: Set Compiler
Response to Memory Qualifiers”

2.8.3 Linker Tab

The options in this dialog control the link step of compilation. See Figure 2-7 in
conjunction with the following command line option equivalents.

2

3

4

5

6

7

1

8

9

DS51865B-page 44  2010 Microchip Technology Inc.

PICC Command-line Driver
FIGURE 2-7: THE LINKER TAB

1. Runtime options: These checkboxes control the many runtime features the com-
piler can employ. See Section 2.7.50 “--RUNTIME: Specify Runtime Environ-
ment”.

2. Fill: This field allows a fill value to be specified for unused memory locations. See
Section 2.7.29 “--FILL: Fill Unused Program Memory”.

3. Codeoffset: This field allows an offset for the program to be specified. See
Section 2.7.22 “--CODEOFFSET: Offset Program Code to Address”.

4. Checksum: This field allows the checksum specification to be specified. See
Section 2.7.19 “--CHECKSUM: Calculate a checksum”.

5. Errata: Not applicable.

6. Vectors: Not applicable.

7. Callgraph: Not applicable.

8. Debugger: This selector allows the type of hardware debugger to be chosen. See
Section 2.7.24 “--DEBUGGER: Select Debugger Type”.

9. Trace type: Not yet implemented.

10. Stack size: Not applicable.

11. Heap size: Not applicable.

12. Frequency: Not applicable.

13. Extend address 0 in HEX file: This option specifies that the intel HEX file should
have initialization to zero of the upper address. See
Section 2.7.44 “--OUTPUT= type: Specify Output File Type”.

14. Interrupt options: Not applicable.

15. Summary Options: These checkboxes control which summaries are printed after
compilation. See Section 2.7.56 “--SUMMARY: Select Memory Summary

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15
 2010 Microchip Technology Inc. DS51865B-page 45

HI-TECH C® for PIC10/12/16 User’s Guide
Output Type”.

2.8.4 Global Tab

The options in this dialog control aspects of compilation that are applicable throughout
code generation and link steps — the second stage of compilation. See Figure 2-8 in
conjunction with the following command line option equivalents.

FIGURE 2-8: THE GLOBAL TAB

1. Memory model: Not applicable.

2. Double float: This selector allows the size of the double type to be selected. See
Section 2.7.25 “--DOUBLE: Select kind of Double Types”.

3. Printf: Not applicable.

4. Use strict calls: Not applicable.

5. RAM ranges: This field allows the default RAM (data space) memory used to be
adjusted. See Section 2.7.48 “--RAM: Adjust RAM Ranges”.

6. Code pointer size: Not applicable.

7. External memory: Not applicable.

8. Instruction set: Not applicable.

9. ROM ranges: This field allows the default ROM (program space) memory used
to be adjusted. See Section 2.7.49 “--ROM: Adjust ROM Ranges”.

1

2

3

4

5

6

7

8

9

DS51865B-page 46  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Chapter 3. C Language Features
3.1 INTRODUCTION

HI-TECH C Compiler for PIC10/12/16 MCUs supports a number of special features and
extensions to the C language which are designed to ease the task of producing
ROM-based applications. This chapter documents the special language features which
are specific to these devices.

3.2 ANSI C STANDARD ISSUES

This compiler conforms to the ISO/IEC 9899:1990 Standard for programming lan-
guages. This is commonly called the C90 Standard. It is referred to as the ANSI C Stan-
dard in this manual.

Some violations to the ANSI C Standard are indicated below in
Section 3.2.1 “Divergence from the ANSI C Standard”. Some features from the
later standard C99 are also supported.

3.2.1 Divergence from the ANSI C Standard

HI-TECH C diverges from the ANSI C Standard in one area: function recursion. Due to
limited memory and no hardware implementation of a data stack, recursion is not sup-
ported and functions are not reentrant.

3.2.2 Implementation-defined behavior

Certain features of the ANSI C standard have implementation-defined behavior. This
means that the exact behavior of some C code can vary from compiler to compiler. The
exact behavior of the HI-TECH C compiler is detailed throughout this manual, and is
fully summarized in Appendix A. “Implementation-Defined Behavior”.

3.3 PROCESSOR-RELATED FEATURES

HI-TECH C has several features which relate directly to the PIC10/12/16 architectures
and instruction sets. These detailed in the following sections.

3.3.1 Device Support

HI-TECH C Compiler for PIC10/12/16 MCUs aims to support all Baseline and
Mid-Range devices. However, new devices in these families are frequently released.
There are several ways you can check if the compiler you are using supports a partic-
ular device.

From MPLAB IDE, open the Build Options dialog. Select the Driver tab. In the Available
Drivers field, select the compiler you wish to use. A list of all devices supported by that
compiler will be shown in the Selected Driver Information and Supported Device area,
towards the center of the dialog. See Figure 3-1 for the relevant fields in this dialog.
 2010 Microchip Technology Inc. DS51865B-page 47

HI-TECH C® for PIC10/12/16 User’s Guide
FIGURE 3-1: SHOWING SUPPORTED DEVICES

From the command line, the same information can be obtained. Run the compiler you
wish to use and pass it the option --CHIPINFO (See Section 2.7.21 “--CHIPINFO:
Display List of Supported Processors”). A list of all devices will be printed.

3.3.2 Device Header Files

There is one header file that is recommended be included into each source file you
write. The file is <htc.h> and is a generic file that will include other device- and
chip-specific header files when you build your project.

Inclusion of this file will allow access to SFRs via special variables, as well as macros
which allow special memory access or inclusion of special instructions, like CLRWDT.

3.3.3 Stack

The hardware stack on PIC® devices is limited in depth and cannot be manipulated
directly. It is only used for function return address and cannot be used for program data.
The compiler implements a compiled stack for local data objects, see
Section 3.5.4 “Absolute Variables” for information on how this is achieved.

You must ensure that the maximum stack depth is not exceeded; otherwise, code may
fail. Calling too many nested functions may overflow the stack, and it is important to
take into account interrupts, which also use levels of the stack.

A call graph is provided by the code generator in the assembler list file. This will indicate
the stack levels at each function call and can be used as a guide to stack depth. The
code generator may also produce warnings if the maximum stack depth is exceeded.

Both of these are guides to stack usage. Optimizations and the use of interrupts can
decrease or increase, respectively, the stack depth used by a program over that
determined by the compiler.
DS51865B-page 48  2010 Microchip Technology Inc.

C Language Features
3.3.4 Configuration Bit Access

The PIC device processor’s configuration bits may be set using the __CONFIG()
macro as follows:

__CONFIG(x);

Note there are two leading underscore characters. The macro is defined in the
<htc.h> header file, so be sure to include this into the files that use this macro.

The x argument is the value that is to be programmed in the configuration word. The
value can either be a literal or be built up from specially named quantities that are
defined in the header file appropriate for the processor you are using. These macro
names are similar to the names as used in the PIC10/12/16 data sheets to represent
the configuration conditions and must be bitwise ANDed together to form the configu-
ration value. Refer to your processor’s header file for details. For example:

#include <htc.h>
__CONFIG(WDTDIS & HS & UNPROTECT);

For devices that have more than one configuration word location, each subsequent
invocation of __CONFIG() will modify the next configuration word in sequence.
Typically this might look like:

#include <htc.h>
__CONFIG(WDTDIS & XT & UNPROTECT); // Program config. word 1
__CONFIG(FCMEN); // Program config. word 2

MPLAB IDE has a dialog (Config>Configuration bits...) which also allows configuration
bits to be specified when the device is programmed. If the checkbox Configuration Bits
Set in Code in this dialog is checked, any configuration bits specified in your code using
the __CONFIG macro are ignored and those in the dialog used instead. Ensure the
source of the configuration bit settings is known when working with an MPLAB IDE proj-
ect.

3.3.5 Using SFRs From C Code

The Special Function Registers (SFRs) are registers which control aspects of the MCU
operation or that of peripheral modules on the device. Most of these registers are mem-
ory mapped, which means that they appear at specific addresses in the data memory
space of the device. With some registers, the bits within the register control indepen-
dent features. Some registers are read-only; some are write-only.

Memory-mapped SFRs are accessed by special C variables that are placed at the
addresses of the registers. Variables that are placed at specific addresses are called
absolute variables and are described in Section 3.5.4 “Absolute Variables”. These
variables can be accessed like any ordinary C variable so that no special syntax is
required to access SFRs, Bit variables, as well as structures (with bit-fields), can also
be made absolute and so either can be used to represent bits within the register.

The SFR variables are predefined in header files and will be accessible once the
<htc.h> header file (see Section 3.3.2 “Device Header Files”) has been included
into your source code. Both bit variables and structures with bit-fields are defined by
the inclusion of this header file so you may use either in your source code.

The names given to the C variables, which map over the registers and bit variables, or
bit-fields, within the registers are based on the names specified in the device data
sheet. However, as there can be duplication of some bit names within registers, there
may be differences in the nomenclature. The names of the structures that hold the
bit-fields will typically be those of the corresponding register followed by bits. For
example, the following shows code that includes the generic header file, clears PORTA
as a whole, sets bit 0 of PORTA using a bit variable and sets bit 2 of PORTA using the
structure/bit-field definitions.
 2010 Microchip Technology Inc. DS51865B-page 49

HI-TECH C® for PIC10/12/16 User’s Guide
#include <htc.h>
void main(void)
{

PORTA = 0x00;
RA0 = 1;
PORTAbits.RA2 = 1;

}

To confirm the names that are relevant for the device you are using, check the device
specific header file that <htc.h> will include for the definitions of each variable. These
files will be located in the include directory of the compiler and will have a name that
represents the device. There is a one-to-one correlation between device and header
file name that will be included by <htc.h>, e.g. when compiling for a PIC16LF1826
device the <htc.h> header file will include <pic16lf1826.h>. Remember that you
do not need to include this chip-specific file into your source code; it is automatically
included by <htc.h>.

Some SFRs are not memory mapped, do not have a corresponding variable defined in
the device specific header file, and cannot be directly accessed from C code. For
example, the W register is not memory mapped on Baseline devices. The older
PIC16C5X devices use OPTION and TRIS registers, which are only accessible via
special instructions and which are also not memory mapped. See
Section 3.3.9 “Baseline PIC MCU Special Instructions” on how these registers are
accessed by the compiler.

Care should be taken when accessing some SFRs from C code or from assembly
in-line with C code. Some registers are used by the compiler to hold intermediate val-
ues of calculations, and writing to these registers directly can result in code failure. The
compiler does not detect when SFRs have changed as a result of C or assembly code
that writes to then directly. The list of registers used by the compiler and further infor-
mation can be found in Section 3.7 “Register Usage”.

SFRs associated with peripherals are not used by the compiler to hold intermediate
results and can be changed as you require. Always ensure that you confirm the oper-
ation of peripheral modules from the device data sheet.

3.3.6 ID Locations

Some PIC10/12/16 devices have locations outside the addressable memory area that
can be used for storing program information, such as an ID number. The __IDLOC()
macro may be used to place data into these locations. The macro is used in a manner
similar to:

#include <htc.h>
__IDLOC(x);

where x is a list of nibbles which are positioned into the ID locations. Only the lower
four bits of each ID location is programmed, so the following:

__IDLOC(15F0);

will attempt to fill ID locations with the values: 1, 5, F and 0.

The base address of the ID locations is specified by the idloc psect which will be auto-
matically assigned as appropriate address based on the type of device selected.

Some devices will permit programming up to seven bits within each ID location. To pro-
gram the full seven bits, the regular __IDLOC() macro is not suitable. For this situa-
tion, the __IDLOC7(a,b,c,d) macro is available. The parameters a to d are the
values to be programmed. The values can be entered in either decimal or hexadecimal
format, such as:

__IDLOC7(0x7f,1,70,0x5a);
DS51865B-page 50  2010 Microchip Technology Inc.

C Language Features
It is not appropriate to use the __IDLOC7() macro on a device that does not permit
seven bit programming of ID locations.

3.3.7 Bit Instructions

Wherever possible, the HI-TECH C compiler will attempt to use the PIC10/12/16 bit
instructions. For example, when using a bitwise operator and a mask to alter a bit within
an integral type, the compiler will check the mask value to determine if a bit instruction
can achieve the same functionality.

unsigned int foo;
foo |= 0x40;

will produce the instruction:

BSF _foo,6

To set or clear individual bits within integral type, the following macros could be used:

#define bitset(var, bitno) ((var) |= 1UL << (bitno))
#define bitclr(var, bitno) ((var) &= ~(1UL << (bitno)))

To perform the same operation as above, the bitset macro could be employed as
follows:

bitset(foo,6);

3.3.8 EEPROM Access

For most devices that come with on-chip EEPROM, the compiler offers several meth-
ods of accessing this memory. The EEPROM access methods are described in the fol-
lowing sections.

3.3.8.1 THE __EEPROM_DATA() MACRO

For those PIC10/12/16 devices that support external programming of their EEPROM
data area, the __EEPROM_DATA() macro can be used to place the initial EEPROM
data values into the HEX file ready for programming. The macro is used as follows.

#include <htc.h>
__EEPROM_DATA(0, 1, 2, 3, 4, 5, 6, 7);

The macro accepts eight parameters, being eight data values. Each value should be a
byte in size. Unused values should be specified as a parameter of zero.

The macro may be called multiple times to define the required amount of EEPROM
data. It is recommended that the macro be placed outside any function definitions.

The macro defines, and places the data within, a psect called eeprom_data. This
psect is automatically positioned by the linker.

This macro is not used to write to EEPROM locations during runtime; it is used for
pre-loading EEPROM contents at program time only.

3.3.8.2 EEPROM ACCESS FUNCTIONS

The library functions eeprom_read() and eeprom_write(), can be called to read
from, and write to, the EEPROM during program execution. For example, to write a
byte-size value to an address in EEPROM and retrieve it using these functions would
be:

#include <htc.h>
void eetest(void) {
 unsigned char value = 1;
 unsigned char address = 0;

 // write value to EEPROM address
 eeprom_write(address, value);
 2010 Microchip Technology Inc. DS51865B-page 51

HI-TECH C® for PIC10/12/16 User’s Guide
 // read from EEPROM at address
 value = eeprom_read(address);
}

These functions test and wait for any concurrent writes to EEPROM to conclude before
performing the required operation. The eeprom_write() function will initiate the pro-
cess of writing to EEPROM and this process will not have completed by the time that
eeprom_write() returns. The new data written to EEPROM will become valid
approximately four milliseconds later.

In the above example, the new value will not yet be ready at the time when
eeprom_read() is called; however, because this function waits for any concurrent
writes to complete before initiating the read, the correct value will be read.

It may also be convenient to use the preprocessor symbol, _EEPROMSIZE, in conjunc-
tion with some of these access methods. This symbol defines the number of EEPROM
bytes available for the selected chip.

3.3.8.3 EEPROM ACCESS MACROS

Although these macros perform much the same service as their library function coun-
terparts, these should only be employed in specific circumstances. It is appropriate to
select EEPROM_READ or EEPROM_WRITE in favor of the library equivalents if any of the
following conditions are true:

• You cannot afford the extra level of stack depth required to make a function call

• You cannot afford the added code overhead to pass parameters and perform a
call/return

• You cannot afford the added processor cycles to execute the function call over-
head

Be aware that if a program contains multiple instances of either macro, any code space
saving will be negated as the full content of the macro is now duplicated in code space.

In the case of EEPROM_READ(), there is another very important detail to note. Unlike
eeprom_read(), this macro does not wait for any concurrent EEPROM writes to com-
plete before proceeding to select and read EEPROM. Had the previous example used
the EEPROM_READ() macro in place of eeprom_read() the operation would have
failed. If it cannot be guaranteed that all writes to EEPROM have completed at the time
of calling EEPROM_READ(), the appropriate flag should be polled prior to executing
EEPROM_READ().

For example:

#include <htc.h>
void eetest(void){
 unsigned char value = 1;
 unsigned char address = 0;

 // Initiate writing value to address
 EEPROM_WRITE(address,value);
 // wait for end-of-write before EEPROM_READ
 while(WR)
 continue; // read from EEPROM at address
 value = EEPROM_READ(address);
}

3.3.9 Baseline PIC MCU Special Instructions

The baseline (12-bit instruction word) devices have some registers which are not in the
normal SFR area and cannot be accessed using an ordinary file instruction. The
HI-TECH C compiler is instructed to automatically use the special instructions intended
for such cases when pre-defined symbols are accessed.
DS51865B-page 52  2010 Microchip Technology Inc.

C Language Features
The definition of the special symbols make use of the control qualifier. This qualifier
informs the compiler that the registers are outside of the normal address space and that
a different access method is required.

3.3.9.1 THE OPTION INSTRUCTION

Some baseline PIC devices use an OPTION instruction to load the OPTION register.
The <htc.h> header file will ensure a special definition for a C object called OPTION,
and macros for the bit symbols which are stored in this register. PICC will automatically
use the OPTION instruction when an appropriate processor is selected and the OPTION
register is accessed.

For example, to set the prescaler assignment bit so that prescaler is assigned to the
watchdog timer, the following code can be used.

OPTION = PSA;

This will load the appropriate value into the W register and then call the OPTION
instruction.

3.3.9.2 THE TRIS INSTRUCTIONS

Some PIC devices use a TRIS instruction to load the TRIS register. The <htc.h>
header file will ensure a special definition for a C object called TRIS. PICC will auto-
matically use the TRIS instruction when an appropriate processor is selected and the
TRIS register is accessed.

For example, to make all the bits on the output port high impedance, the following code
can be used.

TRIS = 0xFF;

This will load the appropriate value into the W register and then call the TRIS instruction.

Those PIC devices which have more than one output port may have definitions for
objects: TRISA, TRISB and TRISC, depending on the exact number of ports available.
This objects are used in the same manner as described above.

3.3.9.3 OSCILLATOR CALIBRATION CONSTANTS

Some PIC devices come with an oscillator calibration constant which is pre-pro-
grammed into the device’s program memory. This constant can be read from program
memory and written to the OSCCAL register to calibrate the internal RC oscillator.

On some baseline PIC devices, the calibration constant is stored as a MOVLW instruc-
tion at the top of program memory, e.g. the PIC12C50X and PIC16C505 parts. On
Reset, the program counter is made to point to this instruction and it is executed first
before the program counter wraps around to 0x0000, which is the effective reset vector
for the device. The default HI-TECH C startup routine will automatically include code to
load the OSCCAL register with the value contained in the W register after reset on such
devices. No other code is required.

For other chips, such as PIC12C67X chips, the oscillator constant is also stored at the
top of program memory, but as a RETLW instruction. The compiler’s startup code will
automatically generate code to retrieve this value and perform the configuration.

Loading of the calibration value can be turned off via the --RUNTIME option (see
Section 2.7.50 “--RUNTIME: Specify Runtime Environment”).

At runtime, this calibration value may be read using the macro
_READ_OSCCAL_DATA(). To be able to use this macro, make sure that <htc.h> is
included into the relevant modules of your program. This macro returns the calibration
constant which can then be stored into the OSCCAL register, as follows:
 2010 Microchip Technology Inc. DS51865B-page 53

HI-TECH C® for PIC10/12/16 User’s Guide
OSCCAL = _READ_OSCCAL_DATA();

3.4 SUPPORTED DATA TYPES AND VARIABLES

3.4.1 Integer Data Types

The HI-TECH C compiler supports integer data types with 1, 2, 3 and 4 byte sizes as
well as a single bit type. Table 3-1 shows the data types and their corresponding size
and arithmetic type. The default type for each type is underlined.

The bit and short long types are non-standard types available in this implementa-
tion.

All integer values are represented in little endian format with the Least Significant Byte
at the lower address.

If no signedness is specified in the type, then the type will be signed except for the
char types which are always unsigned. The bit type is always unsigned and the
concept of a signed bit is meaningless.

Signed values are stored as a two’s complement integer value.

The range of values capable of being held by these types is summarized in Table 3-2
The symbols in this table are preprocessor macros which are available after including
<limits.h> in your source code. As the size of data types are not fully specified by
the ANSI Standard, these macros allow for more portable code which can check the

Note: The location which stores the calibration constant is never code protected
and will be lost if you reprogram the device. Thus, if you are using a win-
dowed or Flash device, the calibration constant must be saved from the last
ROM location before it is erased. The constant must then be reprogrammed
at the same location along with the new program and data.

If you are using an in-circuit emulator (ICE), the location used by the cali-
bration RETLW instruction may not be programmed. Calling the
_READ_OSCCAL_DATA() macro will not work and will almost certainly not
return correctly. If you wish to test code that includes this macro on an ICE,
you will have to program a RETLW instruction at the appropriate location in
program memory. Remember to remove this instruction when programming
the actual part so you do not destroy the calibration value.

TABLE 3-1: INTEGER DATA TYPES

Type Size (bits) Arithmetic Type

bit 1 Unsigned integer

signed char 8 Signed integer

unsigned char 8 Unsigned integer

signed short 16 Signed integer

unsigned short 16 Unsigned integer

signed int 16 Signed integer

unsigned int 16 Unsigned integer

signed short long 24 Signed integer

unsigned short long 24 Unsigned integer

signed long 32 Signed integer

unsigned long 32 Unsigned integer
DS51865B-page 54  2010 Microchip Technology Inc.

C Language Features
limits of the range of values held by the type on this implementation.The macros asso-
ciated with the short long type are non-standard macros available in this implemen-
tation.

When specifying a signed or unsigned short int, short long int or long
int type, the keyword int may be omitted. Thus a variable declared as short will
contain a signed short int and a variable declared as unsigned short will con-
tain an unsigned short int.

It is a common misconception that the C char types are intended purely for ASCII char-
acter manipulation. This is not true; indeed, the C language makes no guarantee that
the default character representation is even ASCII.1 The char types are simply the
smallest of the multi-bit integer sizes, and behave in all respects like integers. The rea-
son for the name “char” is historical and does not mean that char can only be used to
represent characters. It is possible to freely mix char values with values of other types
in C expressions. With the HI-TECH C compiler, the char types will commonly be used
for a number of purposes: as 8-bit integers, as storage for ASCII characters, and for
access to I/O locations.

3.4.1.1 BIT DATA TYPES AND VARIABLES

The HI-TECH C Compiler for PIC10/12/16 MCUs supports bit integral types which
can hold the values 0 or 1. Single bit variables may be declared using the keyword
bit, for example:

bit init_flag;

These variables cannot be auto or parameters to a function, but can be qualified
static, allowing them to be defined locally within a function. For example:

int func(void) {
 static bit flame_on;
 // ...

TABLE 3-2: RANGES OF INTEGER TYPE VALUES

Symbol Meaning Value

CHAR_BIT Bits per char 8

CHAR_MAX Max. value of a char 127

CHAR_MIN Min. value of a char -128

SCHAR_MAX Max. value of a signed char 127

SCHAR_MIN Min. value of a signed char -128

UCHAR_MAX Max. value of an unsigned char 255

SHRT_MAX Max. value of a short 32767

SHRT_MIN Min. value of a short -32768

USHRT_MAX Max. value of an unsigned short 65535

INT_MAX Max. value of an int 32767

INT_MIN Min. value of a int -32768

UINT_MAX Max. value of an unsigned int 65535

SHRTLONG_MAX Max. value of a short long 8388607

SHRTLONG_MIN Min. value of a short long -8388608

USHRTLONG_MAX Max. value of an unsigned short long 16777215

LONG_MAX Max. value of a long 2147483647

LONG_MIN Min. value of a long -2147483648

ULONG_MAX Max. value of an unsigned long 4294967295

1.This implementation does use ASCII as the character representation.
 2010 Microchip Technology Inc. DS51865B-page 55

HI-TECH C® for PIC10/12/16 User’s Guide
}

A function may return a bit object by using the bit keyword in the function’s prototype
in the usual way. The 1 or 0 value will be returned in the carry flag in the STATUS reg-
ister.

The bit variables behave in most respects like normal unsigned char variables, but
they may only contain the values 0 and 1, and therefore provide a convenient and effi-
cient method of storing flags. Eight bit objects are packed into each byte of memory
storage, so they don’t consume large amounts of internal RAM.

Operations on bit objects are performed using the single bit instructions (bsf and
bcf) wherever possible, thus the generated code to access bit objects is very effi-
cient.

It is not possible to declare a pointer to bit types or assign the address of a bit object
to any pointer. Nor is it possible to statically initialize bit variables so they must be
assigned any non-zero starting value (i.e. 1) in the code itself. Bit objects will be cleared
on startup, unless the bit is qualified persistent.

When assigning a larger integral type to a bit variable, only the Least Significant bit is
used. For example, if the bit variable bitvar was assigned as in the following:

int data = 0x54;
bit bitvar;
bitvar = data;

it will be cleared by the assignment since the Least Significant bit of data is zero. This
sets the bit type apart from the C99 Standard __Bool, which is a boolean type, not a
1-bit wide integer. The __Bool type is not supported on the HI-TECH C compiler. If you
want to set a bit variable to be 0 or 1 depending on whether the larger integral type is
zero (false) or non-zero (true), use the form:

bitvar = (data != 0);

The psects in which bit objects are allocated storage are declared using the bit
PSECT directive flag, see Section 4.3.9.3 “PSECT”. All addresses specified for bit
objects and psects will be bit addresses. Take care when comparing these addresses
to byte addresses used by all other variables.

If the PICC flag --STRICT is used, the bit keyword becomes unavailable.

3.4.2 Floating-Point Data Types

The HI-TECH C compiler supports 24- and 32-bit floating-point types. Floating point is
implemented using either a IEEE 754 32-bit format, or a modified (truncated) 24-bit
form of this.Table 3-3 shows the data types and their corresponding size and arithmetic
type.

For both float and double values, the 24-bit format is the default. The options
--FLOAT=24 and --DOUBLE=24 can also be used to specify this explicitly. The 32-bit
format is used for double values if the --DOUBLE=32 option is used and for float
values if --FLOAT=32 is used.

Variables may be declared using the float and double keywords, respectively, to
hold values of these types. Floating-point types are always signed and the unsigned
keyword is illegal when specifying a floating-point type. Types declared as long dou-

TABLE 3-3: FLOATING-POINT DATA TYPES

Type Size (bits) Arithmetic Type

float 24 or 32 Real

double 24 or 32 Real

long double same as double Real
DS51865B-page 56  2010 Microchip Technology Inc.

C Language Features
ble will use the same format as types declared as double. All floating-point values
are represented in little endian format with the Least Significant Byte at the lower
address.

This format is described in Table 3-4, where:

• Sign is the sign bit which indicates if the number is positive or negative

• The exponent is 8 bits which is stored as excess 127 (i.e. an exponent of 0 is
stored as 127).

• Mantissa is the mantissa, which is to the right of the radix point. There is an
implied bit to the left of the radix point which is always 1 except for a zero value,
where the implied bit is zero. A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent-127) x 1. mantissa.

Here are some examples of the IEEE 754 32-bit formats shown in Table 3-5. Note that
the Most Significant bit of the mantissa column (i.e. the bit to the left of the radix point)
is the implied bit, which is assumed to be 1 unless the exponent is zero (in which case
the float is zero).

The 32-bit example in Table 3-5 can be calculated manually as follows.

The sign bit is zero; the biased exponent is 251, so the exponent is 251-127=124. Take
the binary number to the right of the decimal point in the mantissa. Convert this to dec-
imal and divide it by 223 where 23 is the number of bits taken up by the mantissa, to
give 0.302447676659. Add 1 to this fraction. The floating-point number is then given
by:

-1021241.302447676659

which becomes:

12.126764793256e+371.302447676659

which is approximately equal to:

2.77000e+37

Binary floating-point values are sometimes misunderstood. It is important to remember
that not every floating-point value can be represented by a finite sized floating-point
number. The size of the exponent in the number dictates the range of values that the
number can hold, and the size of the mantissa relates to the spacing of each value that
can be represented exactly. Thus the 24-bit format allows for values with approximately
the same range of values, but the values that can be exactly represented by this format
are more widely spaced.

TABLE 3-4: FLOATING-POINT FORMATS

Format Sign Biased exponent Mantissa

IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx

modified IEEE 754
24-bit

 x xxxx xxxx xxx xxxx xxxx xxxx

TABLE 3-5: FLOATING-POINT FORMAT EXAMPLE IEEE 754

Format Number Biased exponent 1.mantissa Decimal

32-bit 7DA6B69Bh

11111011b 1.0100110101101101
0011011b

2.77000e+37

(251) (1.302447676659) —

24-bit 42123Ah

10000100b 1.001001000111010b 36.557

(132) (1.142395019531) —
 2010 Microchip Technology Inc. DS51865B-page 57

HI-TECH C® for PIC10/12/16 User’s Guide
So, for example, if you are using a 24-bit wide floating-point type, it can exactly store
the value 95000.0. However, the next highest number it can represent is 95002.0 and
it is impossible to represent any value in between these two in such a type as it will be
rounded. This implies that C code which compares floating-point type may not behave
as expected. For example:

volatile float myFloat;
myFloat = 95002.0;
if(myFloat == 95001.0) // value will be rounded

PORTA++; // this line will be executed!

in which the result of the if() expression will be true, even though it appears the two
values being compared are different.

Compare this to a 32-bit floating-point type, which has a higher precision. It also can
exactly store 95000.0 as a value. The next highest value which can be represented is
(approximately) 95000.00781.

The characteristics of the floating-point formats are summarized in Table 3-6. The sym-
bols in this table are preprocessor macros which are available after including
<float.h> in your source code. Two sets of macros are available for float and
double types, where XXX represents FLT and DBL, respectively. So, for example,
FLT_MAX represents the maximum floating-point value of the float type. It can have
two values depending on whether float is a 24 or 32 bit wide format. DBL_MAX rep-
resents the same values for the double type. As the size and format of floating-point
data types are not fully specified by the ANSI Standard, these macros allow for more
portable code which can check the limits of the range of values held by the type on this
implementation.

3.4.3 Structures and Unions

HI-TECH C Compiler for PIC10/12/16 MCUs supports struct and union types.
Structures and unions only differ in the memory offset applied to each member.

These types will be at least 1 byte wide. The members of structures and unions may
not be objects of type bit, but bit-fields are fully supported.

Structures and unions may be passed freely as function arguments and function return
values. Pointers to structures and unions are fully supported.

TABLE 3-6: RANGES OF FLOATING-POINT TYPE VALUES

Symbol Meaning 24-bit Value 32-bit Value

XXX_RADIX Radix of exponent representation 2 2

XXX_ROUNDS Rounding mode for addition 0 0

XXX_MIN_EXP Min. n such that FLT_RADIXn-1 is
a normalized float value

-125 -125

XXX_MIN_10_EXP Min. n such that 10n is a
normalized float value

-37 -37

XXX_MAX_EXP Max. n such that FLT_RADIXn-1
is a normalized float value

128 128

XXX_MAX_10_EXP Max. n such that 10n is a
normalized float value

38 38

XXX_MANT_DIG Number of FLT_RADIX mantissa
digits

16 24

XXX_EPSILON The smallest number which
added to 1.0 does not yield 1.0

3.05176e-05 1.19209e-07
DS51865B-page 58  2010 Microchip Technology Inc.

C Language Features
3.4.3.1 STRUCTURE AND UNION QUALIFIERS

The HI-TECH C compiler supports the use of type qualifiers on structures. When a
qualifier is applied to a structure, all of its members will inherit this qualification. In the
following example the structure is qualified const.

const struct {
 int number;
 int *ptr;
} record = { 0x55, &i };

In this case, the entire structure will be placed into the program space and each mem-
ber will be read-only. Remember that all members are usually initialized if a structure
is const as they cannot be initialized at runtime.

If the members of the structure were individually qualified const, but the structure was
not, then the structure would be positioned into RAM, but each member would be
read-only. Compare the following structure with the above.

struct {
 const int number;
 int * const ptr;
} record = { 0x55, &i};

3.4.3.2 BIT-FIELDS IN STRUCTURES

HI-TECH C Compiler for PIC10/12/16 MCUs fully supports bit-fields in structures.

Bit-fields are always allocated within 8-bit words, even though it is usual to use the type
unsigned int in the definition.

The first bit defined will be the Least Significant bit of the word in which it will be stored.
When a bit-field is declared, it is allocated within the current 8-bit unit if it will fit; other-
wise, a new byte is allocated within the structure. Bit-fields can never cross the bound-
ary between 8-bit allocation units. For example, the declaration:

struct {
 unsigned lo : 1;
 unsigned dummy : 6;
 unsigned hi : 1;
} foo;

will produce a structure occupying 1 byte. If foo was ultimately linked at address 10H,
the field lo will be bit 0 of address 10H; hi will be bit 7 of address 10H. The Least Sig-
nificant bit of dummy will be bit 1 of address 10H and the Most Significant bit of dummy
will be bit 6 of address 10h.

Unnamed bit-fields may be declared to pad out unused space between active bits in
control registers. For example, if dummy is never referenced the structure above could
have been declared as:

struct {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
} foo;

A structure with bit-fields may be initialized by supplying a comma-separated list of ini-
tial values for each field. For example:

struct {
 unsigned lo : 1;
 unsigned mid : 6;
 unsigned hi : 1;
} foo = {1, 8, 0};
 2010 Microchip Technology Inc. DS51865B-page 59

HI-TECH C® for PIC10/12/16 User’s Guide
Structures with unnamed bit fields may be initialized. No initial value should be supplied
for the unnamed members, for example:

struct {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
} foo = {1, 0};

will initialize the members lo and hi correctly.

The HI-TECH C compiler supports anonymous unions. These are unions with no iden-
tifier and whose members can be accessed without referencing the enclosing union.
These unions can be used when placing inside structures. For example:

struct {
union {
int x;
double y;

};
} aaa;

void main(void)
{

aaa.x = 99;
// ...}

Here, the union is not named and its members accessed as if they are part of the struc-
ture. Anonymous unions are not part of any C Standard and so their use limits the por-
tability of any code.

3.4.4 Pointer Types

There are two basic pointer types supported by the HI-TECH C Compiler for
PIC10/12/16 MCUs: data pointers and function pointers. Data pointers hold the
addresses of variables which can be indirectly read, and possible indirectly written, by
the program. Function pointers hold the address of an executable function which can
be called indirectly via the pointer.

To conserve memory requirements and reduce execution time, pointers on PIC devices
are made different sizes and formats. The HI-TECH C Compiler for PIC10/12/16 MCUs
uses sophisticated algorithms to track the assignment of addresses to all pointers, and,
as a result, no non-standard qualifiers are required when defining pointer variables.
Despite this, the size of each pointer is optimal for its intended usage in the program.

3.4.4.1 COMBINING TYPE QUALIFIERS AND POINTERS

It is helpful to first review the ANSI C standard conventions for definitions of pointer
types.

Pointers can be qualified like any other C object, but care must be taken when doing
so as there are two quantities associated with pointers. The first is the actual pointer
itself, which is treated like any ordinary C variable and has memory reserved for it. The
second is the target, or targets, that the pointer references, or to which the pointer
points. The general form of a pointer definition looks like the following:

target_type_&_qualifiers * pointer’s_qualifiers pointer’s_name;

Any qualifiers to the right of the * (i.e. next to the pointer’s name) relate to the pointer
variable itself. The type and any qualifiers to the left of the * relate to the pointer’s tar-
gets. This makes sense since it is also the * operator that dereferences a pointer, which
allows you to get from the pointer variable to its current target.
DS51865B-page 60  2010 Microchip Technology Inc.

C Language Features
Here are three examples of pointer definitions using the volatile qualifier. The fields
in the definitions have been highlighted with spacing:

volatile int * vip ;
int * volatile ivp ;
volatile int * volatile vivp ;

The first example is a pointer called vip. It contains the address of int objects that
are qualified volatile. The pointer itself — the variable that holds the address — is
not volatile; however, the objects that are accessed when the pointer is derefer-
enced are treated as being volatile. In other words, the target objects accessible via
the pointer may be externally modified.

The second example is a pointer called ivp which also contains the address of int
objects. In this example, the pointer itself is volatile, that is, the address the pointer
contains may be externally modified; however, the objects that can be accessed when
dereferencing the pointer are not volatile.

The last example is of a pointer called vivp which is itself qualified volatile, and
which also holds the address of volatile objects.

Bear in mind that one pointer can be assigned the addresses of many objects; for
example, a pointer that is a parameter to a function is assigned a new object address
every time the function is called. The definition of the pointer must be valid for every
target address assigned.

3.4.4.2 DATA POINTERS

The HI-TECH C compiler monitors and records all assignments of addresses to each
data pointer the program contains. This includes assignment of the addresses of
objects to pointers; assignment of one pointer to another; initialization of pointers when
they are defined; and takes into account when pointers are ordinary variables and func-
tion parameters, and when pointers are used to access basic objects, or structures or
arrays.

The size and format of the address held by each pointer is based on this information.
When more than one address is assigned to a pointer at different places in the code, a
set of all possible targets the pointer can address is maintained. This information is spe-
cific to each pointer defined in the program, thus two pointers with the same C type may
hold addresses of different sizes and formats due to the way the pointers were used in
the program.

The compiler tracks the memory location of all targets, as well as the size of all targets
to determine the size and scope of a pointer. The size of a target is important as well
particularly with arrays of structures. A pointer must be able to be incremented to point
to all the elements of an array, for example.

There are several pointer classifications used with the HI-TECH C Compiler for
PIC10/12/16 MCUs, such as those indicated below.

• An 8-bit pointer capable of accessing common memory and two consecutive
banks, e.g. banks 0 and 1, or banks 7 and 8, etc.

• A 16-bit pointer capable of accessing the entire data memory space

• An 8-bit pointer capable of accessing up to 256 bytes of program space data

• A 16-bit pointer capable of accessing up to 64 kbytes of program space data

• A 16-bit pointer capable of accessing the entire data space memory and up to 64

Note: Care must be taken when describing pointers. Is a “const pointer” a pointer
that points to const objects, or a pointer that is const itself? You can talk
about “pointers to const” and “const pointers” to help clarify the definition,
but such terms may not be universally understood.
 2010 Microchip Technology Inc. DS51865B-page 61

HI-TECH C® for PIC10/12/16 User’s Guide
kbytes of program space data

Each data pointer will be allocated one of the available classifications after preliminary
scans of the source code. There is no mechanism by which the programmer can spec-
ify the style of pointer required (other than by the assignments to the pointer). If the C
code does not convey the required information to the compiler, then it is not complete
or accurate.

Information about the pointers and their targets are shown in the pointer reference
graph, which is described in Section 4.4.2 “Pointer Reference Graph”. This graph is
printed in the assembly list file, which is controlled by the option described in
Section 2.7.17 “--ASMLIST: Generate Assembler List Files”.

Consider the following program in the early stages of development. It consists of the
following code:

int i, j;

int getValue(const int * ip) {
 return *ip;
}

void main(void) {
 j = getValue(&i);
 // ... code that uses j
}

A pointer, ip, is a parameter to the function getValue(). The pointer target type uses
the qualifier const since we do not want the pointer to be used to write to any objects
whose addresses are passed to the function. The const qualification serves no other
purpose and does not alter the format of the pointer variable.

If the compiler allocates the variable i (defined in main()) to bank 0 data memory, it
will also be noted that the pointer ip (parameter to getValue()) only points to one
object that resides in bank 0 of the data memory. In this case, the pointer, ip, is made
an 8-bit wide data pointer. The generated code that dereferences ip in getValue()
will be generated assuming that the address can only be to an object in bank 0.

As the program is developed, another variable, x, is defined and (unknown to the pro-
grammer) is allocated space in bank 2 data memory. The main() function now looks
like:

int i, j; // allocated to bank 0 in this example
int x; // allocated to bank 2 in this example

int getValue(const int * ip) {
 return *ip;
}

void main(void) {
 j = getValue(&i);
 // ... code that uses j
 j = getValue(&x);
 // ... code that uses j
}

The pointer, ip, now has targets that are in bank 0 and in bank 2.To be able to accom-
modate this situation, the pointer is made 16 bits wide, and the code used to derefer-
ence the pointer will change accordingly. This takes place without any modification to
the source code.

One positive aspect of tracking pointer targets is less of a dependence on pointer qual-
ifiers. The standard qualifiers const and volatile must still be used in pointer defi-
nitions to indicate a read-only or externally-modifiable target object, respectively.
DS51865B-page 62  2010 Microchip Technology Inc.

C Language Features
However this is in strict accordance with the ANSI C standard. HI-TECH specific qual-
ifiers, like near and bankx, do not need to be used to indicate pointer targets, have no
effect, and should be avoided. Omitting these qualifiers will result in more portable and
readable code, and reduce the chance of extraneous warnings being issued by the
compiler.

3.4.4.2.1 Pointers to Both Memory Spaces

When a pointer is assigned the address of one or more objects allocated memory in
the data space, and also assigned the address of one or more const objects, the
pointer will be classified such that it can dereference both memory spaces, and the
address will be encoded so that the target memory space can be determined at run-
time.

This pointer classification is considered as a “default”. If a program accesses a C
pointer in assembly code, the compiler will force the those pointers to have this default
classification.

The encoding of this pointer type is this: the MSb of the address (i.e. bit number 15)
held by such pointers indicates the memory space that the address references. If this
bit is set, it indicates that the address is of something in program memory; clear indi-
cates an object in the data memory. The remainder of this address represents the
address in the indicated memory space.

To extend the example given in Section 3.4.4.2 “Data Pointers” the code is now
developed further, and the function getValue() is now called with the address of an
object that resides in the program memory, as shown.

int i, j; // allocated to bank 0 in this example
int x; // allocated to bank 2 in this example
const int type = 0x3456;

int getValue(const int * ip) {
 return *ip;
}

void main(void) {
 j = getValue(&i);
 // ... code that uses j
 j = getValue(&x);
 // ... code that uses j
 j = getValue(&type);
 // ... code that uses j
}

Again, the targets to the pointer, ip, are determined and now the pointer is made of the
class that can access both data and program memory. The generated code to derefer-
ence the pointer will be such that it can determine the required memory space from the
address and access either space accordingly. Again, this takes place without any
change in the definition of the pointer.

3.4.4.3 FUNCTION POINTERS

The HI-TECH C compiler fully supports pointers to functions, which allows functions to
be called indirectly. These are often used to call one of several function addresses
stored in a user-defined C array, which acts like a lookup table.

Function pointers are always one byte in size and hold an offset into a jump table that
is output by the compiler. This jump table contains jumps to the destination functions.

As with data pointers, the target assigned to function pointers is tracked. This is an eas-
ier process to undertake compared to that associated with data pointers as all function
instructions must reside in program memory. The pointer reference graph (described in
 2010 Microchip Technology Inc. DS51865B-page 63

HI-TECH C® for PIC10/12/16 User’s Guide
Section 4.4.2 “Pointer Reference Graph”) will show function pointers, in addition to
data pointers, as well as all their targets. The targets will be names of functions that
could possibly be called via the pointer.

One notable runtime feature is that if a function contains NULL (the value 0) and is used
to call a function indirectly, the code will become stuck in a loop which branches to itself.
This endless loop can be used to detect this erroneous situation. Typically calling a
function via a NULL function would result in the code crashing or some other unex-
pected behavior. The label to which the endless loop will jump is called fpbase.

3.4.4.4 SPECIAL POINTER TARGETS

Pointers and integers are not interchangeable. Assigning an integer constant to a
pointer will generate a warning to this effect. For example:

const char * cp = 0x123; // the compiler will flag this as bad code

There is no information in the integer constant, 0x123, relating to the type, size or mem-
ory location of the destination. There is a very good chance of code failure if pointers
are assigned integer addresses and dereferenced, particularly for devices like PIC
devices which have more than one address space. Is 0x123 an address in data mem-
ory or program memory? How big is the object found at address 0x123?

Always take the address of a C object when assigning an address to a pointer. If there
is no C object defined at the destination address, then define or declare an object at
this address which can be used for this purpose. Make sure the size of the object
matches the range of the memory locations that can be accessed.

For example, a checksum for 1000 memory locations starting at address 0x900 in pro-
gram memory is to be generated. A pointer is used to read this data. You may be
tempted to write code such as:

const char * cp;
cp = 0x900; // what resides at 0x900???

and increment the pointer over the data. A much better solution is this:

const char * cp;
const char inputData[1000] @ 0x900;
cp = &inputData;
// cp is incremented over inputData and used to read values there

In this case, the compiler can determine the size of the target and the memory space.
The array size and type indicates the size of the pointer target, the const qualifier on
the object (not the pointer) indicates the target is located in program memory space.
Note that the const array does not need initial values to be specified in this instance,
see Section 3.4.6.1 “Const Type Qualifier” and can reside over the top of other
objects at these addresses.

If the pointer has to access objects in data memory, you need to define a different object
to act as a dummy target. For example, if the checksum was to be calculated over 10
bytes starting at address 0x90 in data memory, the following code could be used.

const char * cp;
char inputData[10] @ 0x90;
cp = &inputData;
// cp is incremented over inputData and used to read values there

User-defined absolute objects will not be cleared by the runtime startup code and can
be placed over the top of other absolute variables.

Take care when comparing (subtracting) pointers. For example:

if(cp1 == cp2)
 ; take appropriate action
DS51865B-page 64  2010 Microchip Technology Inc.

C Language Features
The ANSI C standard only allows pointer comparisons when the two pointer targets are
the same object. The address may extend to one element past the end of an array.

Comparisons of pointers to integer constants are even more risky, for example:

if(cp1 == 0x246)
 ; take appropriate action

In some cases pointers hold an address offset and if the pointer can reference objects
in more than one memory space, additional bits in the address will be used to distin-
guish which memory space is being accessed. Thus a pointer which points to an object
stored at address 0x246 in data memory, may contain a different value to a pointer that
points to a target located at address 0x246 in program memory. Never compare point-
ers and integer constants.

A NULL pointer is the one instance where a constant value can be assigned to a pointer
and this is handled correctly by the compiler. A NULL pointer is numerically equal to 0
(zero), but this is a special case imposed by the ANSI C standard. Comparisons with
the macro NULL are also allowed.

If NULL is the only value assigned to a pointer, the pointer will be made as small as
possible.

3.4.5 Constant Types and Formats

A constant is used to represent a numerical value in the source code, for example 123
is a constant. Like any value, a constant must have a C type. In addition to a constant’s
type, the actual value can be specified in one of several formats. The format of integral
constants specifies their radix. HI-TECH C supports the ANSI standard radix specifiers
as well as ones which enables binary constants to be specified in C code.

The formats used to specify the radices are given in Table 3-7. The letters used to spec-
ify binary or hexadecimal radices are case insensitive, as are the letters used to specify
the hexadecimal digits.

Any integral constant will have a type of int, long int or long long int, so that
the type can hold the value without overflow. Constants specified in octal or hexadeci-
mal may also be assigned a type of unsigned int, unsigned long int or
unsigned long long int if the signed counterparts are too small to hold the value.

The default types of constants may be changed by the addition of a suffix after the dig-
its, e.g. 23U, where U is the suffix. Table 3-8 shows the possible combination of suffixes
and the types that are considered when assigning a type. So, for example, if the suffix
l is specified and the value is a decimal constant, the compiler will assign the type
long int, if that type will hold the constant; otherwise, it will assigned long long
int. If the constant was specified as an octal or hexadecimal constant, then unsigned
types are also considered.

TABLE 3-7: RADIX FORMATS

Radix Format Example

binary 0b number or 0B number 0b10011010

octal 0 number 0763

decimal number 129

hexadecimal 0x number or 0X number 0x2F
 2010 Microchip Technology Inc. DS51865B-page 65

HI-TECH C® for PIC10/12/16 User’s Guide
Here is an example of code that may fail because the default type assigned to a con-
stant is not appropriate:

unsigned long int result;
unsigned char shifter;

void main(void)
{

shifter = 20;
result = 1 << shifter;
// code that uses result

}

The constant 1 will be assigned an int type hence the result of the shift operation will
be an int and the upper bits of the long variable, result, can never be set, regard-
less of how much the constant is shifted. In this case, the value 1 shifted left 20 bits will
yield the result 0, not 0x100000.

The following uses a suffix to change the type of the constant, hence ensure the shift
result has an unsigned long type.

result = 1UL << shifter;

Floating-point constants have double type unless suffixed by f or F, in which case it
is a float constant. The suffixes l or L specify a long double type which is consid-
ered an identical type to double by HI-TECH C.

Character constants are enclosed by single quote characters, ’, for example ’a’. A
character constant has int type, although this may be optimized to a char type later
in the compilation.

Multi-byte character constants are not supported by this implementation.

String constants, or string literals, are enclosed by double quote characters ", for exam-
ple "hello world". The type of string constants is const char * and the character
that make up the string are stored in the program memory, as are all objects qualified
const.

Assigning a string literal to a pointer to a non-const char will generate a warning from
the compiler. This code is legal, but the behavior if the pointer attempts to write to the
string will fail. For example:

char * cp= "one"; // "one" in ROM, produces warning
const char * ccp= "two"; // "two" in ROM, correct

TABLE 3-8: SUFFIXES AND ASSIGNED TYPES

Suffix Decimal Octal or Hexadecimal

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
long long int

long int
unsigned long int
long long int
unsigned long long int

u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int long long int
unsigned long long int

u or U, and ll or LL unsigned long long int unsigned long long int
DS51865B-page 66  2010 Microchip Technology Inc.

C Language Features
Defining and initializing a non-const array (i.e. not a pointer definition) with a string,
for example:

char ca[]= "two"; // "two" different to the above

is a special case and produces an array in data space which is initialized at startup with
the string "two" (copied from program space), whereas a string constant used in other
contexts represents an unnamed const -qualified array, accessed directly in program
space.

The HI-TECH C compiler will use the same storage location and label for strings that
have identical character sequences, except where the strings are used to initialize an
array residing in the data space as shown in the last statement in the previous example.
For example, in the code snippet

if(strncmp(scp, "hello", 6) == 0)
fred = 0;

if(strcmp(scp, "world") == 0)
fred--;

if(strcmp(scp, "hello world") == 0)
fred++;

the characters in the string "world" and the last 6 characters of the string "hello
world" (the last character is the nul terminator character) would be represented by the
same RETLW instructions stored at the same memory locations. The string "hello"
would not overlap with the same characters in the string "hello world" as they differ
in terms of the placement of the nul character.

Two adjacent string constants (i.e. two strings separated only by white space) are con-
catenated by the compiler. Thus:

const char * cp = "hello" "world";

will assign the pointer with the address of the string "hello world ".

3.4.6 Standard Type Qualifiers

Type qualifiers provide additional information regarding how an object may be used.
The HI-TECH C compiler supports both ANSI C qualifiers and additional special qual-
ifiers which are useful for embedded applications and which take advantage of the PIC
MCU architecture.

3.4.6.1 CONST TYPE QUALIFIER

The HI-TECH C compiler supports the use of the ANSI type qualifiers const and vol-
atile.

The const type qualifier is used to tell the compiler that an object is read only and will
not be modified. If any attempt is made to modify an object declared const, the com-
piler will issue a warning or error.

User-defined objects declared const are placed in a special psect linked into the pro-
gram space. Objects qualified const may be absolute. The @ address construct is
used to place the object at the specified address in program memory as in the following
example which places the object tableDef at address 0x100.

const int tableDef[] @ 0x100 = { 0, 1, 2, 3, 4};

Usually a const object must be initialized when it is declared, as it cannot be assigned
a value at any point at runtime. For example:

const int version = 3;
 2010 Microchip Technology Inc. DS51865B-page 67

HI-TECH C® for PIC10/12/16 User’s Guide
will define version as being an int variable that will be placed in the program mem-
ory, will always contain the value 3, and which can never be modified by the program.
However uninitialized const objects can be defined and are useful if you need to place
an object in program memory over the top of other objects at a particular location. Usu-
ally uninitialized const objects will be defined as absolute as in the following example.

const char checksumRange[0x100] @ 0x800;

will define the object checksumRange as a 0x100 byte array of characters located at
address 0x800 in program memory. This definition will not place any data in the HEX
file.

3.4.6.2 VOLATILE TYPE QUALIFIER

The volatile type qualifier is used to tell the compiler that an object cannot be guar-
anteed to retain its value between successive accesses. This prevents the optimizer
from eliminating apparently redundant references to objects declared volatile
because it may alter the behavior of the program to do so.

Any SFR which can be modified by hardware or which drives hardware is qualified as
volatile, and any variables which may be modified by interrupt routines should use
this qualifier as well. For example:

volatile static unsigned int TACTL @ 0x160;

The volatile qualifier does not guarantee that any access will be atomic, which is
often not the case with the PIC10/12/16 architecture, which can only access a maxi-
mum of 1 byte of data per instruction.

The code produced by the compiler to access volatile objects may be different to
that to access ordinary variables, and typically the code will be longer and slower for
volatile objects, so only use this qualifier if it is necessary. However failure to use
this qualifier when it is required may lead to code failure.

Another use of the volatile keyword is to prevent variables being removed if they
are not used in the C source. If a non-volatile variable is never used, or used in a
way that has no effect on the program’s function, then it may be removed before code
is generated by the compiler.

A C statement that consists only of a volatile variable’s name will produce code that
reads the variable’s memory location and discards the result. For example the entire
statement:

PORTB;

will produce assembly code the reads PORTB, but does nothing with this value. This is
useful for some peripheral registers that require reading to reset the state of interrupt
flags. Normally such a statement is not encoded as it has no effect.

Some variables are treated as being volatile even though they may not be qualified
in the source code. See Section 3.13.4.2 “Undefined Symbols” if you have assem-
bly code in your project.

3.4.7 Special Type Qualifiers

The HI-TECH C Compiler for PIC10/12/16 MCUs supports special type qualifiers to
allow the user to control placement of static and extern class variables into partic-
ular address spaces.

3.4.7.1 PERSISTENT TYPE QUALIFIER

By default, any C variables that are not explicitly initialized are cleared on startup. This
is consistent with the definition of the C language. However, there are occasions where
it is desired for some data to be preserved across a reset.
DS51865B-page 68  2010 Microchip Technology Inc.

C Language Features
The persistent type qualifier is used to qualify variables that should not be cleared
by the runtime startup code.

In addition, any persistent variables will be stored in a different area of memory to
other variables. Different psects are used to hold these objects. See
3.10.1 “Compiler-generated Psects” for more information.

This type qualifier may not be used on variables of class auto; however, statically
defined local variables may be qualified persistent. For example, you should write:

void test(void)
{
 static persistent int intvar; /* must be static */
 // ...
}

If the PICC option, --STRICT is used, this type qualifier is changed to
__persistent.

3.4.7.2 NEAR TYPE QUALIFIER

The near type qualifier can be used to place static variables in the common memory
of the PIC MCU, if such memory is supported by the selected device.

Some of the PIC MCU architectures implement data memory which can be always
accessed regardless of the currently selected bank. This common memory can be
used to reduce code size and execution times as the bank selection instructions that
are normally required to access data in banked memory are not required when access-
ing the common memory. There are very small amounts of this memory and, if it is pres-
ent at all, is often only a few bytes.

The compiler automatically uses the common memory for frequently accessed
user-defined variables so this qualifier would only be needed for special memory place-
ment of objects, for example if C variables are accessed in hand-written assembly code
that assumes that they are located in this memory.

This qualifier is controlled by the compiler option --ADDRQUAL, which determines its
effect, see Section 2.7.18 “--ADDRQUAL: Set Compiler Response to Memory
Qualifiers”. Based on this option’s settings, this qualifier may be binding or ignored
(which is the default operation). Qualifiers which are ignored will not produce an error
or warning, but will have no effect.

Here is an example of an unsigned char object qualified as near:

near unsigned char fred;

Objects qualified near cannot be auto or parameters to a function, but can be quali-
fied static, allowing them to be defined locally within a function, as in:

void myFunc(void) {
static near unsigned char local_fred;

Note that the compiler may store some temporary objects in the common memory, so
not all of this space may be available for user-defined variables.

If the PICC option, --STRICT is used, this type qualifier is changed to __near.

3.4.7.3 BANK0, BANK1, BANK2 AND BANK3 TYPE QUALIFIERS

The bank0, bank1, bank2 and bank3 type qualifiers are recognized by the compiler
and allow some degree of control of the placement of objects in the PIC MCU data
memory banks. They can be used to allow portability of legacy code or to define C
objects that are assumed to be located in certain memory banks by hand-written
assembly code. The compiler automatically allocates variables to all data banks, so
these qualifiers are not normally needed.
 2010 Microchip Technology Inc. DS51865B-page 69

HI-TECH C® for PIC10/12/16 User’s Guide
These qualifiers are controlled by the compiler option --ADDRQUAL, which determines
their effect, see Section 2.7.18 “--ADDRQUAL: Set Compiler Response to Memory
Qualifiers”. Based on this option’s settings, these qualifiers may be binding or ignored
(which is the default operation). Qualifiers which are ignored will not produce an error
or warning, but will have no effect.

Objects qualified with any of these qualifiers cannot be auto or parameters to a func-
tion, but can be qualified static, allowing them to be defined locally within a function,
as in:

void myFunc(void) {
static bank1 unsigned char play_mode;

If the PICC option, --STRICT is used, these qualifiers are changed to __bank0,
__bank1, __bank2 and __bank3.

3.5 MEMORY ALLOCATION AND ACCESS

There are two broad groups of RAM-based variables: auto/parameter variables, which
are allocated to some form of stack, and global/static variables, which are positioned
freely throughout the data memory space. The memory allocation of these two groups
is discussed separately in the following sections.

3.5.1 Address Spaces

All Baseline and Mid-Range PIC MCU devices have a Harvard architecture that has a
separate data memory space (RAM) and program memory space (often flash). Some
devices also implement EEPROM.

The data memory uses banking to increase the amount of available memory (referred
to in the data sheets as the general purpose register file) without having to increase the
assembly instruction width. One bank is “selected” by setting one or more bits in an
SFR. (Consult your device data sheet for the exact operation of the device you are
using.) Instructions which access a data address use only the offset into the currently
selected bank to access data. Some devices only have one bank but many have more
than one.

Both the general purpose RAM and SFRs both share the same data space and may
appear in all available memory banks. Due to the presence of SFRs at the lower
address of each bank, the general purpose memory becomes fragmented and this lim-
its the size of most objects. The Enhanced Mid-Range devices overcome this limitation
by allowing a linear addressing mode, which allows the general purpose memory to be
accessed as one contiguous chunk. Thus, when compiling for these devices, the max-
imum allowable size of objects typically increases. See Section 3.5.2.3 “Auto Vari-
able Size Limits” and Section 3.5.2.1.2 “Non-auto Variable Size Limits”.

Many devices have several bytes which can be accessed regardless of which bank is
currently selected. This memory is called common memory. Since no code is required
to select a bank before accessing these locations, access to objects in this memory is
typically faster and produces smaller code.

The program memory space is primarily for executable code, but variables can also be
located here. There are several ways the different device families locate and read data
from this memory, but all objects located here will be read-only.

3.5.2 Variables in Data Space Memory

Most variables are ultimately positioned into the data space memory. The exceptions
are non-auto variables which are qualified as const, which are placed in the program
memory space.
DS51865B-page 70  2010 Microchip Technology Inc.

C Language Features
Due to the fundamentally different way in which auto variables and non-auto vari-
ables are allocated memory, they are discussed separately. To use the C language ter-
minology, these two groups of variables are those with automatic storage duration and
those with permanent storage duration, respectively.

3.5.2.1 NON-AUTO VARIABLE ALLOCATION

Non-auto variables (those with permanent storage duration) are located by the com-
piler into any of the available data banks. This is done in a two-stage process: placing
each variable into an appropriate psect and later linking that psect into a predetermined
bank. Thus, during compilation, the code generator can determine which bank will hold
each variable and encode the output accordingly, but it will not know the exact location
within that bank.

The compiler will attempt to locate all variables in one bank (i.e. place all variables in
the psect destined for this bank), but if this fills (i.e. if the compiler detects that the psect
has become too large for the free space in a bank), variables will be located in other
banks via different psects. Qualifiers are not required to have these variables placed in
banks other than bank 0 but can be used if you want to force a variable to a particular
bank. See Section 3.4.7.3 “Bank0, Bank1, Bank2 and Bank3 Type Qualifiers” and
Section 2.7.18 “--ADDRQUAL: Set Compiler Response to Memory Qualifiers” for
more information on how to do this. If common memory is available on the target
device, this will also be considered for variables. This memory is limited in size and may
be reserved for special use, so few variables can be allocated to it.

The compiler considers three categories of non-auto variable, which all relate to the
value the variable should contain by the time the program begins. Each variable cate-
gory has a corresponding psect which is used to hold the output code which reserves
memory for each variable. The basename of each psect category is tabulated below. A
full list of all psect names are listed in Section 3.9 “Interrupts”.

nv These psects are used to store variables qualified persistent, whose values
should not be altered by the runtime startup code. They are not cleared or
otherwise modified at startup.
bss These psects contain any uninitialized variables, which are not assigned
a value when they are defined, or variables which should be cleared by the
runtime startup code.
data These psects contain the RAM image of any initialized variables,
which are assigned a non-zero initial value when they are defined and which
must have a value copied to them by the runtime startup code.

As described in Section 3.10 “Psects”, the basename of data space psects is always
used in conjunction with a linker class name to indicate the RAM bank in which the
psect will be positioned. This section also lists other variants of these psects and indi-

Note: The terms “local” and “global” are commonly used to describe variables, but
are not ones defined by the language Standard. The term “local variable” is
often taken to mean a variable which has scope inside a function, and
“global variable” is one which has scope throughout the entire program.
However, the C language has three common scopes: block, file (i.e. internal
linkage) and program (i.e. external linkage), so using only two terms to
describe these can be confusing. For example, a static variable defined
outside a function has scope only in that file, so it is not globally accessible,
but it can be accessed by more than one function inside that fie, so it is not
local to any one function either. In terms of memory allocation, there are two
ways this is performed and this purely relates to whether a variable is an
auto or not, hence the grouping in this section.
 2010 Microchip Technology Inc. DS51865B-page 71

HI-TECH C® for PIC10/12/16 User’s Guide
cates where these psect must be linked. See also Section 3.11 “Main, Runtime
startup and reset” for more information on how initial values are assigned to the vari-
ables.

Note that the data psect used to hold initialized variables is the psect that holds the
RAM variables themselves. There is a corresponding psect (called idata) that is
placed into program memory (so it is non-volatile) and which is used to hold the initial
values that are copied to the RAM variables by the runtime startup code.

3.5.2.1.1 Static Variables

All static variables have permanent storage duration, even those defined inside a
function which are “local static” variables. Local static variables only have scope in
the function or block in which they are defined, but unlike auto variables, their memory
is reserved for the entire duration of the program. Thus they are allocated memory like
other non-auto variables. Static variables may be accessed by other functions via
pointers since they have permanent duration.

Variables which are static are guaranteed to retain their value between calls to a
function, unless explicitly modified via a pointer.

Variables which are static and which are initialized only have their initial value
assigned once during the program’s execution. Thus, they may be preferable over ini-
tialized auto objects which are assigned a value every time the block in they are
defined begins execution. Any initialized static variables are initialized in the same way
as other non-auto initialized objects by the runtime startup code, see
Section 2.4.2 “Runtime Startup Code”.

Local objects which are static are assigned an assembly symbol which consists of
the function name followed by an @ symbol and the variable’s lexical name, e.g.
main@foobar will be the assembly identifier used for the static variable foobar
defined in main().

Non-local static objects use their lexical name with a leading underscore character, e.g.
_foobar will be the assembly identifier used for this object. However, if there is more
than one such static object defined, then subsequent objects will use the name of
the file that contains them and their lexical name separated by an @ symbol, e.g.
lcd@foobar. would be the assembly symbol for the static variable foobar defined
in lcd.c.

3.5.2.1.2 Non-auto Variable Size Limits

Arrays of any type (including arrays of aggregate types) are fully supported by the com-
piler. So too are the structure and union aggregate types, see 3.4.3 “Structures and
Unions”. These objects can often become large in size and may affect memory allo-
cation.

When compiling for enhanced Mid-Range PIC devices, the size of an object (array or
aggregate object) is typically limited only by the total available data memory. Single
objects that will not fit into any of the available general purpose RAM ranges will be allo-
cated memory in several RAM banks and accessed using the device’s linear GPR
(general purpose RAM).

Note that the special function registers (which reside in the data memory space) or
memory reservations in general purpose RAM may prevent objects from being allo-
cated contiguous memory in the one bank. In this case objects that are smaller than
the size of a RAM bank may also be allocated across multi-banks. The generated code
to access multi-bank objects will always be slower and the associated code size will be
larger than for objects fully contained within a single RAM bank.
DS51865B-page 72  2010 Microchip Technology Inc.

C Language Features
On baseline and other Mid-Range devices, arrays and structures are limited to the
maximum size of the available GPR memory in each RAM bank. An error will result if
an array is defined which is larger than this size. Again, memory reservations in general
purpose RAM further restrict the contiguous memory in the one bank and may result in
additional size limits.

3.5.2.1.3 Changing the Default Non-auto Variable Allocation

There are several ways in which non-auto variables can be located in locations other
than the default.

Variables can be placed in other device memory spaces by the use of qualifiers. For
example if you wish to place variables in the program memory space, then the const
specifier should be used (see Section 3.4.6.1 “Const Type Qualifier”).

If you wish to prevent all variables from using one or more data memory locations so
that these locations can be used for some other purpose, you are best reserving the
memory using the memory adjust options. See Section 2.7.48 “--RAM: Adjust RAM
Ranges” for information on how to do this.

If only a few non-auto variables are to be located at specific addresses in data space
memory, then the variables can be made absolute. This allows individual variables to
be explicitly positioned in memory at an absolute address. Absolute variables are
described in Section 3.5.4 “Absolute Variables”. Once variables are made absolute,
their address is hard coded in generated output code, they are no longer placed in a
psect and do not follow the normal memory allocation procedure.

The psects in which the different categories of non-auto variables (the nv, bss and
data psects described in Section 3.5.2.1 “Non-auto Variable Allocation”) can be
shifted as a whole by changing the default linker options. So, for example, you could
move all the persistent variables. However, typically these psects can only be moved
within the data bank in which they were allocated by default. See
Section 3.10 “Psects” for more information on changing the default linker options for
psects. The code generate makes assumptions as to the location of these psects and
if you move them to a location that breaks these assumptions, code may fail.

3.5.2.2 AUTO VARIABLE ALLOCATION AND ACCESS

This section discusses allocation of auto variables (those with automatic storage dura-
tion). This also include function parameter variables, which behave like auto variables,
as well as temporary variables defined by the compiler.

The auto (short for automatic) variables are the default type of local variable. Unless
explicitly declared to be static, a local variable will be made auto. The auto key-
word may be used if desired.

The auto variables, as their name suggests, automatically come into existence when
a function is executed, then disappear once the function returns. Since they are not in
existence for the entire duration of the program, there is the possibility to reclaim mem-
ory they use when the variables are not in existence and allocate it to other variables
in the program.

Typically such variables are stored on some sort of a data stack, which can easily allo-
cate then deallocate memory as required by each function. All devices targeted by the
compiler do not have a data stack that can be operated in this fashion. The devices can
only use their hardware stack for function return addresses and have no instructions
which allow data to be placed onto this stack. The stack size is also only several words
long and so it unsuitable for data of any substantial quantity. As a result, an alternative
stack construct is implemented by the compiler. The stack mechanism employed is
known as a compiled stack and is fully described in Section 3.5.2.2.1 “Compiled
Stack Operation”.
 2010 Microchip Technology Inc. DS51865B-page 73

HI-TECH C® for PIC10/12/16 User’s Guide
Once auto variables have been allocated a relative position in the compiled stack, the
stack itself is then allocated memory in the data space. This is done is a similar fashion
to the way non-auto variables are assigned memory: a psect is used to hold the stack
and this psect is placed into the available data memory by the linker. The psect used to
hold the compiled stack is called cstack, and like with non-auto variable psects, the
psect basename is always used in conjunction with a linker class name to indicate the
RAM bank in which the psect will be positioned. See
Section 3.10.1 “Compiler-generated Psects” for the limitations associated with
where this psect can be linked.

The auto variables defined in a function will not necessarily be allocated memory in
the order declared, in contrast to parameters which are always allocated memory
based on their lexical order. In fact, auto variables for one function may be allocated
in many RAM banks.

The the standard qualifiers: const and volatile may both be used with auto vari-
ables and these do not affect how they are positioned in memory. This implies that a
local const-qualified object is still an auto object and, as such, will be allocated mem-
ory in the compiled stack in the data space memory, not in the program memory like
with non-auto const objects.

The compiler will try to locate the stack in one data bank, but if this fills (i.e. if the com-
piler detects that the psect has become too large for the free space in a bank), it can
build up the stack into several components (each with their own psect) and link each in
a different bank.

Each auto object is referenced in assembly code using a special symbol defined by
the code generator. If accessing auto variables defined in C source code, you must use
these symbols, which are discussed in Section 3.13.3.1 “Equivalent Assembly Sym-
bols”.

3.5.2.2.1 Compiled Stack Operation

A compiled stack consists of fixed memory areas that are usable by each function’s
stack-based variables. When a compiled stack is used, functions are not re-entrant
since stack-based variables in each function will use the same fixed area of memory
every time the function is invoked.

Fundamental to the generation of the compiled stack is the call graph, which defines a
tree-like hierarchy of function calls, i.e it shows what functions may be called by each
function.

There will be one graph produced for each root function. A root function is typically not
called, but which is executed via other means and contains a program entry point. The
function main() is an example of a root function that will be in every project. Interrupt
functions which are executed when a hardware interrupt occurs, are another example.
DS51865B-page 74  2010 Microchip Technology Inc.

C Language Features
FIGURE 3-2: FORMATION OF CALL GRAPH

Figure 3-2 shows sections of a program being analyzed by the code generator to form
a call graph. In the original source code, the function main() calls F1(), F2() and
F3(). F1() calls F4(), but the other two functions make no calls. The call graph for
main() indicates these calls. The symbols F1, F2 and F3 are all indented one level
under main. F4 is indented one level under F1.

This is a static call graph which shows all possible calls. If the exact code for function
F1() looked like:

int F1(void) {
 if(PORTA == 44)
 return F4();
 return 55;
}

the function F4() will always appear in the call graph, even though it is conditionally
executed in the actual source code. Thus, the call graph indicates all functions that
might be called.

In the diagram, there is also an interrupt function, isr(), and it too has a separate
graph generated.

The term main-line code is often used, and refers to any code that is executed as a
result of the main() function being executed. In the above figure, F1(), F2(), F3()
and F4() are only ever called by main-line code.

The term interrupt code refers to any code that is executed as a result of an interrupt
being generated, in the above figure, F5() and F6() are called by interrupt code.

Figure 3-3 graphically shows an example of how the compiled stack is formed.

Analysis of program

main

 F1

 F4

 F2

 F3

isr
 F5

 F6

Call graph

code
generator

main {

 F1(…);

 F2(…);

 F3(…);

}

F1 {

 F4(…);

}

isr {

 F5(…);

 F6(…);

}

 2010 Microchip Technology Inc. DS51865B-page 75

HI-TECH C® for PIC10/12/16 User’s Guide
FIGURE 3-3: FORMATION OF THE COMPILED STACK

Each function in the program is allocated a block of memory for its parameter, auto
and temporary variables. Each block is referred to as an auto-parameter block (APB).
The figure shows the APB being formed for function F2(), which has two parameters,
a and b, and one auto variable, c.

The parameters to the function are first grouped in an order strictly determined by the
lexical order in which they appear in the source code. These are then followed by any
auto objects, however the auto objects may be placed in any order. So we see mem-
ory for a is followed by that for b and lastly c.

Once these variables have been grouped, the exact location of each object is not
important at this point and we can represent this memory by one block — the APB for
this function.

The APBs are formed for all functions in the program. Then, by analyzing the call graph,
these blocks are assigned positions, or bases values, in the compiled stack.

Memory can be saved if the following point is observed: If two functions are never
active at the same time, then their APBs can be overlapped.

In the example shown in the figure, F4() and F1() are active at the same time, in fact
F1() calls F4(). However F2(), F3() and F1() are never active at the same time;
F1() must return before F2() or F3() can be called by main(). The function main()
will always be active and so its APB can never overlap with that of an other function.

In the compiled stack, you can see that the APB for main() is allocated unique mem-
ory. The blocks for F1(), F2() and F3() are all placed on top of each other and the
same base value in the compiled stack, however the memory taken up by the APBs for
F1() and F4() are unique and do not overlap.

Our example also has an interrupt function, isr(), and its call graph is used to assem-
ble the APBs for any interrupt code in the same way. Being the root of a graph, isr()
will always be allocated unique memory, and the APBs for interrupt functions will be
allocated memory following.

The end result is a block of memory which forms the compiled stack. This block can
then be placed into the device’s memory by the linker.

F3

F6

F2

c
o
m

p
ile

d

s
ta

c
k

main

F1

F4

isr

F5

F2(int a , int b) {

 ;

}

F2

char c

int a int b
a

bb
c

Formation of auto-parameter block (APB)
for function F2

Overlap of non-concurrently active APBs
to form compiled stack

Analysis of call graph

main

 F1

 F4

 F2

 F3

isr
 F5

 F6

1

2

3

3

2

1

F

4

F

2

6F5
DS51865B-page 76  2010 Microchip Technology Inc.

C Language Features
For devices with more than one bank of data memory, the compiled stack may be built
up into components, each located in a different memory bank. The compiler will try to
allocate the compiled stack in one bank, but if this fills, it will consider other banks. The
process of building these components of the stack is the same, but each APB will be
allocated to one of the stack components based on the remaining memory in the com-
ponent’s destination bank.

Human readable symbols are defined by the code generator which can be used to
access auto and parameter variables in the compiled stack from assembly code, if
required. See Section 3.13.3.1 “Equivalent Assembly Symbols” for full information
between C domain and assembly domain symbols.

3.5.2.3 Auto Variable Size Limits

The compiled stack is built up as one contiguous block which can be placed into one
of the available data banks. However if the stack becomes too large for this space, it
can be assembled into several blocks, with each block being positioned in a different
bank of memory. Thus the total size of the stack is roughly limited only by the available
memory on the device.

Unlike with non-auto variables, it is not efficient to access auto variables within the
compiled stack using the linear memory of Enhanced Mid-Range devices. Thus, for all
devices, including Enhanced Mid-Range PIC MCUs, each component of the compiled
stack must fit entirely within one bank of data memory on the target device (however
you can have more than one component, each allocated to a different bank). This limits
the size of objects within the stack to the maximum free space of the bank in which it is
allocated. The more auto variables in the stack; the more restrictive the space is to
large objects. Recall that SFRs are usually present in each data bank, so the maximum
amount of GPR available in each bank is typically less than the bank size.

If a program requires large objects that should not be accessible to the entire program,
consider leaving them as local objects, but using the static specifier. Such variables
are still local to a function, but are no longer auto and have fewer size limitations. They
are allocated memory as described in Section 3.5.2.1 “Non-auto Variable Alloca-
tion”.

3.5.3 Variables in Program Space

The only variables that are placed into program memory are those that are not auto
and which have been qualified const. Any auto variables qualified const are placed
in the compiled stack along with other auto variables, and all components of the com-
piled stack will only ever be located in the data space memory.

Any const-qualified (auto or non-auto) variable will always be read-only and any
attempt to write to these in your source code will result in an error being issued by the
compiler.

On most PIC devices, the program space is not directly readable by the device. The
compiler stores data in the program memory by means of RETLW instructions which can
be called, and which will return a byte if data in the W register. The compiler will generate
the code necessary to make it appear that program memory is being read directly.

Enhanced Mid-Range PIC devices can directly read their program memory, although
the compiler will still usually store data as RETLW instructions. This way the compiler
can either produce code that can call these instructions to obtain the program memory
data as with the ordinary Mid-Range devices, or directly read the operand to the
instruction (the Least Significant Byte of the RETLW instruction). The most efficient
access method can be selected by the compiler when the data needs to be read.
 2010 Microchip Technology Inc. DS51865B-page 77

HI-TECH C® for PIC10/12/16 User’s Guide
A const object is usually defined with initial values, as the program cannot write to
these objects at runtime. However this is not a requirement. An uninitialized const
object can be defined to define a symbol, or label, but not make a contribution to the
output file. Uninitialized const objects are often made absolute, see
Section 3.5.4 “Absolute Variables”. Here are examples of const object definitions.

const char IOtype = ’A’; // initialized const object
const char buffer[10]; // I just define a label

The data held by non-auto const variables is placed in the strings psect. See
Section 3.10.1 “Compiler-generated Psects” for the limitations associated with
where this psect can be linked.

See Section 3.13.3.1 “Equivalent Assembly Symbols” for the equivalent assembly
symbols that are used to represent const-qualified variables in program memory.

3.5.3.1 SIZE LIMITATIONS OF CONST VARIABLES

Arrays of any type (including arrays of aggregate types) can be qualified const and
placed in the program memory. So too can structure and union aggregate types, see
3.4.3 “Structures and Unions”. These objects can often become large in size and
may affect memory allocation.

For Baseline PIC devices, the maximum size of a single const object is 255 bytes.
However, you can define as many const objects as required provided the total size
does not exceed the available program memory size of the device. Note that as well as
other program code, there is also code required to be able to access const-qualified
data in the program memory space. Thus, you may need additional program memory
space over the size of the object itself. This additional code to access the const data
is only included once, regardless of the amount or number of const-qualified objects.

For Mid-Range and Enhanced Mid-Range devices, the maximum size of a
const-qualified object is limited only by the available program memory. These devices
also use additional code that accesses the const data, but this code is also only
included once, regardless of the amount or number of const-qualified objects.

3.5.3.2 CHANGING THE DEFAULT ALLOCATION

If you only intend to prevent all variables from using one or more program memory loca-
tions so that you can use those locations for some other purpose, you are best reserv-
ing the memory using the memory adjust options. See Section 2.7.49 “--ROM: Adjust
ROM Ranges” for information on how to do this.

If only a few non-auto const variables are to be located at specific addresses in pro-
gram space memory, then the variables can be made absolute. This allows individual
variables to be explicitly positioned in memory at an absolute address. Absolute vari-
ables are described in Section 3.5.4 “Absolute Variables”. Once variables are made
absolute, their address is hard coded in generated output code, they are no longer
placed in a psect and do not follow the normal memory allocation procedure.

The psects in which the different categories of non-auto const variables (the
strings and stringtext psects) can be shifted as a whole by changing the default
linker options. However, there are limitations in where these psects can be moved to.
See Section 3.10 “Psects” for more information on changing the default linker options
for these psects.

3.5.4 Absolute Variables

Most variables can be located at an absolute address by following its declaration with
the construct @ address, where address is the location in memory where the vari-
able is to be positioned. Such a variables is known as an absolute variables.
DS51865B-page 78  2010 Microchip Technology Inc.

C Language Features
3.5.4.1 ABSOLUTE VARIABLES IN DATA MEMORY

Absolute variables are primarily intended for equating the address of a C identifier with
a special function register, but can be used to place ordinary variables at an absolute
address in data memory.

For example:

volatile unsigned char Portvar @ 0x06;

will declare a variable called Portvar located at 06h in the data memory. The compiler
will reserve storage for this object and will equate the variable’s identifier to that
address. The compiler-generated assembler will include a line similar to:

_Portvar EQU 06h

No auto variables can be made absolute as they are located in a compiled stack. See
Section 3.5.2.2.1 “Compiled Stack Operation”.The compiler does not make any
checks for overlap of absolute variables with other absolute variables, so this must be
considered when choosing the variable locations. There is no harm in defining more
than one absolute variable to live at the same address if this is what you require. The
compiler will not locate ordinary variables over the top of absolutes, so there is no over-
lap between these objects.

When compiling for an enhanced Mid-Range PIC device, the memory allocated for
some objects may be spread over multiple RAM banks. Such objects will only ever be
accessed indirectly in assembly code, and will use the linear GPR memory imple-
mented on these devices. A linear address (which can be mapped back to the ordinary
banked address) will be used with these objects internally by the compiler.

The address specified for absolute objects on these devices may either be the tradi-
tional banked memory address or the linear address. As the linear addresses start
above the largest banked address, it is clear which address is intended. In the following
example:

int inputBuffer[100] @ 0x2000;

it is clear that inputBuffer should placed at address 0x2000 in the linear address
space, which is address 0x20 in bank 0 RAM in the traditional banked address space.
See the device data sheet for exact details regarding your selected device.

3.5.4.2 ABSOLUTE OBJECTS IN PROGRAM MEMORY

Non-auto objects qualified const can also be made absolute in the same way, how-
ever the address will indicate an address in program memory. For example:

const int settings[] @ 0x200 = { 1, 5, 10, 50, 100 };

Both initialized and uninitialized const objects can be made absolute. That latter is
useful when you only need to define a label in program memory without making a
contribution to the output file.

Variables can also be placed at specific positions by using the psect pragma, see
Section 3.15.3.5 “The #pragma psect Directive”. The decision whether variables
should be positioned this way or using absolute variables should be based on the loca-
tion requirements. Using absolute variables is the easiest method, but only allows
placement at an address which must be known prior to compilation. The psect
pragma is more complex, but offers all the flexibility of the linker to position the new

Note: Defining absolute objects can fragment memory and may make it impossi-
ble for the linker to position other objects. Avoid absolute objects if at all
possible. If absolute objects must be defined, try to place them at either end
of a memory bank or page so that the remaining free memory is not frag-
mented into smaller chunks.
 2010 Microchip Technology Inc. DS51865B-page 79

HI-TECH C® for PIC10/12/16 User’s Guide
psect into memory. You can, for example, specify that variables reside at a fixed
address, or that they be placed after other psects, or that the they be placed anywhere
in a compiler-defined or user-defined range of address.

3.5.5 Variables in Registers

Allocating variables to registers, rather than to a memory location, can make code more
efficient. With HI-TECH C, there is no direct control of placement of variables in regis-
ters. The register keyword is silently ignored and has no effect on memory allocation
of variables.

There are very few registers available for caching of variables on PIC Baseline and
Mid-Range devices, and as these registers must be frequently used by generated code
for other purposes, there is little advantage in using them. The cost involved in loading
variables into registers would far outweigh any advantage of accessing the register.

One exception is with parameter variables. Some arguments are passed to functions
in the W register rather than in a memory location; however, these values will typically
be stored back to memory by code inside the function so that W can be used by code
associated with that function. See Section 3.8.4 “Function Size Limits” for more
information as to which parameter variables may use registers.

3.5.6 Dynamic Memory Allocation

Dynamic memory allocation, (heap-based allocation using malloc etc.) is not sup-
ported with HI-TECH C. This is due to the limited amount of data memory, and the fact
that this memory is banked. The wasteful nature of dynamic memory allocation does
not suit itself to the 8-bit PIC device architectures.

3.5.7 Memory Models

HI-TECH C does not use fixed memory models to alter allocation of variables to mem-
ory. Memory allocation is fully automatic and there are no memory model controls.

3.6 OPERATORS AND STATEMENTS

The HI-TECH C compiler supports all the ANSI operators. The exact results of some of
these are implementation defined. Implementation-defined behavior is fully docu-
mented in Appendix A. “Implementation-Defined Behavior”. The following sections
illustrate code operations that are often misunderstood as well as additional operations
that the compiler is capable of performing.

3.6.1 Integral Promotion

When there is more than one operand to an operator, they typically must be of exactly
the same type. The compiler will automatically convert the operands, if necessary, so
they do have the same type. The conversion is to a “larger” type so there is no loss of
information; however, the change in type can cause different code be ha vi our to what
is sometimes expected. These form the standard type conversions.

Prior to these type conversions, some operands are unconditionally converted to a
larger type, even if both operands to an operator have the same type. This conversion
is called integral promotion and is part of Standard C be ha vi our. The HI-TECH C com-
piler performs these integral promotions where required, and there are no options that
can control or disable this operation. If you are not aware that the type has changed,
the results of some expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or
unsigned varieties of char, short int or bit-field types to either signed int or
unsigned int. If the result of the conversion can be represented by an signed int,
then that is the destination type, otherwise the conversion is to unsigned int.
DS51865B-page 80  2010 Microchip Technology Inc.

C Language Features
Consider the following example.

unsigned char count, a=0, b=50;
if(a - b < 10)
 count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and
b are converted to signed int via integral promotion before the subtraction takes
place. The result of the subtraction with these data types is -50 (which is less than 10)
and hence the body of the if() statement is executed.

If the result of the subtraction is to be an unsigned quantity, then apply a cast. For
example:

if((unsigned int)(a - b) < 10)
 count++;

The comparison is then done using unsigned int, in this case, and the body of the
if() would not be executed.

Another problem that frequently occurs is with the bitwise compliment operator, ~. This
operator toggles each bit within a value. Consider the following code.

unsigned char count, c;
c = 0x55;
if(~c == 0xAA)
 count++;

If c contains the value 0x55, it often assumed that ~c will produce 0xAA, however the
result is 0xFFAA and so the comparison in the above example would fail. The compiler
may be able to issue a mismatched comparison error to this effect in some circum-
stances. Again, a cast could be used to change this behavior.

The consequence of integral promotion as illustrated above is that operations are not
performed with char -type operands, but with int -type operands. However there are
circumstances when the result of an operation is identical regardless of whether the
operands are of type char or int. In these cases, the HI-TECH C compiler will not per-
form the integral promotion so as to increase the code efficiency. Consider the following
example.

unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted
to unsigned int, the addition performed, the result of the addition cast to the type of
a, and then the assignment can take place. Even if the result of the unsigned int
addition of the promoted values of b and c was different to the result of the unsigned
char addition of these values without promotion, after the unsigned int result was
converted back to unsigned char, the final result would be the same. If an 8-bit addi-
tion is more efficient than a 16-bit addition, the compiler will encode the former.

If, in the above example, the type of a was unsigned int, then integral promotion
would have to be performed to comply with the ANSI C standard.

3.6.2 Rotation

The C language does not specify a rotate operator; however, it does allow shifts. The
compiler will detect expressions that implement rotate operations using shift and logical
operators and compile them efficiently.

For the following code:

c = (c << 1) | (c >> 7);

if c is unsigned and non-volatile, the compiler will detect that the intended
operation is a rotate left of 1 bit and will encode the output using the PIC MCU rotate
instructions. A rotate left of 2 bits would be implemented with code like:
 2010 Microchip Technology Inc. DS51865B-page 81

HI-TECH C® for PIC10/12/16 User’s Guide
c = (c << 2) | (c >> 6);

This code optimization will also work for integral types larger than a char. If the opti-
mization cannot be applied, or this code is ported to another compiler, the rotate will be
implemented, but typically with shifts and a bitwise OR operation.

3.7 REGISTER USAGE

The assembly generated from C source code by the compiler will use certain registers
that are present on the PIC MCU device. Most importantly, the compiler assumes that
nothing other than code it generates can alter the contents of these registers. So if the
assembly loads a register with a value and no subsequent code generation requires
this register, the compiler will assume that the contents of the register are still valid later
in the output sequence.

The registers that are special and which are used by the compiler are listed in Table 3-9

Note 1: This is a two-byte register. Both components are used by the compiler.

The state of these register must never be changed directly by C code, or by any assem-
bly code in-line with C code. The following example shows a C statement and in-line
assembly that violates these rules and changes the ZERO bit in the STATUS register.

#include <htc.h>

void getInput(void)
{

ZERO = 0x1; // do not write using C code
c = read();

#asm
#include <caspic.h>

bcf ZERO_bit ; do not write using in-line assembly code
#endasm

process(c);
}

HI-TECH C is unable to interpret the meaning of in-line assembly code that is encoun-
tered in C code. Nor does it associate a variable mapped over an SFR to the actual
register itself. Writing to an SFR register using either of these two methods will not flag
the register as having changed and may lead to code failure.

3.8 FUNCTIONS

Functions may be written in the usual way in accordance with the C language. Imple-
mentation and special features associated with functions are discussed in the following
sections.

3.8.1 Function Specifiers

The only specifiers that have any effect on functions are interrupt and static.

TABLE 3-9: REGISTERS USED BY THE COMPILER

Applicable devices Register name

Baseline and all Mid-Range W

Baseline and all Mid-Range STATUS

All Mid-Range devices PCLATH

Enhanced Mid-Range devices BSR

Non-enhanced Mid-Range devices FSR

Enhanced Mid-Range devices FSR0(1)

Enhanced Mid-Range devices FSR1(1)
DS51865B-page 82  2010 Microchip Technology Inc.

C Language Features
The interrupt specifier indicates that the function is an interrupt service routine and
that it is to be encoded specially to suit this task. Interrupt functions are fully described
in detail in 3.9.1 “Writing an Interrupt Service Routine”.

A function defined using the static specifier only affects the scope of the function, i.e.
limits the places in the source code where the function may be called. Static functions
may only be called from code in the file in which the function is defined. The equivalent
symbol used in assembly code to represent the function may change it the function is
static, see 3.13.3.1 “Equivalent Assembly Symbols”. This specifier does not change
the way the function is encoded.

3.8.2 Allocation of Function Code

Code associated with functions is always placed in the program memory of the target
device. The program memory is paged (c.f. banking used in the data memory space).
Program memory is sequential (addresses are contiguous across a page boundary),
but the paging means that any call or jump from code in one page to a label in another
must use a longer sequence of instructions to accomplish this. See your device data
sheet for more information on the program memory and instruction set.

The generated code associated with each function is initially placed in its own psect by
the compiler. These psects have names such as textn, where n is a number, e.g.
text98. However, psects may be merged later in the compilation process so that more
than one function may contribute to a psect. Functions within the same psect can use
a shorter form of call and jump to labels so it is advantageous to merge the code for as
many functions into the same psect. These text psects are linked somewhere in the
program memory (see 3.10 “Psects”).

If the size of a psect that holds the code associated with a function exceeds the size of
a page, it may be split by the assembler optimizer. A split psect will have a name of the
form textn_split_s. So, for example, if the text102 psect exceeds the size of a
page, it may be split into a text102_split_1 and a text102_split_2 psect. This
process is fully automatic, but you should be aware that if the code associated with a
function does become larger than one page in size, the efficiency of that code may drop
fractionally due to any longer jump and call instruction sequences being used to trans-
fer control to code in other pages.

The basename of each psect category is tabulated below. A full list of all program-mem-
ory psects psect names are listed in Section 3.10.1.1 “Program space psects”.

maintext The generated code associated with the special function, main, is placed
in this psect. Some optimizations and features are not applied to this psect.

textn These psects (where n is a decimal number) contain all other executable code
that does not require a special link location.

3.8.3 Changing the Default Function Allocation

The assembly code associated with a C function can be placed at an absolute address.
This can be accomplished by using an @ address construct in a similar fashion to
that used with absolute variables. Such functions are called absolute functions.

The following example of an absolute function will place the function at address 400h:

int mach_status(int mode) @ 0x400
{
/* function body */
}

If you check the assembly list file you will see the function label and the first assembly
instruction associated with the function located at 0x400. You can use either the
assembly list file (see 4.4 “Assembly List Files”) or map file (see 5.4 “Map Files”) to
confirm that the function was moved as you expect.
 2010 Microchip Technology Inc. DS51865B-page 83

HI-TECH C® for PIC10/12/16 User’s Guide
If this construct is used with interrupt functions it will only affect the position of the code
associated with the interrupt function body. The interrupt context switch code that pre-
cedes the function code will not be relocated as it must be linked to the interrupt vector.
See also Section2.7.22 “--CODEOFFSET: Offset Program Code to Address” for
information on how to move reset and interrupt vector locations, which may be useful
for designing applications such as bootloaders.

Unlike absolute variables, the generated code associated with absolute functions is still
placed in a psect, but the psect is dedicated to that function only. The psect name has
the form below. A full list of all psect names are listed in Section 3.9 “Interrupts”.

xxx_text Defines the psect for a function that has been made absolute, i.e. placed
at an address. xxx will be the assembly symbol associated with the function.
For example if the function rv() is made absolute, code associated with it
will appear in the psect called _rv_text.

Functions can also be placed at specific positions by using the psect pragma, see
Section 3.15.3.5 “The #pragma psect Directive”. The decision whether functions
should be positioned this way or using absolute functions should be based on the loca-
tion requirements.

Using absolute functions is the easiest method, but only allows placement at an
address which must be known prior to compilation. The psect pragma is more com-
plex, but offers all the flexibility of the linker to position the new psect into memory. For
example, you can specify that functions reside at a fixed address, or that they be placed
after other psects, or that the they be placed anywhere in a compiler-defined or
user-defined range of addresses.

3.8.4 Function Size Limits

For all devices, the code generated for a function may become larger than one page in
size, limited only by the available program memory. However, functions that yield code
larger than a page may not be as efficient due to longer call sequences to jump to and
call destinations in other pages. See 3.8.2 “Allocation of Function Code” for more
details.

3.8.5 Function Parameters

HI-TECH C uses a fixed convention to pass arguments to a function. The method used
to pass the arguments depends on the size and number of arguments involved.

The compiler will either pass arguments in the W register, or in the auto-parameter
block (APB) of the called function.If the first parameter is one byte in size, it is passed
in the W register. All other parameters are passed in the APB. This applies to basic
types and to aggregate types, like structures.

The parameters are grouped along with the function’s auto variables in the APB and
are placed in the compiled stack. See Section 3.5.2.2.1 “Compiled Stack Operation”
for detailed information on the compiled stack. The parameter variables will be refer-
enced as an offset from the symbol ?_function, where function is the name of the
function in which the parameter is defined (i.e. the function that is to be called).

Note: The names “argument” and “parameter” are often used interchangeably,
but typically an argument is the actual value that is passed to the function
and a parameter is the variable defined by the function to store the argu-
ment.
DS51865B-page 84  2010 Microchip Technology Inc.

C Language Features
Unlike auto variables, parameter variables are allocated memory strictly in the order
in which they appear in the function’s prototype. This means that the parameters will
always be placed in the same memory bank even if the other auto variables for that
function have been allocated across multiple banks.

The parameters for functions that take a variable argument list (defined using an ellipsis
in the prototype) are placed in the parameter memory, along with named parameters.

Take, for example, the following ANSI-style function.

void test(char a, int b);

The function test() will receive the parameter b in its function auto-parameter block
and a in the W register. A call to this function:

test(xyz, 8);

would generate code similar to:

MOVLW 08h ; move literal 0x8 into...
MOVWF ?_test ; the auto-parameter memory
CLRF ?_test+1 ; locations for the 16-bit parameter
MOVF _xyz,w ; move xyz into the W register
CALL (_test)

In this example, the parameter b is held in the memory locations ?_test (Least
Significant Byte) and ?_test+1 (Most Significant Byte).

The exact code used to call a function, or the code used to access a parameters from
within a function, can always be examined in the assembly list file. See
Section 2.7.17 “--ASMLIST: Generate Assembler List Files” for the option that
generates this file. This is useful if you are writing an assembly routine that must call a
function with parameters, or accept arguments when it is called. The above example
does not consider data memory banking or program memory paging, which may
require additional instructions.

3.8.6 Function Return Values

Function return values are passed to the calling function using either the W register, or
the function’s auto-parameter block. Having return values also located in the same
memory as that used by the parameters can reduce the code size for functions that
return a modified copy of their parameter.

Eight-bit values are returned from a function in the W register. Values larger than a byte
are returned in the function’s parameter memory area, with the least significant word in
the lowest memory location.

For example, the function:

int return_16(void)
{
 return 0x1234;
}

will exit with the code similar to:

MOVLW 34h
MOVWF (?_return_16)
MOVLW 12h
MOVWF (?_return_16)+1
RETURN
 2010 Microchip Technology Inc. DS51865B-page 85

HI-TECH C® for PIC10/12/16 User’s Guide
3.8.7 Calling Functions

The Baseline, Mid-Range and Enhanced Mid-Range devices all use a hardware stack
for function return addresses. Although the depth of this stack is 2, 8 and 16 levels,
respectively, the mechanism by which functions are called is consistent across all
devices.

Typically, CALL instructions are used to transfer control to a C function when it is called.
Each function calls uses one level of stack. This stack level is freed after the called rou-
tine executes a RETURN instruction. The stack usage grows if a called function calls
another before returning. If the hardware stack overflows, function return addresses will
be destroyed and the code will eventually fail.

The stackcall suboption to the --RUNTIME option controls how the compiler
behaves when the compiler detects that the hardware stack is about to overflow due to
too many nested calls. See Section 2.7.50 “--RUNTIME: Specify Runtime Environ-
ment” for details on this option.

If this suboption is disabled (the default state), where the depth of the stack will be
exceeded by a call, the compiler will issue a warning to indicate that this is the case. If
the stackcall suboption is enabled, the compiler will, instead of issuing a warning,
automatically swap to using a method that involves the use of a lookup table and which
does not require use of the hardware stack.

When the lookup method is being employed, a function is reached by a jump (not a call)
directly to its address. Before this is done the address of a special "return" instruction
(implemented as a jump instruction) is stored in a temporary location inside the called
function. This return instruction will be able to return control back to the calling function.

This means of calling functions allows functions to be nested deeply without overflow-
ing the stack, however it does come at the expense of memory and program speed.

3.8.7.1 BANK SELECTION WITHIN FUNCTIONS

A function can, and may, return with any RAM bank selected. See
Section 3.5.1 “Address Spaces” for more information on RAM banks.

The compiler tracks the bank selections made in the generated code associated with
each function, even across function calls to other functions. If the bank that is selected
when a function returns can be determined, the compiler will use this information to try
to remove redundant bank selection instructions which might otherwise be inserted into
the generated code.

The compiler will not be able to track the bank selected by routines written in assembly,
even if they are called from C code. The compiler will make no assumptions about the
selected bank when such routines return.

The “Tracked objects” section associated with each function and which is shown in the
assembly list file relates to this bank tracking mechanism. See 4.4 “Assembly List
Files” for more information of the content of these files.

3.9 INTERRUPTS

The compiler incorporates features allowing interrupts to be fully handled from C code.
Interrupt functions are often called Interrupt Service Routines (ISRs).

Note: Baseline devices do not utilize interrupts and so the following sections are
only applicable for Mid-Range and Enhanced Mid-Range devices.
DS51865B-page 86  2010 Microchip Technology Inc.

C Language Features
There is only one interrupt vector on Mid-Range and Enhanced Mid-Range devices.
Regardless of the source of the interrupt, the device will vector to one specific location
in program memory and execution continues from that address. This address is funda-
mental to the operation of the device and cannot be changed.

Each interrupt source typically has a control bit in an SFR which can disable that inter-
rupt source. In addition there is a global interrupt enable bit that can disable all inter-
rupts sources and ensure that an interrupt can never occur. There is no priority of
interrupt sources. Check your device data sheet for full information how your device
handles interrupts.

Interrupt code is the name given to any code that executes as a result of an interrupt
occurring. Interrupt code completes at the point where the corresponding return from
interrupt instruction is executed. This contrasts with main-line code, which, for a free-
standing application, is usually the main part of the program that executes after reset.

3.9.1 Writing an Interrupt Service Routine

The function qualifier interrupt may be applied to C function definitions to allow
them to be called directly from the hardware interrupts. The compiler will process the
interrupt function differently to any other functions, generating code to save and
restore any registers used and return using a special instruction.

If the PICC option --STRICT is used, the interrupt keyword becomes
__interrupt.

An interrupt function must be declared as type void interrupt and may not have
parameters. This is the only function prototype that makes sense for an interrupt func-
tion since they are never directly called in the source code.

Interrupt functions must not be called directly from C code (due to the different return
instruction that is used), but they themselves may call other functions, both
user-defined and library functions.

Mid-Range PIC devices have many sources of interrupt, but only one interrupt vector,
and hence only one interrupt function must be written. An error will result if more than
one interrupt function exists in a program.

An example of an interrupt function for a Mid-Range PIC MCU processor is shown
here.

int tick_count;

void interrupt tc_int(void)
{
 if (T0IE && T0IF) {
 T0IF=0;
 ++tick_count;
 return;
 }
 // process other interrupt sources here, if required
}

Code generated by the compiler will be placed at the interrupt vector address which will
execute this function after any context switch that is required.

Notice that the code in the interrupt function checks for the source of the interrupt, in
this case a timer, by looking at the interrupt flag bit (T0IE) and the interrupt flag bit
(T0IF). Checking the interrupt enable flag is required since interrupt flags associated
with a peripheral may be asserted even if the peripheral is not configured to generate
an interrupt.
 2010 Microchip Technology Inc. DS51865B-page 87

HI-TECH C® for PIC10/12/16 User’s Guide
3.9.2 Specifying the Interrupt Vector

As there is only one vector location, the interrupt specifier used with a function def-
inition is all that is required to link that function to the interrupt. Although the interrupt
function can have any valid C identifier as its name, the interrupt function cannot be
changed at runtime. That is, you cannot have more than one interrupt function and
select which will be the active interrupt function once the program is running.

3.9.3 Context Switching

3.9.3.1 CONTEXT SAVING ON INTERRUPTS

Some registers are automatically saved by the hardware when an interrupt occurs. Any
registers or compiler temporary objects used by the interrupt function, other than those
saved by the hardware, must be saved in software. This is the context save, or context
switch code.

Enhanced Mid-Range PIC devices save the W, STATUS, BSR and FSRx registers in
hardware (using special shadow registers) and hence these registers do not need to
be saved by software. In fact, the compiler will never have to produce code to save any
other registers when compiling for an Enhanced Mid-Range as no additional registers
are ever used. This makes interrupt functions on Enhanced Mid-Range PIC devices
very fast and efficient.

Other Mid-Range PIC processors only save the entire PC (excluding the PCLATH reg-
ister) when an interrupt occurs. The the W, STATUS, FSR and PCLATH registers and
the BTEMP1 pseudo register must be saved by code produced by the compiler, if
required.

The compiler fully determines which registers and objects are used by an interrupt func-
tion, or any of the functions that it calls (based on the call graph generated by the com-
piler), and saves these appropriately.

Assembly code placed in-line within the interrupt function is not scanned for register
usage. Thus, if you include in-line assembly code into an interrupt function, you may
have to add extra assembly code to save and restore any registers or locations used.
The same is true for any assembly routines called by the interrupt code.

If the W register is to be saved by the compiler, it may be stored to memory reserved in
the common RAM. If the processor for which the code is written does not have common
memory, a byte is reserved in all RAM banks for the storage location for W register.

Other registers to be saved are done so in the interrupt function’s auto area, and thus
look like ordinary auto variables.

3.9.3.2 CONTEXT RESTORATION

Any objects saved by software are automatically restored by software before the inter-
rupt function returns. The order of restoration is the reverse to that used when context
is saved.

3.9.4 Enabling Interrupts

Two macros are available, once you have included <htc.h>, which control the mask-
ing of all available interrupts. These macros are ei(), which enable or unmask all
interrupts, and di(), which disable or mask all interrupts.

1. The BTEMP register is a memory location allocated by the compiler, but which is treated
like a register for code generation purposes. It is not used by all devices.
DS51865B-page 88  2010 Microchip Technology Inc.

C Language Features
On all Mid-Range PIC devices, they affect the GIE bit in the INTCON register. These
macros should be used once the appropriate interrupt enable bits for the interrupts that
are required in a program have been enabled.

For example:

ADIE = 1; // A/D interrupts will be used
PEIE = 1; // all peripheral interrupts are enabled
ei(); // enable all interrupts
// ...
di(); // disable all interrupts

3.9.5 Function Duplication

It is assumed by the compiler that an interrupt may occur at any time. As all functions
are not reentrant (because of the dependance on the compiled stack for local objects,
see Section 3.5.2.2.1 “Compiled Stack Operation”), if a function appears to be
called by an interrupt function and by main-line code this could normally lead to
code failure.

HI-TECH C has a feature which will duplicate the output associated with any function
called from more than one call tree in the program’s call graph. There will be one call
tree associated with main-line code, and one tree for the interrupt function, if
defined.

Main-line code will call the original function’s output, and the interrupt will call the dupli-
cated function’s output. The duplication takes place only in the called function’s output;
there is no duplication of the C source code itself. The duplicated code and data uses
different symbols and are allocated different memory, so are fully independent.

This is similar to the process you would need to undertake if this feature was not imple-
mented in the compiler: the C function could be duplicated by hand, given different
names and one called from main-line code; the other from the interrupt function. How-
ever, you would have to maintain both functions, and the code would need to be
reverted if it was ported to a compiler which did support reentrancy.

The compiler-generated duplicate will have unique identifiers for the assembly symbols
used within it. The identifiers consists of the same name used in the original output pre-
fixed with i1.

The output of the function called from main-line code will not use any prefixes and the
assembly names will be those normally used.

To illustrate, in a program the function main calls a function called input. This function
is also called by an interrupt function.

Examination of the assembly list file will show assembly code for both the original and
duplicate function outputs. The output corresponding to the C function input() will
use the assembly label _input. The corresponding label used by the duplicate func-
tion will be i1_input. If the original function makes reference to a temporary variable,
the generated output will use the symbol ??_input, compared to ??i1_input for the
duplicate output. Even local labels within the function output will be duplicated in the
same way. The call graph, in the assembly list file, will show the calls made to both of
these functions as if they were independently written. These symbols will also be seen
in the map file symbol table.

Note: Never use this macro to re-enable interrupts inside the interrupt function
itself. Interrupts are automatically re-enabled by hardware on execution of
the RETFIE instruction. Re-enabling interrupts inside an interrupt function
may result in code failure.
 2010 Microchip Technology Inc. DS51865B-page 89

HI-TECH C® for PIC10/12/16 User’s Guide
This feature allows the programmer to use the same source code with compilers that
use either reentrant or non-reentrant models. It does not handle cases where functions
are called recursively.

Code associated with library functions are duplicated in the same way. This also
applies to implicitly called library routines, such as those that perform division or float-
ing-point operations associated with C operators.

3.9.5.1 DISABLING DUPLICATION

The automatic duplication of the function may be inhibited by the use of a special
pragma.

This should only be done if the source code guarantees that an interrupt cannot occur
while the function is being called from any main-line code. Typically this would be
achieved by disabling interrupts before calling the function. It is not sufficient to disable
the interrupts inside the function after it has been called; if an interrupt occurs when
executing the function, the code may fail. See Section 3.9.4 “Enabling Interrupts” for
more information on how interrupts may be disabled.

The pragma is:

#pragma interrupt_level 1

The pragma should be placed before the definition of the function that is not to be dupli-
cated. The pragma will only affect the first function whose definition follows.

For example, if the function read is only ever called from main-line code when the
interrupts are disabled, then duplication of the function can be prevented if it is also
called from an interrupt function as follows.

#pragma interrupt_level 1
int read(char device)
{
 // ...
}

In main-line code, this function would typically be called as follows:

di(); // turn off interrupts
read(IN_CH1);
ei(); // re-enable interrupts

3.10 PSECTS

When the code generator outputs code and data objects, it does so into a number of
standard “program sections”, referred to as psects1. A psect is just a block of some-
thing: a block of code; a block of data etc. By having everything inside a psect, all these
blocks can be easily recognized and sorted by the linker, even though they have come
from different modules.

One of the main jobs of the linker is to group all the psects from the entire project and
place these into the available memory for the device.

A psect can be created in assembly code by using the PSECT assembler directive (see
Section 4.3.9.3 “PSECT”). The code generator uses this directive to direct assembly
code it produces into the appropriate psect.

3.10.1 Compiler-generated Psects

The code generator places code and data into psects with standard names, which are
subsequent positioned by the default linker options. The linker does not treat these
compiler-generated psects any differently to a psect that has been defined by yourself.

1. Some compilers use the terms section, segment, or block, but the concept is the same.
DS51865B-page 90  2010 Microchip Technology Inc.

C Language Features
Some psects, in particular the data memory psects, use special naming conventions.

For example, take the bss psect. The name bss is historical. It holds uninitialized vari-
ables. However there may be some uninitialized variables that will need to be located
in bank 0 data memory; others may need to be located in bank 1 memory. As these two
groups of variables will need to be placed into different memory banks, they will need
to be in separate psects so they can be independently controlled by the linker. In addi-
tion, the uninitialized variables that are bit variables need to be treated specially so
they need their own psect. So there are a number of different psects that all use the
same basename, but which have prefixes and suffixes to make them unique.

The general form of these psect names is:

[bit]psectBaseNameCLASS[div]

where psectBaseName is the base name of the psect, such as bss.The CLASS is a
name derived from the linker class (see Section 5.2.1 “-Aclass =low-high,...”) in
which the psect will be linked, e.g. BANK0. The prefix bit is used if the psect holds bit
variables. So there may be psects like: bssBANK0, bssBANK1 and bitbssBANK0
defined by the compiler to hold the uninitialized variables.

If a psect has to be split into two ranges, then the letters l (elle) and h are used as div
to indicate if it is the lower or higher division. A psect would be split if memory in the
middle of a bank has been reserved, or is in some way not available to position objects.
If an absolute variable is defined and is located anywhere inside a memory range, that
range will need to be split to ensure that anything in the psects located there do not
overwrite the absolute object. Thus you might see bssBANK0l and bssBANK0h psects
if a split took place.

The contents of these psects are described below, listed by psect base name.

3.10.1.1 PROGRAM SPACE PSECTS

checksum This is a psect that is used to mark the position of a checksum that has
been requested using the --CHECKSUM option, see
Section 2.7.19 “--CHECKSUM: Calculate a checksum”. The checksum
value is added after the linker has executed so you will not see the contents
of this psect in the assembly list file, nor specific information in the map file.
Linking this psect at a non-default location will have no effect on where the
checksum is stored, although the map file will indicate it located at the new
address. Do not change the default linker options relating to this psect.

cinit Used by the C initialization runtime startup code. Code in this psect is output
by the code generator along with the generated code for the C program and
does not appear in the runtime startup assembly module.
This psect can be linked anywhere in the program memory, provided they
does not interfere with the requirements of other psects.

config Used to store the configuration words.
This psect must be stored in a special location in the HEX file. Do not change
the default linker options relating to this psect.

eeprom Used to store initial values in the EEPROM memory.
Do not change the default linker options relating to this psect.

idata These psects contain the ROM image of any initialized variables. These
psects are copied into the data psects at startup. In this case, the class name
is used to describe the class of the corresponding RAM-based data psect.
These psects will be stored in program memory, not the data memory space.
These psects are implicitly linked to a location that is anywhere within the
CODE linker class. The linker options can be changed allowing this psect to
be placed at any address in the program memory, provided it does not inter-
 2010 Microchip Technology Inc. DS51865B-page 91

HI-TECH C® for PIC10/12/16 User’s Guide
fere with the requirements of other psects.

idloc Used to store the ID location words.
This psect must be stored in a special location in the HEX file. Do not change
the default linker options relating to this psect.

init Used by assembly code in the runtime startup assembly module. The code in
this and the cinit define the runtime startup code.
If no interrupt code is defined code from the reset vector may “fall through”
into this psect. It is recommended that the default linker options relating to
this psect are not changed in case this situation is in effect.

intentry Contains the entry code for the interrupt service routine which is linked to
the interrupt vector. This code saves the necessary registers and jumps to
the main interrupt code in the case of Mid-Range devices; for enhanced
Mid-Range devices this psect will contain the interrupt function body.
This psect must be linked at the interrupt vector. Do not change the default
linker options relating to this psect. See the --CODEOFFSET option
Section 2.7.22 “--CODEOFFSET: Offset Program Code to Address” if
you want to move code when using a bootloader.

jmp_tab Only used for the baseline processors, this is a psect used to store jump
addresses and function return values.
Do not change the default linker options relating to this psect.

maintext This psect will contain the assembly code for the main() function. The
code for main() is segregated as it contains the program entry point.
Do not change the default linker options relating to this psect as the runtime
startup code may “fall through” into this psect which requires that it be linked
immediately after this code.

powerup Contains executable code for a user-supplied power-up routine.
Do not change the default linker options relating to this psect.

reset_vec This psect contains code associated with the reset vector.
Do not change the default linker options relating to this psect as it must be
linked to the reset vector location of the target device. See the --CODEOFF-
SET option Section 2.7.22 “--CODEOFFSET: Offset Program Code to
Address” if you want to move code when using a bootloader.

reset_wrap For baseline PIC devices, this psect contains code which is executed
after the device PC has wrapped around to address 0x0 from the oscillator
calibration location at the top of program memory.
Do not change the default linker options relating to this psect as it must be
linked to the reset vector location of the target device.

strings The strings psect is used for const objects. It also includes all unnamed
string literals. This psect is linked into ROM, since the contents do not need
to be modified.
This psect can be linked anywhere in the program memory, provided it does
not cross a 100h boundary or interfere with the requirements of other psects.

stringtext The stringtext psect is used for const objects when compiling for
Baseline devices. This psect is linked into ROM, since the contents do not
need to be modified.
This psect must be linked within the first half of each program memory page.

textn These psects (where n is a decimal number) contain all other executable code
that does not require a special link location.
These psects can be linked anywhere in the program memory, provided they
does not interfere with the requirements of other psects.
DS51865B-page 92  2010 Microchip Technology Inc.

C Language Features
xxx_text Defines the psect for a function that has been made absolute, i.e. placed
at an address. xxx will be the assembly symbol associated with the function.
For example if the function rv() is made absolute, code associated with it
will appear in the psect called _rv_text.
As these psects are already placed at the address indicated in the C source
code, the linker options that position them should not be changed.

3.10.1.2 DATA SPACE PSECTS

nv These psects are used to store variables qualified persistent. They are not
cleared or otherwise modified at startup.
These psects may be linked anywhere in their targeted memory bank and
should not overlap any common (unbanked memory) that the device sup-
ports if it is a banked psect.

bss These psects contain any uninitialized variables.
These psects may be linked anywhere in their targeted memory bank and
should not overlap any common (unbanked memory) that the device sup-
ports if it is a banked psect.

data These psects contain the RAM image of any initialized variables.
These psects may be linked anywhere in their targeted memory bank and
should not overlap any common (unbanked memory) that the device sup-
ports if it is a banked psect.

cstack These psects contain the compiled stack. On the stack are auto and param-
eter variables for the entire program. See 3.5.4 “Absolute Variables” for in-
formation on the compiled stack.
These psects may be linked anywhere in their targeted memory bank and
should not overlap any common (unbanked memory) that the device sup-
ports if it is a banked psect.

3.11 MAIN, RUNTIME STARTUP AND RESET

The identifier main is special. It is must be used as the name of a function that will be
the first function to execute in a program. You must always have one and only one func-
tion called main() in your programs. Code associated with main(), however, is not
the first code to execute after reset. Additional code provided by the compiler and
known as the runtime startup code is executed first and is responsible for transferring
control to the main() function.

3.11.1 Runtime Startup Code

A C program requires certain objects to be initialized and the processor to be in a
particular state before it can begin execution of its function main(). It is the job of the
runtime startup code to perform these tasks, specifically (and in no particular order):

• Initialization of global variables assigned a value when defined

• Clearing of non-initialized global variables

• General setup of registers or processor state

Rather than the traditional method of linking in a generic, precompiled routine,
HI-TECH C Compiler for PIC10/12/16 MCUs uses a more efficient method which
actually determines what runtime startup code is required from the user’s program.
Details of the files used and how the process can be controlled are described in
Section 2.4.2 “Runtime Startup Code”. The follow sections detail exactly what the
runtime startup code actually does.
 2010 Microchip Technology Inc. DS51865B-page 93

HI-TECH C® for PIC10/12/16 User’s Guide
PICCThe runtime startup code is executed before main(), but If you require any special
initialization to be performed immediately after reset, you should use power-up feature
described later in Section 3.11.2 “The Powerup Routine”.

3.11.1.1 INITIALIZATION OF OBJECTS

One task of the runtime startup code is to ensure that any initialized variables contain
their initial value before the program begins execution. Initialized variables are those
which are not auto objects and which are assigned an initial value in their definition,
for example input in the following example.

int input = 88;
void main(void) { ...

Such initialized objects have two components: their initial value (0x0088 in the above
example) stored in program memory (i.e. placed in the HEX file), and space for the
variable reserved in RAM it will reside and be accessed during program execution
(runtime).

The psects used for storing these components are described in
Section 3.10.1 “Compiler-generated Psects”.

The runtime startup code will copy all the blocks of initial values from program memory
to RAM so the variables will contain the correct values before main() is executed.

Since auto objects are dynamically created, they require code to be positioned in the
function in which they are defined to perform their initialization. It is possible that the
initial value of an auto object may change on each instance of the function and so the
initial values cannot be stored in program memory and copied. As a result, initialized
auto objects are not considered by the runtime startup code but are instead initialized
by assembly code in each function output.

Variables whose contents should be preserved over a reset, or even power off, should
be qualified with the persistent qualifier, see Section 3.4.7.1 “Persistent Type
Qualifier”. Such variables are linked at a different area of memory and are not altered
by the runtime startup code in any way.

If this action is required, the code executed will destroy the contents of the STATUS reg-
ister. If the contents of this register, particularly the TO and PD bits are required to
determine the cause of reset, you can choose to have a copy of this register taken so
that it can later be examined. See Section 3.11.1.3 “STATUS Register Preservation”
for more information.

3.11.1.2 CLEARING OBJECTS

Those non-auto objects which are not initialized must be cleared before execution of
the program begins. This task is also performed by the runtime startup code.

Uninitialized variables are those which are not auto objects and which are not
assigned a value in their definition, for example output in the following example.

int output;
void main(void) { ...

Such uninitialized objects will only require space to be reserved in RAM where they will
reside and be accessed during program execution (runtime).

The psects used for storing these components are described in
Section 3.10.1 “Compiler-generated Psects” and typically have a name based on
the initialism “bss” (Block Started by Symbol).

Note: Initialized auto variables can impact on code performance, particularly if
the objects are large in size. Consider using global or static objects
instead.
DS51865B-page 94  2010 Microchip Technology Inc.

C Language Features
The runtime startup code will clear all the memory location occupied by uninitialized
variables so they will contain zero before main() is executed.

Variables whose contents should be preserved over a reset should be qualified with
persistent. See Section 3.4.7.1 “Persistent Type Qualifier” for more information.
Such variables are linked at a different area of memory and are not altered by the run-
time startup code in any way.

If this action is required, the code executed will destroy the contents of the STATUS reg-
ister. If the contents of this register, particularly the TO and PD bits are required to
determine the cause of reset, you can choose to have a copy of this register taken so
that it can later be examined. See Section 3.11.1.3 “STATUS Register Preservation”
for more information.

3.11.1.3 STATUS REGISTER PRESERVATION

The resetbits suboption of the --RUNTIME option (see 2.7.50 “--RUNTIME: Spec-
ify Runtime Environment”) preserves some of the bits in the STATUS register before
being clobbered by the remainder of the runtime startup code. The state of these bits
can be examined after recovering from a reset condition to determine the cause of the
reset.

The entire STATUS register is saved to an assembly variable ___resetbits. This
variable can be accessed from C code using the declaration:

extern unsigned char __resetbits;

The assembly equates ___powerdown and ___timeout represent the bit address of
the powerdown and timeout bits within the STATUS register and can be used if
required. These can be accessed from C code using the declarations:

extern bit __powerdown;
extern bit __timeout;

See Section 2.8 “MPLAB IDE Universal Toolsuite Equivalents” for use of this
option in MPLAB IDE.

3.11.2 The Powerup Routine

Some hardware configurations require special initialization, often within the first few
instruction cycles after reset. To achieve this there is a hook to the reset vector provided
via the powerup routine.

This routine can be supplied in a user-defined assembler module that will be executed
immediately after reset. A template powerup routine is provided in the file powerup.as
which is located in the sources directory of your compiler distribution. Refer to com-
ments in this file for more details.

The file should be copied to your working directory, modified and included into your
project as a source file. No special linker options or other code is required. The compiler
will detect if you have defined a powerup routine and will automatically use it, provided
the code in this routine is contained in a psect called powerup.

For correct operation (when using the default compiler-generated runtime startup
code), the code must end with a GOTO instruction to the label called start. As with all
user-defined assembly code, it must take into consideration program memory paging
and/or data memory banking, as well as any applicable errata issues for the device you
are using. The program’s entry point is already defined by the runtime startup code, so
this should not be specified in the power-up routine with the END directive (if used). See
Section 4.3.9.2 “END” for more information on this assembler directive.
 2010 Microchip Technology Inc. DS51865B-page 95

HI-TECH C® for PIC10/12/16 User’s Guide
3.12 LIBRARY ROUTINES

3.12.0.1 USING LIBRARY ROUTINES

Library functions or routines (and any associated variables) will be automatically linked
into a program once they have been referenced in your source code. The use of a func-
tion from one library file will not include any other functions from that library. Only used
library functions will be linked into the program output and consume memory.

Your program will require declarations for any functions or symbols used from libraries.
These are contained in the standard C header (.h) files. Header files are not library
files and the two files types should not be confused. Library files contain precompiled
code, typically functions and variable definitions; the header files provide declarations
(as opposed to definitions) for functions, variables and types in the library files, as well
as other preprocessor macros.

#include <math.h> // declare function prototype for sqrt

void main(void)
{
 double i;

 // sqrt referenced; sqrt will be linked in from library file
 i = sqrt(23.5);
}

3.12.1 The printf Routine

The code associated with the printf function is not found in the library files. The
printf() function is generated from a special C template file that is customized after
analysis of the user’s C code. See Section “PRINTF, VPRINTF” for more information
on the printf library function.

The template file is found in the lib directory of the compiler distribution and is called
doprnt.c. It contains a minimal implementation of the printf() function, but with
the more advanced features included as conditional code which can be utilized via
preprocessor macros that are defined when it is compiled.

The parser and code generator analyze the C source code, searching for calls to the
printf function. For all calls, the placeholders that were specified in the printf()
format strings are collated to produce a list of the desired functionality of the final func-
tion. The doprnt.c file is then preprocessed with the those macros specified by the
preliminary analysis, thus creating a custom printf() function for the project being
compiled. After parsing, the p-code output derived from doprnt.c is then combined
with the remainder of the C program in the final code generation step.

For example, if a program contains one call to printf(), which looks like:

printf(”input is: %d”);

The compiler will note that only the %d placeholder is used and the doprnt.c module
that is linked into the program will only contain code that handles printing of decimal
integers.

Consider now that the code is changed and another call to printf() is added. The
new call looks like:

printf(”output is %6d”);

Now the compiler will detect that additional code to handle printing decimal integers to
a specific width must be enabled as well.

As more features of printf() are detected, the size of the code generated for the
printf() function will increase.
DS51865B-page 96  2010 Microchip Technology Inc.

C Language Features
If the format string in a call to printf() is not a string literal as above, but is rather a
pointer to a string, then the compiler will not be able to reliably predict the printf()
usage, and so it forces a more complete version of printf() to be generated.

However, even without being able to scan printf() placeholders, the compiler can
still make certain assumptions regarding the usage of the function. In particular, the
compiler can look at the number and type of the additional arguments to printf()
(those following the format string expression) to determine which placeholders could
be valid. This enables the size and complexity of the generated printf() routine to
be kept to a minimum even in this case.

For example, if printf() was called as follows:

printf(myFormatString, 4, 6);

the compiler could determine that, for example, no floating-point placeholders are
required and omit these from being included in the printf() function output. As the
arguments after the format string are non-prototyped parameters, their type must
match that of the placeholders.

No aspect of this operation is user-controllable (other than by adjusting the calls to
printf()), however the actual printf() code used by a program can be observed.
If compiling a program using printf(), the driver will leave behind the pre-processed
version of doprnt.c. This module, called doprnt.pre in your working directory, will
show the C code that will actually be contained in the printf routine. As this code has
been pre-processed, indentation and comments will have been stripped out as part of
the normal actions taken by the C pre-processor.

3.13 MIXING C AND ASSEMBLY CODE

Assembly language code can be mixed with C code using two different techniques:
writing assembly code and placing it into a separate assembler module, or including it
as in-line assembly in a C module. For the latter, there are two formats in which this can
be done, described below.

3.13.1 Integrating Assembly Language Modules

Entire functions may be coded in assembly language as separate .as or .asm source
files included into your project. They will be assembled and combined into the output
image using the linker.

The following are guidelines that must be adhered to when writing a routine in a
C-callable assembly routine.

• Select, or define, a suitable psect for the executable assembly code

• Select a name (label) for the routine using a leading underscore character

• Ensure that the routine’s label is globally accessible from other modules

• Select an appropriate equivalent C prototype for the routine on which argument
passing can be modelled

• Limit arguments and return values to single byte-sized objects (Assembly routines
may not define variables that reside in the compiled stack. Use global variables

Note: The more assembly code a project contains, the more difficult and time con-
suming will be its maintenance. As the project is developed, the compiler
may work in different ways as some optimizations look at the entire pro-
gram. The assembly code is more likely to fail if the compiler is updated due
to differences in the way the updated compiler may work. These factors do
not affect code written in C.
If assembly must be added, it is preferable to write this as self-contained
routine in a separate assembly module rather than in-lining it in C code.
 2010 Microchip Technology Inc. DS51865B-page 97

HI-TECH C® for PIC10/12/16 User’s Guide
for additional arguments.)

• Optionally, use a signature value to enable type checking when the function is
called

• Use bank selection instructions and mask addresses of symbols

•

The following example goes through these steps. A mapping is performed on the
names of all C functions and non-static global variables. See
Section 3.13.3.1 “Equivalent Assembly Symbols” for a complete description of
mappings between C and assembly identifiers.

An assembly routine is required which can add an 8-bit quantity passed to the routine
with the contents of PORTB and return this as an 8-bit quantity.

Most compiler-generated executable code is placed in psects called textn, where n is
a number. (see Section 3.10.1 “Compiler-generated Psects”). We will create our
own text psect based on the psect the compiler uses. Check the assembly list file to
see how the text psects normally appear. You may see a psect such as the following
generated by the code generator.

PSECT text0,local,class=CODE,delta=2

See Section 4.3.9.3 “PSECT” for detailed information on the flags used with the
PSECT assembler directive. This psect is called text0. It is flagged local, which
means that it is distinct from other psects with the same name. It lives in the CODE class.
This flag is important as it means it will be automatically placed in the area of memory
set aside for code. With this flag in place, you do not need to adjust the default linker
options to have the psect correctly placed in memory. The last option, the delta value,
is also very important. This indicates that the memory space in which the psect will be
placed is word addressable (value of 2). The PIC10/12/16 program memory space is
word addressable; the data space is byte addressable.

We simply need to choose a different name, so we might choose the name mytext,
as the psect name in which we will place out routine, so we have:

PSECT mytext,local,class=CODE,delta=2

Let’s assume we would like to call this routine add in the C domain. In assembly
domain we must choose the name _add as this then maps to the C identifier add. If we
had chosen add as the assembly routine, then it could never be called from C code.
The name of the assembly routine is the label that we will place at the beginning of the
assembly code. The label we would use would look like this.

_add:

We need to be able to call this from other modules, some make this label globally
accessible, by using the GLOBAL assembler directive (Section 4.3.9.1 “GLOBAL”).

GLOBAL _add

By compiling a dummy C function with a similar prototype to this assembly routine, we
can determine the signature value. The C-equivalent prototype to this routine would
look like:

int add(int, int);

Check the assembly list file for the signature value of such a function. Signature values
are not mandatory, but allow for additional type checking to be made by the linker. We
determine that the following SIGNAT directive (Section 4.3.9.20 “SIGNAT”) can be
used.

SIGNAT _add,4217

The W register will be used for passing in the argument.
DS51865B-page 98  2010 Microchip Technology Inc.

C Language Features
Here is an example of the complete routine for a Mid-Range device which could be
placed into an assembly file and added to your project. The GLOBAL and SIGNAT direc-
tives do not generator code, and hence do not need to be inside the mytext psect,
although you can place them there if you prefer. The BANKSEL directive and BANKMASK
macro have been used to ensure that the correct bank was selected and that all
addresses are masked to the appropriate size.

#include <aspic.h>

GLOBAL _add ; make _add globally accessible
SIGNAT _add,4217 ; tell the linker how it should be called

; everything following will be placed into the mytext psect
psect mytext,local,class=CODE,delta=2
; our routine to add to ints and return the result
_add:

; W is loaded by the calling function;
BANKSEL (PORTB) ; select the bank of this object
ADDWF BANKMASK(PORTB),w ; add parameter to port
; the result is already in the required location (W)so we can
; just return immediately
RETURN

To compile this, the assembly file must be preprocessed as we have used the C pre-
processor #include directive. See Section 2.7.11 “-P: Preprocess Assembly
Files”.

To call an assembly routine from C code, a declaration for the routine must be provided.
This ensures that the compiler knows how to encode the function call in terms of
parameters and return values.

Here is a C code snippet that declares the operation of the assembler routine, then calls
the routine.

// declare the assembly routine so it can be correctly called
extern unsigned char add(unsigned char a);

void main(void) {
 volatile unsigned char result;

 a = read_port();
 result = add(5); // call the assembly routine
}

3.13.2 #asm, #endasm and asm()

PIC MCU instructions may also be directly embedded “in-line” into C code using the
directives #asm, #endasm or the statement asm();.

The #asm and #endasm directives are used to start and end a block of assembly
instructions which are to be embedded into the assembly output of the code generator.
The #asm block is not syntactically part of the C program, and thus it does not obey
normal C flow-of-control rules. This means that you should not use this form of in-line
assembly inside C constructs like if(), while() and for() statements. However
this is the easiest means of adding multiple assembly instructions.

The asm() statement is used to, typically, embed a single assembler instruction. This
form looks and behaves like a C statement. Only one assembly instruction may be
encapsulated within each asm() statement. You can specify more than one assembly
instruction inside one asm() statement by separating the instructions with a \n char-
acter, (e.g. asm("movlw 55\nmovwf _x");) although code will be more readable if
you one place one instruction in each statement and use multiple statements.
 2010 Microchip Technology Inc. DS51865B-page 99

HI-TECH C® for PIC10/12/16 User’s Guide
You may use the asm(" ") form of in-line assembly at any point in the C source code
as it will correctly interact with all C flow-of-control structures.

The following example shows both methods used:

unsigned int var;

void main(void)
{
 var = 1;
#asm // like this...
 BCF 0,3
 BANKSEL(_var)
 RLF (_var)&07fh
 RLF (_var+1)&07fh
#endasm
 // do it again the other way...
 asm("BCF 0,3");
 asm("BANKSEL _fvar");
 asm("RLF (_var)&07fh");
 asm("RLF (_var+1)&07fh");
}

When using in-line assembler code, great care must be taken to avoid interacting with
compiler-generated code. The code generator cannot scan the assembler code for reg-
ister usage and so will remain unaware if registers are clobbered or used by the assem-
bly code.

If you are in doubt as to which registers are being used in surrounding code, compile
your program with the --ASMLIST option (see Section 2.7.17 “--ASMLIST: Generate
Assembler List Files”) and examine the assembler code generated by the compiler.
Remember that as the rest of the program changes, the registers and code strategy
used by the compiler will change as well.

3.13.3 Accessing C objects from within Assembly Code

The following sections apply to both separate assembly modules, and assembly in-line
with C code.

3.13.3.1 EQUIVALENT ASSEMBLY SYMBOLS

Most C symbols map to an corresponding assembly equivalent.

The name of a C function maps to an assembler label that will have the same name,
but with an underscore prepended. So the function main() will define an assembly
label _main.

This mapping is such that an ordinary symbol defined in the assembly domain cannot
interfere with an ordinary symbol in the C domain. So for example, if the symbol main
is defined in the assembly domain, it is quite distinct to the main symbol used in C code
and they refer to different locations.

If the C function is qualified static, and there is more than one function in the program
with exactly the same name, the name of the first function will map to the usual assem-
bly symbol and the subsequent functions will map to a special symbol of the form:
fileName@functionName, where fileName is the name of the file that contains the
function, and functionName is the name of the function.

For example a program contains the definition for two static functions, both called
add. One lives in the file main.c and the other in lcd.c. The first function will gen-
erate an assembly label _add. The second will generate the label lcd@add.
DS51865B-page 100  2010 Microchip Technology Inc.

C Language Features
The name of a non-auto C variable also maps to an assembler label that will have the
same name, but with an underscore prepended. So the variable result will define an
assembly label: _result.

If the C variable is qualified static, there, again, is a chance that there could be more
than one variable in the program with exactly the same C name. The same rules apply
to variables as to functions. The name of the first variable will map to a special symbol
prepended with an underscore; the subsequent symbols will have the form: file-
Name@variableName, where fileName is the name of the file that contains the vari-
able, and variableName is the name of the variable.

For example a program contains the definition for two static variables, both called
result. One lives in the file main.c and the other in lcd.c. The first function will
generate an assembly label _result. The second will generate the label
lcd@result.

If there is more than one static function with the same name, and they contain defi-
nitions for static variables of the same name, then the assembly symbol used for
these variables will be of the form: fileName@functionName@variableName.

To make accessing of parameter and auto variables easier, special equates are
defined which map a unique symbol to each variable. The symbol has the form: func-
tionName@variableName. Thus, if the function main defines an auto variable
called foobar, the symbol main@foobar can be used in assembly code to access
this C variable.

3.13.3.2 ACCESSING REGISTERS FROM ASSEMBLY CODE

If writing separate assembly modules, SFR definitions will not automatically be acces-
sible. The assembly header file <aspic.h> can be used to gain access to these reg-
ister definitions. Do not use this file for assembly in-line with C code as it will clash with
definitions in <htc.h>.

Include the file using the assembler’s INCLUDE directive, (see
Section 4.3.10.3 “INCLUDE”) or use the C preprocessor’s #include directive. If you
are using the latter method, make sure you compile with the -P driver option to prepro-
cess assembly files, see Section 2.7.11 “-P: Preprocess Assembly Files”.

The symbols in this header file look similar to the identifiers used in the C domain when
including <htc.h>, e.g. PORTA, EECON1 etc. They are different symbols in different
domains, but will map to the same memory location.

Bits within registers are defined as the registerName,bitNumber. So for example,
RA0 is defined as PORTA,0.

Here is an example of an assembly module that uses SFRs.

#include <aspic.h>
GLOBAL _setports

PSECT text,class=CODE,local,delta=2
_setports:

MOVLW 0xAA
BANKSEL (PORTA)
MOVWF BANKMASK(PORTA)
BANKSEL (PORTB)
BSF RB1

If you wish to access register definitions from assembly that is in-line with C code, a
different header file is available for this purpose. Include the header file <caspic.h>
into the assembly code.
 2010 Microchip Technology Inc. DS51865B-page 101

HI-TECH C® for PIC10/12/16 User’s Guide
The symbols used for register names will be the same as those defined by
<aspic.h>; however, the names assigned to bit variables within the registers will
include the suffix _bit. So for example, the example given previously could be rewrit-
ten as in-line assembly as follows.

#asm
MOVLW 0xAA
BANKSEL (PORTA)
MOVWF BANKMASK(PORTA)
BANKSEL (PORTB)
BSF RB1_bit

#endasm

3.13.4 Interaction between Assembly and C Code

HI-TECH C Compiler for PIC10/12/16 MCUs incorporates several features designed to
allow C code to obey requirements of user-defined assembly code.

The command-line driver ensures that all user-defined assembly files have been pro-
cessed first, before compilation of C source files begin. The driver is able to read and
analyze certain information in the relocatable object files and pass this information to
the code generator. This information is used to ensure the code generator takes into
account requirement of the assembly code.

See Section 2.3.4 “Compilation of Assembly Source” for further information on the
compile sequence.

3.13.4.1 ABSOLUTE PSECTS

Some of the information that is extracted from the relocatable objects relates to abso-
lute psects, specifically psects defined using the abs and ovrld, PSECT flags, see
Section 4.3.9.3 “PSECT” for information on this directive.

HI-TECH C is able to determine the address bounds of absolute psects and uses this
information to ensure that the code produced by the code generator does not use mem-
ory required by the assembly code. The code generator will reserve any memory used
by the assembly code.

Here is an example of how this works. An assembly code files defines a table that must
be located at address 0x110 in the data space. The assembly file contains:

PSECT lkuptbl,class=RAM,space=1,abs,ovlrd
ORG 110h
lookup:
 DS 20h

An absolute psect always starts at address 0. For such psects, you can specify a
non-zero starting address by using the ORG directive. See Section 4.3.9.4 “org” for
important information on this directive.

When the project is compiled, this file is assembled and the resulting relocatable object
file scanned for absolute psects. As this psect is flagged as being abs and ovlrd, the
bounds and space of the psect will be noted — in this case a memory range from
address 0x110 to 0x12F in memory space 1 is being used. This information is passed
to the code generator to ensure that this address range are not used by the C code.

The linker handles all of the allocation into program memory, and so only the psects
located in data memory need be defined in this way.

3.13.4.2 UNDEFINED SYMBOLS

If a variable needs to be accessible from both assembly and C source code, it can be
defined in assembly code, if required, but it is easier to do so in C source code.
DS51865B-page 102  2010 Microchip Technology Inc.

C Language Features
A problem could occur if there is a variable defined in C source, but is only ever refer-
enced in the assembly code. In this case, the code generator would remove the vari-
able believing it is unused. The linker would be unable to resolve the symbol referenced
by the assembly code and an error will result.

To work around this issue, HI-TECH C also searches assembly-derived object files for
symbols which are undefined. These will be symbols that are used, but not defined, in
assembly code. The code generator is informed of these symbols, and if they are
encountered in the C code, the variable is automatically marked as being volatile.
This action has the same effect as qualifying the variable volatile in the source
code, see Section 3.4.6.2 “Volatile Type Qualifier”.

Variables qualified as volatile will never be removed by the code generator, even if
they appear to be unused throughout the program.

For example, if a C program defines a global variable as follows:

int input;

but this variable is only ever used in assembly code. The assembly module(s) can
simply declare this symbol using the GLOBAL assembler directive, and then use it.

GLOBAL _input, _raster
PSECT text,local,class=CODE,delta=2
_raster:

MOVF _input,w

The compiler knows of the mapping between the C symbol input, and the corre-
sponding assembly symbol _input (see Section 3.13.3.1 “Equivalent Assembly
Symbols”). In this instance the C variable input will not be removed and be treated
as if it was qualified volatile.

3.14 OPTIMIZATIONS

The optimizations in HI-TECH C compiler can broadly be broadly grouped into:

C-level optimizations performed on the source code before conversion into assem-
bly; and

Assembly-level optimizations performed on the assembly code generated by the
compiler

Of the C-level optimizations, these can be considered as those that:

• Simplify or change the C expressions; and

• Allocate variables to registers

An example of where the code expression may be simplified is this: Consider if the orig-
inal C code read:

a = b + c;

but the compiler is able to determine that the variable c at this point will always hold the
value 5. The code expression is essentially changed so that it reads:

a = b + 5;

This may result in more efficient code after it is built by the compiler. These sorts of opti-
mizations are inherent in the compilation process and cannot be disabled. They may
reduce both code and data size.

Allocation of variables to registers is performed after analyzing the assembly code that
is initially generated from the C code. Registers can typically be accessed with less
code compared to reading from memory.
 2010 Microchip Technology Inc. DS51865B-page 103

HI-TECH C® for PIC10/12/16 User’s Guide
Those registers which are unused for each C statement are noted. Variables are allo-
cated an available register while it is unused. The cost associated with moving the vari-
able from memory to a register is considered before the move takes place. The code
is then recompiled, but this time with the variables residing in their allocated registers.
The process repeats until no more registers are available.

A variable may move from one register to another within a function; it may spend some
of its duration in a register and some in its allocated memory location, or its entire dura-
tion in a register.

The global optimization level may have some impact on the register allocation. The
level of this optimizer (1-9) affects how hard the compiler tries to force variables into
registers. Note that even if the global optimizer is disabled, there may still be use of reg-
isters for variables in a program. For 8-bit PIC devices the global optimizer has a very
limited effect and often it makes little difference to code or data size.

As C-level optimizations are performed before debug information is produced, they
tend to have less impact on debugging information. Note, however, if a variable is
located in a register IDEs, such as MPLAB IDE, may indicate incorrect values in their
Watch view. This is due to a limitation in the file format used to pass debug information
to the IDE (which is currently COFF). Check the assembly list file to see if registers are
using in the routine being debugged.

Of the assembler optimizations, the actions performed include:

• In-lining of small routines

• Procedural abstraction

• Jump-to-jump type optimizations

• Peephole optimizations

These optimizations can often interfere with debugging in tools such as MPLAB IDE
and it may be necessary to disable them, if possible. The assembler optimizations can
drastically reduce code size, although typically have little effect on RAM usage.

3.15 PREPROCESSING

All C source files are preprocessed before compilation. The preprocessed file is always
left behind and will have a .pre extension and the same base name as the source file
from which it is derived.

The --PRE option can be used to preprocess and then stop the compilation. See
Section 2.7.46 “--PRE: Produce Preprocessed Source Code”.

Assembler files can also be preprocessed if the -P driver option is issued. See
Section 2.7.11 “-P: Preprocess Assembly Files”.

3.15.1 Preprocessor Directives

HI-TECH C accepts several specialized preprocessor directives in addition to the
standard directives. All of these are listed in Table 3-10.

Macro expansion using arguments can use the # character to convert an argument to
a string, and the ## sequence to concatenate arguments.

TABLE 3-10: PREPROCESSOR DIRECTIVES

Directive Meaning Example

Preprocessor null directive, do nothing

#assert Generate error if condition false #assert SIZE > 10

#asm Signifies the beginning of in-line
assembly

#asm MOVLW FFh
#endasm
DS51865B-page 104  2010 Microchip Technology Inc.

C Language Features
The type and conversion of numeric values in the preprocessor domain is the same as
in the C domain. Preprocessor values do not have a type, but acquire one as soon as
they are converted by the preprocessor. Expressions may overflow their allocated type
in the same way that C expressions may overflow.

Overflow may be avoided by using a constant suffix. For example, an L after the num-
ber indicates it should be interpreted as a long once converted.

So for example

#define MAX 1000*1000

and

#define MAX 1000*1000L

will define the values 0x4240 and 0xF4240, respectively.

#define Define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif Short for #else #if see #ifdef

#else Conditionally include source lines see #if

#endasm Terminate in-line assembly see #asm

#endif Terminate conditional source inclusion see #if

#error Generate an error message #error Size too big

#if Include source lines if constant
expression true

#if SIZE < 10
 c = process(10)
#else
 skip();
#endif

#ifdef Include source lines if preprocessor
symbol defined

#ifdef FLAG
 do_loop();
#elif SIZE == 5
 skip_loop();
#endif

#ifndef Include source lines if preprocessor
symbol not defined

#ifndef FLAG
 jump();
#endif

#include Include text file into source #include <stdio.h>
#include "project.h"

#line Specify line number and filename for
listing

#line 3 final

#nn (Where nn is a number) short for
#line nn

#20

#pragma Compiler specific options Refer to Section 3.15.3 “Pragma
Directives”

#undef Undefines preprocessor symbol #undef FLAG

#warning Generate a warning message #warning Length not set

TABLE 3-10: PREPROCESSOR DIRECTIVES (CONTINUED)

Directive Meaning Example
 2010 Microchip Technology Inc. DS51865B-page 105

HI-TECH C® for PIC10/12/16 User’s Guide
3.15.2 Predefined Macros

The compiler drivers define certain symbols to the preprocessor, allowing conditional
compilation based on chip type etc. The symbols listed in Table 3-11 show the more
common symbols defined by the drivers.

TABLE 3-11: PREDEFINED MACROS

Symbol When set Usage

HI_TECH_C Always To indicate that the compiler in
use is HI-TECH C® compiler.

_HTC_VER_MAJOR_ Always To indicate the integer compo-
nent of the compiler’s version
number.

_HTC_VER_MINOR_ Always To indicate the decimal compo-
nent of the compiler’s version
number.

_HTC_VER_PATCH_ Always To indicate the patch level of the
compiler’s version number.

_HTC_EDITION_ Always Indicates which of PRO, Standard
or Lite compiler is in use. Values
of 2, 1 or 0 are assigned
respectively.

__PICC__ Always Indicates HI-TECH compiler for
Microchip PIC10/12/16 in use.

MPC Always Indicates compiling for Microchip
PIC® MCU family.

_PIC12 If Baseline (12-bit) device To indicate selected device is a
baseline PIC devices.

_PIC14 If Mid-Range (14-bit) device To indicate selected device is a
Mid-Range PIC devices.

_PIC14E If Enhanced Mid-Range (14 bit)
device

To indicate selected device is an
Enhanced Mid-Range PIC
devices.

COMMON If common RAM present To indicate whether device has
common RAM area.

BANKBITS Always Assigned 0, 1 or 2 to indicate 1, 2
or 4 available banks or RAM.

GPRBITS Always Assigned 0, 1 or 2 to indicate 1, 2
or 4 available banks or general
purpose RAM.

__MPLAB_ICDX__ If compiling for MPLAB® ICD or
MPLAB ICD 2/3 debugger

(where X is empty, 2 or 3.
Assigned 1 to indicate that the
code is generated for use with the
Microchip MPLAB ICD,ICD 2 or
ICD 3.

MPLAB_ICD If compiling for MPLAB® ICD or
MPLAB ICD 2/3 debugger

 Assigned 1 to indicate that the
code is generated for use with the
Microchip MPLAB ICD 1.
Assigned 2 for MPLAB ICD 2; 3
for MPLAB ICD 3.

__MPLAB_PICKITX__ If compiling for MPLAB® PICKIT
2/3

 Assigned 1 to indicate that the
code is generated for use with the
Microchip MPLAB PICKIT 2 or
PICKIT 3
DS51865B-page 106  2010 Microchip Technology Inc.

C Language Features
Each symbol, if defined, is equated to 1 unless otherwise stated.

3.15.3 Pragma Directives

There are certain compile-time directives that can be used to modify the behavior of the
compiler. These are implemented through the use of the ANSI standard #pragma
facility. The format of a pragma is:

#pragma keyword options

where keyword is one of a set of keywords, some of which are followed by certain
options. A list of the keywords is given in Table 3-12. Those keywords not discussed
elsewhere are detailed below.

__MPLAB_REALICE__ If compiling for MPLAB®
REALICE

 Assigned 1 to indicate that the
code is generated for use with the
Microchip MPLAB REALICE.

_ROMSIZE Always To indicate how many words of
program memory are available.

_EEPROMSIZE Always To indicate how many bytes of
EEPROM are available.

_CHIPNAME When chip selected To indicate the specific chip type
selected, e.f. _16F877

__FILE__ Always To indicate this source file being
preprocessed.

__LINE__ Always To indicate this source line
number.

__DATE__ Always To indicate the current date, e.g.
May 21 2004

__TIME__ Always To indicate the current time, e.g.
08:06:31.

TABLE 3-12: PRAGMA DIRECTIVES

Directive Meaning Example

inline Specify function is inline #pragma inline(fabs)

interrupt_level Allow call from interrupt
and main-line code

#pragma interrupt_level 1

pack Specify structure packing #pragma pack 1

printf_check Enable printf-style format
string checking

#pragma
printf_check(printf) const

psect Rename compiler-gener-
ated psect

#pragma psect
nvBANK0=my_nvram

regsused Specify registers used by
function

#pragma regsused wreg,fsr

switch Specify code generation for
switch statements

#pragma switch direct

warning Control messaging
parameters

#pragma warning disable
299,407

TABLE 3-11: PREDEFINED MACROS (CONTINUED)

Symbol When set Usage
 2010 Microchip Technology Inc. DS51865B-page 107

HI-TECH C® for PIC10/12/16 User’s Guide
3.15.3.1 THE #PRAGMA INLINE DIRECTIVE

The #pragma inline directive is used to indicate to the compiler that a function will
be inlined. The directive is only usable with special functions that the code generator
will handle specially, e.g the _delay function.

3.15.3.2 THE #PRAGMA INTERRUPT_LEVEL DIRECTIVE

The #pragma interrupt_level directive can be used to prevent function duplica-
tion of functions called from main-line and interrupt code. See
Section 3.9.5.1 “Disabling Duplication” for more information.

3.15.3.3 THE #PRAGMA PACK DIRECTIVE

Some MCUs requires word accesses to be aligned on word boundaries. Consequently
the compiler will align all word or larger quantities onto a word boundary, including
structure members. This can lead to “holes” in structures, where a member has been
aligned onto the next word boundary.

This behavior can be altered with this directive. Use of the directive #pragma pack 1
will prevent any padding or alignment within structures. Use this directive with caution
- in general if you must access data that is not aligned on a word boundary you should
do so by extracting individual bytes and re-assembling the data. This will result in por-
table code. Note that this directive must not appear before any system header file, as
these must be consistent with the libraries supplied.

PIC10/12/16 devices can only perform byte accesses to memory and so do not require
any alignment of memory objects. This pragma will have no effect when used.

3.15.3.4 THE #PRAGMA PRINTF_CHECK DIRECTIVE

Certain library functions accept a format string followed by a variable number of argu-
ments in the manner of printf(). Although the format string is interpreted at runtime,
it can be compile-time checked for consistency with the remaining arguments.

This directive enables this checking for the named function, for example the system
header file <stdio.h> includes the directive:

#pragma printf_check(printf) const

to enable this checking for printf(). You may also use this for any user-defined
function that accepts printf -style format strings.

The qualifier following the function name is to allow automatic conversion of pointers in
variable argument lists. The above example would cast any pointers to strings in RAM
to be pointers of the type (const char *)

Note that the warning level must be set to -1 or below for this option to have any visible
effect. See Section 2.7.59 “--WARN: Set Warning Level”.

3.15.3.5 THE #PRAGMA PSECT DIRECTIVE

Normally the object code generated by the compiler is broken into the standard psects
as described in 3.10.1 “Compiler-generated Psects”. This is fine for most applica-
tions, but sometimes it is necessary to redirect variables or code into different psects
when a special memory configuration is desired.

Some code and data compiler-generated psects may be redirected using a #pragma
psect directive. The general form of this pragma looks like:

#pragma psect standardPsect=newPsect

Note: Use of this pragma with a user-defined function does not mean that function
will be in-lined.
DS51865B-page 108  2010 Microchip Technology Inc.

C Language Features
and instructs the code generator that anything that would normally appear in the stan-
dard psect standardPsect, will now appear in a new psect called newPsect. This
psect will be identical to standardPsect in terms of its flags and attributes, however
will have a unique name. Thus, you can explicitly position this new psect without
affecting the placement of anything in the original psect.

If the name of the standard psect that is being redirected contains a counter, e.g.
text0, text1, text2 etc, then the placeholder %%u should be used in the name of
the psect at the position of the counter, e.g. text%%u. This will match any psect,
regardless of the counter value. For example, to remap a C function, you could use:

#pragma psect text%%u=lookupfunc
int lookup(char ind)
{
 ...

Standard psects that make reference to a bank number are not using a counter and do
not need the placeholder to match. For example, the redirect an uninitialized variable
from bank 1 memory, use:

#pragma psect bssBANK1=sharedObj
int foobar;

This pragma should not be used for any of the data psects (data or idata) that hold
initialized variables. These psects must be assembled in a particular order and the use
of this pragma to redirect some of their content will destroy this order. Use of this
pragma with RAM-based psects that are intended to be linked into a particular RAM
bank is acceptable, but the new psect must be linked into the same bank. Linking the
new psect to a different bank may lead to code failure.

This pragma affects the entire module in which it is located, regardless of the position
of the pragma in the file. Any given psect should only be redirected once in a particular
module. That is, you cannot redirect the standard psect for some of the module, then
swap back to using the standard psect for the remainder of the source code. The
pragma should typically be placed at the top of the source file. It is recommended that
the code or variables to be separated be placed in a source file all to themselves so
they are easily distinguished.

To determine the psect in which the function or object is normally located, define the
function or object in the usual way and without this pragma. Now check the assembly
list file (see 4.4 “Assembly List Files”) to determine in which psect the function or
object is normally positioned.

Check either the assembly list file or the map file with the pragma in place to ensure
that the mapping has worked as expected and that the function or variable has been
linked at the address specified.

Variables can also be placed at specific positions by making them absolute, see
Section 3.5.4 “Absolute Variables”. The same is also true for functions. See
3.8.3 “Changing the Default Function Allocation”. The decision whether functions
or variables should be positioned using absolutes or via the psect pragma should be
based on the location requirements.

Using absolute functions and variables is the easiest method, but only allows place-
ment at an address which must be known prior to compilation. The psect pragma is
more complex, but offers all the flexibility of the linker to position the new psect into
memory. For example, you can specify that functions or variables reside at a fixed
address, or that they be placed after other psects, or that the psect be placed anywhere
in a compiler-defined or user-defined range of address. See Chapter 5. “Linker” for
the features and options available when linking. See also 2.7.7 “-L-: Adjust Linker
Options Directly” for information on controlling the linker from the driver or in MPLAB
IDE.
 2010 Microchip Technology Inc. DS51865B-page 109

HI-TECH C® for PIC10/12/16 User’s Guide
3.15.3.6 THE #PRAGMA REGSUSED DIRECTIVE

The #pragma regsused directive allows the programmer to indicate register usage
for functions that will not be “seen” by the code generator, for example if they were writ-
ten in assembly code. It has no effect when used with functions defined in C code, but
in these cases the register usage of these functions can be accurately determined by
the compiler and the pragma is not required.

The compiler will determine only those registers and objects which need to be saved
for an interrupt function defined and use of this pragma allows the code generator
to also determine register usage for routines written in assembly code.

The general form of the pragma is:

#pragma regsused routineName registerList

where routineName is the C equivalent name of the function or routine whose register
usage is being defined, and registerList is a space-separated list of registers
names, as shown in Table 3-13.

Those registers not listed are assumed to be unused by the function or routine. The
code generator may use any of these registers to hold values across a function call.
Hence, if the routine does in fact use these registers, unreliable program execution may
eventuate.

The register names are not case sensitive and a warning will be produced if the register
name is not recognized. A blank list indicates that the specified function or routine uses
no registers.

For example, a routine called _search is written in assembly code. In the C source,
we may write:

extern void search(void);
#pragma regsused search wreg status fsr0

to indicate that this routine used the W register, STATUS and FSR0.

3.15.3.7 THE #PRAGMA SWITCH DIRECTIVE

Normally, the compiler chooses how switch statements will be encoded to produce
the smallest possible code size. The #pragma switch directive can be used to force
the compiler to use a different coding strategy.

The general form of the switch pragma is:

#pragma switch switchType

where switch_type is one of the available switch methods listed in Table 3-14.

TABLE 3-13: VALID REGISTER NAMES

Register Name Description

fsr0, fsr0l, fsr0h Indirect data pointer

fsr1, fsr1l, fsr1h Indirect data pointer

wreg The working register

status The status register

TABLE 3-14: SWITCH TYPES

switch type description

speed Use the fastest switch method

space Use the smallest code size method

time Use a fixed delay switch method

auto Use smallest code size method (default)
DS51865B-page 110  2010 Microchip Technology Inc.

C Language Features
Specifying the time option to the #pragma switch directive forces the compiler to
generate the table look-up style switch method. The time taken to execute each case
is the same, so this is useful where timing is an issue, e.g state machines.

This pragma affects all subsequent code.

The auto option may be used to revert to the default behavior.

3.15.3.8 THE #PRAGMA WARNING DIRECTIVE

This pragma allows control over some of the compiler’s messages, such as warnings
and errors. For full information on the massaging system employed by the compiler,
see Section 2.6 “Compiler Messages”.

3.15.3.8.1 The Warning Disable Pragma

Some warning messages can be disabled by using the warning disable pragma.

This pragma will only affect warnings that are produced by the parser or the code gen-
erator, i.e. errors directly associated with C code. The position of the pragma is only
significant for the parser, i.e. a parser warning number may be disabled for one section
of the code to target specific instances of the warning. Specific instances of a warning
produced by the code generator cannot be individually controlled and the pragma will
remain in force during compilation of the entire module.

The state of those warnings which have been disabled can preserved and recalled
using the warning push and warning pop pragmas. Pushes and pops can be
nested to allow a large degree of control over the message behavior.

The following example shows the warning associated with assigning the address of a
const object to a pointer to non-const objects. Such code normally produces warning
number 359.

int readp(int * ip) {
 return *ip;
}

const int i = 'd';

void main(void) {
 unsigned char c;
#pragma warning disable 359
 readp(&i);
#pragma warning enable 359
}

This same affect would be observed using the following code.

#pragma warning push
#pragma warning disable 359
 readp(&i);
#pragma warning pop

Here the state of the messaging system is saved by the warning push pragma.
Warning 359 is disabled, then after the source code which triggers the warning, the
state of the messaging system is retrieved by using the warning pop pragma.

3.15.3.8.2 The Warning Error/warning Pragma

It is also possible to change the type of some messages.

direct (deprecated) Use a fixed delay switch method

simple (deprecated) Sequential xor method

TABLE 3-14: SWITCH TYPES (CONTINUED)

switch type description
 2010 Microchip Technology Inc. DS51865B-page 111

HI-TECH C® for PIC10/12/16 User’s Guide
This is only possible by the use of the warning pragma and only affects messages
generated by the parser or code generator. The position of the pragma is only signifi-
cant for the parser, i.e. a parser message number may have its type changed for one
section of the code to target specific instances of the message. Specific instances of a
message produced by the code generator cannot be individually controlled and the
pragma will remain in force during compilation of the entire module.

The following shows the warning produced in the previous example being converted to
an error for the instance in the function main().

void main(void) {
 unsigned char c;
#pragma warning error 359
 readp(&i);
}

Compilation of this code would result in an error, not the usual warning. The error will
force compilation to cease after the current module has concluded, or immediately if
the maximum error count has been reached.

3.16 LINKING PROGRAMS

The compiler will automatically invoke the linker unless the compiler has been
requested to stop after producing an intermediate file.

The linker will run with options that are obtained from the command-line driver. These
options specify the memory of the device and how the psects should be placed in the
memory. No linker scripts are used.

The linker options passed to the linker can be adjusted by the user, but this is only
required in special circumstances. See Section 2.7.7 “-L-: Adjust Linker Options
Directly” for more information.)

The linker creates a map file which details the memory assigned to psects and some
objects within the code. The map file is the best place to look for memory information.
See Section 5.4 “Map Files” for a detailed explanation of the detailed information in
this file.

3.16.1 Replacing Library Modules

The HI-TECH C compiler comes with a librarian, LIBR, which allows you to unpack a
library file and replace modules with your own modified versions. See
Section 6.2 “Librarian”. However, you can easily replace a library module that is
linked into your program without having to do this.

If you add to your project a source file which contains the definition for a routine with
the same name as a library routine, then the library routine will be replaced by your rou-
tine. This works due to the way the compiler scans source and library files.

When trying to resolve a symbol (a function name, or variable name, for example) the
compiler first scans all the source modules for the definition. Only if it cannot resolve
the symbol in these files does it then search the library files.

If the symbol is defined in a source file, the compiler will never actually search the librar-
ies for this symbol and no error will result even if the symbol was present in the library
files. This may not be true if a symbol is defined twice in source files and an error may
result if there is a conflict in the definitions.

All libraries are written C code, and the p-code libraries that contain these library rou-
tines are actually passed to the code generator, not the linker, but both these applica-
tions work in the way described above in resolving library symbols.
DS51865B-page 112  2010 Microchip Technology Inc.

C Language Features
You cannot replace a C library function with an equivalent written in assembly code
using the above method. If this is required, you will need to use the librarian to edit or
create a new library file.

3.16.2 Signature Checking

The compiler automatically produces signatures for all functions. A signature is a 16-bit
value computed from a combination of the function’s return data type, the number of its
parameters and other information affecting the calling sequence for the function. This
signature is output in the object code of any function referencing or defining the
function.

At link time the linker will report any mismatch of signatures. HI-TECH C is only likely
to issue a mismatch error from the linker when the routine is either a precompiled object
file or an assembly routine. Other function mismatches are reported by the code
generator.

It is sometimes necessary to write assembly language routines which are called from
C using an extern declaration. Such assembly language functions should include a
signature which is compatible with the C prototype used to call them. The simplest
method of determining the correct signature for a function is to write a dummy C func-
tion with the same prototype and check the assembly list file using the --ASMLIST
option (see Section 2.7.17 “--ASMLIST: Generate Assembler List Files”).

For example, suppose you have an assembly language routine called _widget which
takes two int arguments and returns a char value. The prototype used to call this
function from C would be:

extern char widget(int, int);

Where a call to _widget is made in the C code, the signature for a function with two
int arguments and a char return value would be generated. In order to match the cor-
rect signature, the source code for widget needs to contain an assembler SIGNAT
directive which defines the same signature value. To determine the correct value, you
would write the following code:

char widget(int arg1, int arg2)
{
}

The resultant assembler code seen in the assembly list file includes the following line:

SIGNAT _widget,8249

The SIGNAT directive tells the assembler to include a record in the .obj file which
associates the value 8249 with symbol _widget. The value 8249 is the correct signa-
ture for a function with two int arguments and a char return value.

If this directive is copied into the assembly source file which contains the _widget
code, it will associate the correct signature with the function and the linker will be able
to check for correct argument passing.

If a C source file contains the declaration:

extern char widget(long);

then a different signature will be generated and the linker will report a signature
mis-match which will alert you to the possible existence of incompatible calling
conventions.

3.16.3 Linker-Defined Symbols

The linker defines some special symbols that can be used to determine where some
psects where linked in memory. These symbols can be used in code, if required.
 2010 Microchip Technology Inc. DS51865B-page 113

HI-TECH C® for PIC10/12/16 User’s Guide
The link address of a psect can be obtained from the value of a global symbol with
name __Lname where name is the name of the psect. For example, __LbssBANK0 is
the low bound of the bssBANK0 psect.

The highest address of a psect (i.e. the link address plus the size) is represented by
the symbol __Hname.

If the psect has different load and link addresses, the load start address is represented
by the symbol __Bname.

Not all psects are assigned these symbols, in particular those that are not placed in
memory by a -P linker option (not driver option). See Section 5.2.18 “-Pspec”. Psect
names may change from one device to another.

Assembly code can use these symbol by globally declaring them, for example:

GLOBAL __Lidata
DS51865B-page 114  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Chapter 4. Macro Assembler
The macro assembler included with HI-TECH C PRO for PIC10/12/16 MCU Family
assembles source files for PIC 10/12/14/16/17 MCUs. This chapter describes the
usage of the assembler and the directives (assembler pseudo-ops and controls)
accepted by the assembler in the source files.

Although the term “assembler” is almost universally used to describe the tool which
converts human-readable mnemonics into machine code, both “assembler” and
“assembly” are used to describe the source code which such a tool reads. The latter is
more common and is used in this manual to describe the language. Thus you will see
the terms assembly language (or just assembly), assembly listing and etc, but
assembler options, assembler directive and assembler optimizer.

4.1 ASSEMBLER USAGE

The assembler is called ASPIC and is available to run on Windows, Linux and Mac OS
X systems. Note that the assembler will not produce any messages unless there are
errors or warnings — there are no “assembly completed” messages.

Typically the command-line driver, PICC, is used to invoke the assembler as it can be
passed assembler source files as input, however the options for the assembler are sup-
plied here for instances where the assembler is being called directly, or when they are
specified using the command-line driver option --SETOPTION, see
Section 2.7.53 “--SETOPTION: Set The Command-line Options for Application”.

The usage of the assembler is similar under all of available operating systems. All com-
mand-line options are recognized in either upper or lower case. The basic command
format is shown:

ASPIC [options] file

files is a space-separated list of one or more assembler source files. Where more
than one source file is specified, the assembler treats them as a single module, i.e. a
single assembly will be performed on the concatenation of all the source files specified.
The files must be specified in full, no default extensions or suffixes are assumed.

options is an optional space-separated list of assembler options, each with a minus
sign - as the first character in the case of single letter options, or two minus signs in
the case of multi-letter options. The assembler options must be specified on the
command line before any files.
 2010 Microchip Technology Inc. DS51865B-page 115

HI-TECH C® for PIC10/12/16 User’s Guide
A full list of possible options is given in Table 4-1, and a full description of each option
follows.

4.2 OPTIONS

The command line options recognized by ASPIC are described in the followings
sections.

4.2.1 -A: Generate Assembly File

An assembler file will be produced if this option is used rather than the usual object file
format. This is useful when checking the optimized assembler produced using the -O
optimization option.

By default the output file will an extension .opt, unless the -Ooutfile output option
is used to specify another name.

4.2.2 -C: Produce Cross Reference File

A cross reference file will be produced when this option is used. The cross reference
file, called srcfile.crf, where srcfile is the base portion of the first source file
name, will contain raw cross reference information. The cross reference utility CREF
must then be run to produce the formatted cross reference listing. See
Section 6.4 “Cref” for more information on this application.

TABLE 4-1: ASPIC COMMAND-LINE OPTIONS

Option Meaning Default

-A Produce assembler output Produce object code

-C Produce cross-reference file No cross reference

-Cchipinfo Define the chipinfo file dat\picc.ini

-E[file | digit] Set error destination/format

-Flength Specify listing page length 66

-H Output HEX values for
constants

Decimal values

-I List macro expansions Don’t list macros

-L[listfile] Produce listing No listing

-N Disable merging optimizations Merging optimizations enabled

-O Perform optimization No optimization

-Ooutfile Specify object name srcfile.obj

-R Specify non-standard ROM

-Twidth Specify listing page width 80

-V Produce line number info No line numbers

-VER=version Specify full version information
for list file title

-Wlevel Set warning level threshold 0

-X No local symbols in OBJ file

--CHIP=device Specify device name

--DISL=list Specify disabled messages No message disabled

--EDF=path Specify message file location

--EMAX=number Specify maximum number of
errors

10

--OPT=optimization Specify optimization type

-VER Print version number and stop
DS51865B-page 116  2010 Microchip Technology Inc.

Macro Assembler
4.2.3 -C: Specify Chip Info File

Specify the chipinfo file to use. The chipinfo file is called picc.ini and can be found
in the dat directory in the compiler’s installation directory. This file specifies information
about the currently selected device.

4.2.4 -E: Specify Error Format/File

The default format for an error message is in the form:

filename: line: message

where the error of type message occurred on line line of the file filename. The

-E option with no argument will make the assembler use an alternate format for error
and warning messages.

Specifying a filename as argument will force the assembler to direct error and warning
messages to a file with the name specified.

4.2.5 -F: Specify Page Length

By default the assembly listing format is pageless, i.e. the assembler listing output is
continuous. The output may be formatted into pages of varying lengths. Each page will
begin with a header and title, if specified.

The -F option allows a page length to be specified. A zero value of length implies
pageless output. The length is specified in a number of lines.

4.2.6 -H: Print Hexadecimal Constant

This option specifies that output constants should be shown as hexadecimal values
rather than decimal values. This option affects both the assembly list file, as well as
assembly output, when requested.

4.2.7 -I: List Macro Expansions

This option forces listing of macro expansions and unassembled conditionals which
would otherwise be suppressed by a NOLIST assembler control, see
Section 4.3.10 “Assembler Controls”. The -L option is still necessary to produce an
actual listing output.

4.2.8 -L: Generate an Assembly Listing

This option requests the generation of an assembly listing file. If listfile is specified
then the listing will be written to that file, otherwise it will be written to the standard
output.

This option is applied if compiling using PICC, the command-line driver and the
--ASMLIST driver option, see Section 2.7.17 “--ASMLIST: Generate Assembler
List Files”.

4.2.9 -O: Optimize assembly

This requests the assembler to perform optimization on the assembly code. Note that
the use of this option slows the assembly process down, as the assembler must make
an additional pass over the input code.

Debug information for assembler code generated from C source code may become
unreliable in debuggers when this option is used.

This option can be applied if compiling using PICC, the command-line driver and the
--OPT driver option, see Section 2.7.42 “--OPT: Invoke Compiler Optimizations”.
 2010 Microchip Technology Inc. DS51865B-page 117

HI-TECH C® for PIC10/12/16 User’s Guide
4.2.10 -O: Specify Output File

By default the assembler determines the name of the object file to be created by strip-
ping any suffix or extension from the first source filename and appending .obj. The
-O option allows the user to override the default filename and specify a new name for
the object file.

4.2.11 -T: Specify Listing Page Width

This option allows specification of the assembly list file page width, in characters.
width should be a decimal number greater than 41. The default width is 80 characters.

4.2.12 -V: Produce Assembly Debug Information

This option will include line number and filename information in the object file produced
by the assembler. Such information may be used by debuggers.

Note that the line numbers will correspond with assembler code lines in the assembler
file. This option should not be used when assembling an assembly file produced by the
code generator. In that case, debug information should relate back to the original C
source, not the intermediate assembly code.

4.2.13 -VER:Specify Version Information

This option allows the full version information, including optional text to indicate beta
builds or release candidate builds, to be passed to the assembler. This information is
only used in the title of the assembly list file and is not reflected in the output to the
--VER option.

4.2.14 -X: Strip Local Symbols

The object file created by the assembler contains symbol information, including local
symbols, i.e. symbols that are neither public or external. The -X option will prevent the
local symbols from being included in the object file, thereby reducing the file size.
description

4.2.15 --CHIP: Specify Device Name

This option defines the processor which is being used. The processor type can also be
indicated by use of the PROCESSOR directive in the assembler source file, see
Section 4.3.9.19 “PROCESSOR”. You can also add your own processors to the
compiler via the compiler’s chipinfo file.

This option is applied if compiling using PICC, the command-line driver and the
--CHIP driver option, see Section 2.7.20 “--CHIP: Define Processor”.

4.2.16 --DISL: Disable Messages

This option is mainly used by the command-line driver, PICC, to disable particular
message numbers. It takes a comma-separate list of message numbers that will be
disabled during compilation.

This option is applied if compiling using PICC, the command-line driver and the
--MSGDISABLE driver option, see Section 2.7.37 “--MSGDISABLE: Disable Warn-
ing Messages”.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.
DS51865B-page 118  2010 Microchip Technology Inc.

Macro Assembler
4.2.17 --EDF: Set Message File Path

This option is mainly used by the command-line driver, PICC, to specify the path of the
message description file. The default file is located in the dat directory in the compiler’s
installation directory.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

4.2.18 --EMAX: Specify Maximum Number of Errors

This option is mainly used by the command-line driver, PICC, to specify the maximum
number of errors that can be encountered before the assembler terminates. The default
number is 10 errors.

This option is applied if compiling using PICC, the command-line driver and the
--ERRORS driver option, see Section 2.7.28 “--ERRORS: Maximum Number of
Errors”.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

4.2.19 --OPT: Specify Optimization Type

This option complements the assembler -O option and indicates specific information
about optimizations required. The suboptions: speed, space and debug may be spec-
ified to indicate preferences related to procedural abstraction.

Abstraction is enabled when the space option is set; disabled when speed is set. The
debug suboption limits the application of some optimizations which otherwise may
severely corrupt debug information used by debuggers.

4.2.20 --VER: Print Version Number

This option printed information relating to the version and build of the assembler. The
assembler will terminate after processing this option, even if other options and files are
present on the command line.

4.3 HI-TECH C ASSEMBLY LANGUAGE

The source language accepted by the macro assembler, ASPIC, is described below.
All opcode mnemonics and operand syntax are specific to the PIC10, PIC12,
PIC14000, PIC16 and PIC17 devices, include the enhanced mid-range devices.
Although the PIC17 family instruction set is supported at the assembler level, the code
generator cannot produce code for these devices so no C projects can target these
devices.

Additional mnemonics and assembler directives are documented in this section.

4.3.1 Assembler Format Deviations

The HI-TECH PICC assembler uses a slightly modified form of assembly language to
that specified by the Microchip data sheets.
 2010 Microchip Technology Inc. DS51865B-page 119

HI-TECH C® for PIC10/12/16 User’s Guide
4.3.1.1 DESTINATION LOCATION

Certain PIC instructions use the operands “,0” or “,1” to specify the destination for the
result of that operation. ASPIC uses the more-readable operands “,w” and “,f” to
specify the destination register.

The W register is selected as the destination when using the “,w” operand, and the file
register is selected when using the “,f” operand or if no destination operand is
specified. The case of the letter in the destination operand in not important.

The numerical destination operands cannot be used with ASPIC.

4.3.1.2 LONG JUMPS AND CALLS

The assembler also recognizes several mnemonics which expand into regular PIC
MCU assembly instructions. The mnemonics are FCALL and LJMP. These instructions
expand into regular CALL and GOTO instructions respectively, but also include the
instructions necessary to set the bits in PCLATH (for mid-range devices), or STATUS (for
baseline devices) when the destination is in another page of program memory.

These additional mnemonics should be used where possible as they make assembler
code independent of the final position of the routines that are to be executed. If the call
or jump is determined to be within the current page, the additional code to set the
PCLATH bits may be optimized away.

The following example shows an FCALL instruction in the assembly list file. You can
see that the FCALL instruction has expanded to five instructions. In this example there
are two bit instructions which set/clear bits in the PCLATH register. Bits are also
set/cleared in this register after the call to reselect the page which was selected before
the fcall.

 13 0079 3021 movlw 33
 14 007A 120A 158A 2000 fcall _phantom
 120A 118A
 15 007F 3400 retlw 0

4.3.2 Statement Formats

Legal statement formats are shown in Table Section Table 4-2: “ASPIC statement
formats”.

The label field is optional and, if present, should contain one identifier. A label may
appear on a line of its own, or precede a mnemonic as shown in the second format.

The third format is only legal with certain assembler directives, such as MACRO, SET
and EQU. The name field is mandatory and should also contain one identifier.

If the assembly file is first processed by the C preprocessor, see Section 2.7.11 “-P:
Preprocess Assembly Files”, then it may also contain lines that form valid preproces-
sor directives. See Section 3.15.1 “Preprocessor Directives” for more information
on the format for these directives.

There is no limitation on what column or part of the line in which any part of the
statement should appear.

TABLE 4-2: ASPIC STATEMENT FORMATS

Format # Feild1 Field2 Field3 Field4

Format 1 label:

Format 2 label: mnemonic operands ; comment

Format 3 name pseudo-op operands ; comment

Format 4 ; comment only

Format 5 empty line
DS51865B-page 120  2010 Microchip Technology Inc.

Macro Assembler
4.3.3 Characters

The character set used is standard 7 bit ASCII. Alphabetic case is significant for
identifiers, but not mnemonics and reserved words. Tabs are treated as equivalent to
spaces.

4.3.3.1 DELIMITERS

All numbers and identifiers must be delimited by white space, non-alphanumeric
characters or the end of a line.

4.3.3.2 SPECIAL CHARACTERS

There are a few characters that are special in certain contexts. Within a macro body,
the character & is used for token concatenation. To use the bitwise & operator within a
macro body, escape it by using && instead. In a macro argument list, the angle brackets
< and > are used to quote macro arguments.

4.3.4 Comments

An assembly comment is initiated with a semicolon that is not part of a string or
character constant.

If the assembly file is first processed by the C preprocessor, see Section 2.7.11 “-P:
Preprocess Assembly Files”, then the file may also contain C or C++ style comments
using the standard /* ... */ and // syntax.

4.3.4.1 SPECIAL COMMENT STRINGS

Several comment strings are appended to assembler instructions by the code genera-
tor. These are typically used by the assembler optimizer.

The comment string ;volatile is used to indicate that the memory location being
accessed in the commented instruction is associated with a variable that was declared
as volatile in the C source code. Accesses to this location which appear to be
redundant will not be removed by the assembler optimizer if this string is present.

This comment string may also be used in assembler source to achieve the same effect
for locations defined and accessed in assembly code.

4.3.5 Constants

4.3.5.1 NUMERIC CONSTANTS

The assembler performs all arithmetic with signed 32-bit precision.

The default radix for all numbers is 10. Other radices may be specified by a trailing base
specifier as given in Table 4-3.

Hexadecimal numbers must have a leading digit (e.g. 0ffffh) to differentiate them from
identifiers. Hexadecimal digits are accepted in either upper or lower case.

Note that a binary constant must have an upper case B following it, as a lower case b
is used for temporary (numeric) label backward references.

TABLE 4-3: ASPIC NUMBERS AND BASES

Radix Format

Binary Digits 0 and 1 followed by B

Octal Digits 0 to 7 followed by O, Q, o or q

Decimal Digits 0 to 9 followed by D, d or nothing

Hexadecimal Digits 0 to 9, A to F preceded by Ox or followed by H or h
 2010 Microchip Technology Inc. DS51865B-page 121

HI-TECH C® for PIC10/12/16 User’s Guide
In expressions, real numbers are accepted in the usual format, and are interpreted as
IEEE 32-bit format.

4.3.5.2 CHARACTER CONSTANTS AND STRINGS

A character constant is a single character enclosed in single quotes ’.

Multi-character constants, or strings, are a sequence of characters, not including car-
riage return or newline characters, enclosed within matching quotes. Either single
quotes ’ or double quotes " maybe used, but the opening and closing quotes must be
the same.

4.3.6 Identifiers

Assembly identifiers are user-defined symbols representing memory locations or num-
bers. A symbol may contain any number of characters drawn from the alphabetics,
numerics and the special characters dollar, $, question mark, ? and underscore, _.

The first character of an identifier may not be numeric. The case of alphabetics is sig-
nificant, e.g. Fred is not the same symbol as fred. Some examples of identifiers are
shown here:

An_identifier
an_identifier
an_identifier1
$
?$_12345

4.3.6.1 SIGNIFICANCE OF IDENTIFIERS

Users of other assemblers that attempt to implement forms of data typing for identifiers
should note that this assembler attaches no significance to any symbol, and places no
restrictions or expectations on the usage of a symbol.

The names of psects (program sections) and ordinary symbols occupy separate,
overlapping name spaces, but other than this, the assembler does not care whether a
symbol is used to represent bytes, words or sports cars. No special syntax is needed
or provided to define the addresses of bits or any other data type, nor will the assembler
issue any warnings if a symbol is used in more than one context. The instruction and
addressing mode syntax provide all the information necessary for the assembler to
generate correct code.

4.3.6.2 ASSEMBLER-GENERATED IDENTIFIERS

Where a LOCAL directive is used in a macro block, the assembler will generate a
unique symbol to replace each specified identifier in each expansion of that macro.
These unique symbols will have the form ??nnnn where nnnn is a 4 digit number. The
user should avoid defining symbols with the same form.

4.3.6.3 LOCATION COUNTER

The current location within the active program section is accessible via the symbol $.
This symbol expands to the address of the currently executing instruction (which is dif-
ferent to the address contained in the program counter when executing this instruction).
Thus:

GOTO $

will represent code that will jump to itself and form an endless loop. By using this
symbol and an offset, a relative jump destination can be specified.
DS51865B-page 122  2010 Microchip Technology Inc.

Macro Assembler
The address represented by $ is a word address (baseline and Mid-Range devices use
program memory which is word-addressable) and thus any offset to this symbol
represents a number of instructions. For example:

GOTO $+2
MOVLW 8
MOVWF _foo

will skip one instruction.

4.3.6.4 REGISTER SYMBOLS

Code in assembly modules may gain access to the special function registers by includ-
ing pre-defined assembly header files. The appropriate file can be included by add the
line:

#include <aspic.h>

to the assembler source file. Note that the file must be included using a C pre-processor
directive and hence the option to pre-process assembly files must be enabled when
compiling, see Section 2.7.11 “-P: Preprocess Assembly Files”. This header file
contains appropriate commands to ensure that the header file specific for the target
device is included into the source file.

These header files contain EQU declarations for all byte or multi-byte sized registers
and #define macros for named bits within byte registers.

4.3.6.5 SYMBOLIC LABELS

A label is a symbolic alias which is assigned a value equal to the current address within
the current psect. Labels are not assigned a value until link time.

A label definition consists of any valid assembly identifier and optionally followed by a
colon, :. The definition may appear on a line by itself or be positioned before a state-
ment. Here are two examples of legitimate labels interspersed with assembly code.

frank:
MOVLW 1
GOTO fin

simon44: CLRF _input

Here, the label frank will ultimately be assigned the address of the MOVLW instruction,
and simon44 the address of the CLRF instruction. Regardless of how they are defined,
the assembler list file produced by the assembler will always show labels on a line by
themselves.

Note that the colon following the label is optional, but is recommended. Symbols which
are not interpreted in any other way are assumed to be labels. Mistyped assembler
instructions can sometimes be treated as labels without an error message being
issued. Thus the code:

mistake:
MOVLW 23h
MOVWF 37h
REUTRN ; oops

defines a symbol called REUTRN, which was intended to be the RETURN instruction.

Labels may be used (and are preferred) in assembly code rather than using an abso-
lute address. Thus they can be used as the target location for jump-type instructions or
to load an address into a register.

Like variables, labels have scope. By default, they may be used anywhere in the mod-
ule in which they are defined. They may be used by code before their definition. To
make a label accessible in other modules, use the GLOBAL directive. See
Section 4.3.9.1 “GLOBAL” for more information.
 2010 Microchip Technology Inc. DS51865B-page 123

HI-TECH C® for PIC10/12/16 User’s Guide
4.3.7 Expressions

The operands to instructions and directives are comprised of expressions. Expressions
can be made up of numbers, identifiers, strings and operators.

Operators can be unary (one operand, e.g. not) or binary (two operands, e.g. +). The
operators allowable in expressions are listed in Table 4-4.

The usual rules governing the syntax of expressions apply.

The operators listed may all be freely combined in both constant and relocatable
expressions. The HI-TECH linker permits relocation of complex expressions, so the
results of expressions involving relocatable identifiers may not be resolved until link
time.

TABLE 4-4: ASPIC OPERATORS

Operator Purpose Example

* Multiplication MOVLW 4*33,w

+ Addition BRA $+1

- Subtraction DB 5-2

/ Division MOVLW 100/4

= or eq Equality IF inp eq 66

> or gt Signed greater than IF inp > 40

>= or ge Signed greater than or equal to IF inp ge 66

< or lt Signed less than IF inp < 40

<= or le Signed less than or equal to IF inp le 66

<> or ne Signed not equal to IF inp <> 40

low Low byte of operand MOVLW low(inp)

high High byte of operand MOVLW high(1008h)

highword High 16 bits of operand DW highword(inp)

mod Modulus MOVLW 77mod4

& Bitwise AND CLRF inp&0ffh

^ Bitwise XOR (exclusive or) MOVF inp^80,w

| Bitwise OR MOVF inp|1,w

not Bitwise complement MOVLW not 055h,w

<< or shl Shift left DB inp>>8

>> or shr Shift right MOVLW inp shr 2,w

rol Rotate left DB inp rol 1

ror Rotate right DB inp ror 1

float24 24-bit version of real operand DW float24(3.3)

nul Tests if macro argument is null
DS51865B-page 124  2010 Microchip Technology Inc.

Macro Assembler
4.3.8 Program Sections

Program sections, or psects, are simply a section of code or data. They are a way of
grouping together parts of a program (via the psect’s name) even though the source
code may not be physically adjacent in the source file, or even where spread over
several modules.

A psect is identified by a name and has several attributes. The PSECT assembler direc-
tive is used to define a psect. It takes as arguments a name and an optional
comma-separated list of flags. See Section 3.10.1 “Compiler-generated Psects” for
a list of all psects that the code generator defines. Chapter 5. “Linker” has more infor-
mation on the operation of the linker and on options that can be used to control psect
placement in memory.

The assembler associates no significance to the name of a psect and the linker is also
not aware of which psects are compiler-generated or which are user-defined. Unless
defined as abs (absolute), psects are relocatable.

The following is an example showing some executable instructions being placed in the
mytext psect, and space being reserved in the mybss psect. Neither of these psects
are compiler defined.

PSECT mytext,class=CODE,delta=2
adjust:

GOTO clear_fred
increment:

INCF _fred
PSECT mybss,class=BANK0,space=1
fred:
 DS 2
PSECT mytext,class=CODE,delta=2
clear_fred:

CLRF _fred+1
RETURN

Note that even though the two blocks of code in the mytext psect are separated by a
block in the mybss psect, the two mytext psect blocks will be contiguous when loaded
by the linker. In other words, the INCF _fred instruction will be followed by the clrf
instruction in the final output. The actual location in memory of the mytext and mybss
psects will be determined by the linker.

Code or data that is not explicitly placed into a psect will become part of the default
(unnamed) psect.

4.3.9 Assembler Directives

Assembler directives, or pseudo-ops, are used in a similar way to instruction mnemon-
ics. With the exception of PAGESEL and BANKSEL, these directives do not generate
any output, or may generate non-executable output, i.e. data bytes. The directives are
listed in Table 4-5, and are detailed below in the following sections.

TABLE 4-5: ASPIC ASSEMBLER DIRECTIVES

Directive Purpose

GLOBAL Make symbols accessible to other modules or allow reference to other
modules’ symbols

END End assembly

PSECT Declare or resume program section

ORG Set location counter within current psect

EQU Define symbol value

SET Define or re-define symbol value
 2010 Microchip Technology Inc. DS51865B-page 125

HI-TECH C® for PIC10/12/16 User’s Guide
4.3.9.1 GLOBAL

The GLOBAL directive declares a list of comma-separated symbols. If the symbols are
defined within the current module, they are made public. If the symbols are not defined
in the current module, they are made references to public symbols defined in external
modules. Thus to use the same symbol in two modules the GLOBAL directive must be
used at least twice: once in the module that defines the symbol to make that symbol
public, and again in the module that uses the symbol to link in with the external
definition.

For example:

GLOBAL lab1,lab2,lab3

4.3.9.2 END

The END directive is optional, but if present should be at the very end of the program.
It will terminate the assembly and not even blank lines should follow this directive.

If an expression is supplied as an argument, that expression will be used to define the
entry point of the program. This is stored in a start record in the object file produced by
the assembler. Whether this is of any use will depend on the linker.

DB Define constant byte(s)

DW Define constant word(s)

DS Reserve storage

DABS Define absolute storage

IF Conditional assembly

ELSIF Alternate conditional assembly

ELSE Alternate conditional assembly

ENDIF End conditional assembly

FNADDR Inform the linker that a function may be indirectly called

FNARG Inform the linker that evaluation of arguments for one function requires
calling another

FNBREAK Break call graph links

FNCALL Inform the linker that one function calls another

FNCONF Supply call graph configuration information for the linker

FNINDIR Inform the linker that all functions with a particular signature may be
indirectly called

FNROOT Inform the linker that a function is the “root” of a call graph

FNSIZE Inform the linker of argument and local variable for a function

MACRO Macro definition

ENDM End macro definition

LOCAL Define local tabs

ALIGN Align output to the specified boundary

BANKSEL Generate code to select bank of operand

PAGESEL Generate set/clear instruction to set PCLATH bits for this page

PROCESSOR Define the particular chip for which this file is to be assembled.

REPT Repeat a block of code n times

IRP Repeat a block of code with a list

IRPC Repeat a block of code with a character list

SIGNAT Define function signature

TABLE 4-5: ASPIC ASSEMBLER DIRECTIVES (CONTINUED)

Directive Purpose
DS51865B-page 126  2010 Microchip Technology Inc.

Macro Assembler
The default runtime startup code defined by the compiler will contain an END directive
with a start address. As only one start address can be specified for each project, you
normally do not need to define this address, but may use the END directive with no entry
point in any file.

For example:

END start_label ;defines the entry point

or

END ;do not define entry point

4.3.9.3 PSECT

The PSECT directive declares or resumes a program section. It takes as argument a
name and, optionally, a comma-separated list of flags. The allowed flags are listed in
Table 4-6 and specify attributes of the psect.

Once a psect has been declared it may be resumed later by another PSECT directive,
however the flags need not be repeated and will be propagated from the earlier decla-
ration. If two PSECT directives are encountered with contradicting flags, then an error
will be generated.

Some examples of the use of the PSECT directive follow:

PSECT fred
PSECT bill,size=100h,global
PSECT joh,abs,ovrld,class=CODE,delta=2

4.3.9.3.1 Abs

The abs flag defines the current psect as being absolute, i.e. it is to start at location 0.
This does not mean that this module’s contribution to the psect will start at 0, since
other modules may contribute to the same psect. See also Section 4.3.9.3.8 “Ovrld”.

An abs-flagged psect is not relocatable and an error will result if a linker option is
issued that attempts to place such a psect at any location.

4.3.9.3.2 Bit

The bit flag specifies that a psect holds objects that are 1 bit long. Such psects will
have a scale value of 8 to indicate that there are 8 addressable units to each byte of
storage and all addresses associated with this psect will be bit address, not byte
addresses. The scale value is indicated in the map file, see Section 5.4 “Map Files”.

TABLE 4-6: PSECT FLAGS

Flag Meaning

abs Psect is absolute

bit Psect holds bit objects

class=name Specify class name for psect

delta=size Size of an addressing unit

global Psect is global (default)

limit=address Upper address limit of psect

local Psect is not global

ovrld Psect will overlap same psect in other modules

pure Psect is to be read-only

reloc=boundary Start psect on specified boundary

size=max Maximum size of psect

space=area Represents area in which psect will reside

with=psect Place psect in the same page as specified psect
 2010 Microchip Technology Inc. DS51865B-page 127

HI-TECH C® for PIC10/12/16 User’s Guide
4.3.9.3.3 Class

The class flag specifies a corresponding linker class name for this psect. A class is a
range of addresses in which psects may be placed.

Class names are used to allow local psects to be located at link time, since they cannot
always be referred to by their own name in a -P linker option (as would be the case if
there are more than one local psect with the same name).

Class names are also useful where psects need only be positioned anywhere within a
range of addresses rather than at a specific address. The association of a class with a
psect that you have defined typically means that you do not need to supply a custom
linker option to place it in memory.

See Section 5.2.1 “-Aclass =low-high,...” for information on how linker classes are
defined.

4.3.9.3.4 Delta

The delta flag defines the size of the addressing unit. In other words, the number of
data bytes which are associated with each address.

With PIC Mid-Range and baseline devices, the program memory space is word
addressable, hence psects in this space must use a delta of 2. That is to say, each
address in program memory requires 2 bytes of data in the HEX file to define their
contents. Thus addresses in the HEX file will not match addresses in the program
memory.

The data memory space on these devices is byte addressable, hence psects in this
space must use a delta of 1. This is the default delta value.

The redefinition of a psect with conflicting delta values can lead to phase errors being
issued by the assembler.

4.3.9.3.5 Global

A psect defined as global will be combined with other global psects with the same
name at link time. Psects are grouped from all modules being linked.

Psects are considered global by default, unless the local flag is used.

4.3.9.3.6 Limit

The limit flag specifies a limit on the highest address to which a psect may extend.
If this limit is exceeded when it is positioned in memory, an error will be generated.

4.3.9.3.7 Local

A psect defined as local will not be combined with other local psects from other
modules at link time, even if there are others with the same name. Where there are two
local psects in the one module, they reference the same psect. A local psect may
not have the same name as any global psect, even one in another module.

4.3.9.3.8 Ovrld

A psect defined as ovrld will have the contribution from each module overlaid, rather
than concatenated at link time. This flag in combination with the abs flag (see
Section 4.3.9.3.1 “Abs”) defines a truly absolute psect, i.e. a psect within which any
symbols defined are absolute.

4.3.9.3.9 Pure

The pure flag instructs the linker that this psect will not be modified at runtime and may
therefore, for example, be placed in ROM. This flag is of limited usefulness since it
depends on the linker and target system enforcing it.
DS51865B-page 128  2010 Microchip Technology Inc.

Macro Assembler
4.3.9.3.10 Reloc

The reloc flag allows specification of a requirement for alignment of the psect on a
particular boundary. For example the flag reloc=100h would specify that this psect
must start on an address that is a multiple of 100h.

4.3.9.3.11 Size

The size flag allows a maximum size to be specified for the psect, e.g. size=100h.
This will be checked by the linker after psects have been combined from all modules.

4.3.9.3.12 Space

The space flag is used to differentiate areas of memory which have overlapping
addresses, but which are distinct. Psects which are positioned in program memory and
data memory have a different space value to indicate that the program space address
0, for example, is a different location to the data memory address 0.

On all PIC devices, program memory uses a space value of 0, and data space memory
uses a space of 1.

Devices which have a banked data space do not use different space values to identify
each bank. A full address which includes the bank number is used for objects in this
space and so each location can be uniquely identified. For example a device with a
bank size of 0x80 bytes will uses address 0 to 0x7F to represent objects in bank 0, and
then addresses 0x80 to 0xFF to represent objects in bank 1, etc.

4.3.9.3.13 With

The with flag allows a psect to be placed in the same page with another psect. For
example the flag with=text will specify that this psect should be placed in the same
page as the text psect.

The term withtotal refers to the sum of the size of each psect that is placed "with" other
psects.

4.3.9.4 ORG

The ORG directive changes the value of the location counter within the current psect.
This means that the addresses set with ORG are relative to the base address of the
psect, which is not determined until link time.

The argument to ORG must be either an absolute value, or a value referencing the cur-
rent psect. In either case the current location counter is set to the value determined by
the argument. It is not possible to move the location counter backward. For example:

ORG 100h

will move the location counter to the beginning of the current psect plus 100h. The
actual location will not be known until link time.

In order to use the ORG directive to set the location counter to an absolute value, the
directive must be used from within an absolute, overlaid psect. For example:

PSECT absdata,abs,ovrld
 ORG 50h
 ;this is guaranteed to reside at address 50h

Note: The much-abused ORG directive does not move the location counter to the
absolute address you specify. Only if the psect in which this directive is
placed is absolute and overlaid will the location counter be moved to the
address specified. To place objects at a particular address, place them in a
psect of their own and link this at the required address using the linkers -P
option, see Section 5.2.18 “-Pspec”. The ORG directive is not commonly
required in programs.
 2010 Microchip Technology Inc. DS51865B-page 129

HI-TECH C® for PIC10/12/16 User’s Guide
4.3.9.5 EQU

This pseudo-op defines a symbol and equates its value to an expression. For example

thomas EQU 123h

The identifier thomas will be given the value 123h. EQU is legal only when the symbol
has not previously been defined. See also Section 4.3.9.6 “SET” which allows for
redefinition of values.

This directive performs a similar function to the preprocessor’s #define directive, see
Section 3.15.1 “Preprocessor Directives”.

4.3.9.6 SET

This pseudo-op is equivalent to EQU (Section 4.3.9.5 “EQU”) except that allows a
symbol to be re-defined without error. For example:

thomas SET 0h

This directive performs a similar function to the preprocessor’s #define directive, see
Section 3.15.1 “Preprocessor Directives”.

4.3.9.7 DB

The DB directive is used to initialize storage as bytes. The argument is a comma-sep-
arated list of expressions, each of which will be assembled into one byte and
assembled into consecutive memory locations.

Examples:

alabel: DB ’X’,1,2,3,4,

Note that because the size of an address unit in the program memory is 2 bytes (see
Section 4.3.9.3.4 “Delta”), the DB pseudo-op will initialise a word with the upper byte
set to zero. So the above example will define bytes padded to the following words.

0058 0001 0002 0003 0004

4.3.9.8 DW

The DW directive operates in a similar fashion to DB, except that it assembles
expressions into words. Example:

DW -1, 3664h, ’A’’

4.3.9.9 DS

This directive reserves, but does not initialize, memory locations. The single argument
is the number of bytes to be reserved.

This directive is typically used to reserve memory location for RAM-based objects in
the data memory. If used in a psect linked into the program memory, it will move the
location counter, but not place anything in the HEX file output. Note that because the
size of an address unit in the program memory is 2 bytes (see
Section 4.3.9.3.4 “Delta”), the DS pseudo-op will actually reserve an entire word.

A variable is typically defined by using a label and then the DS directive to reserve
locations at the label location.

Examples:

alabel: DS 23 ;Reserve 23 bytes of memory
xlabel: DS 2+3 ;Reserve 5 bytes of memory
DS51865B-page 130  2010 Microchip Technology Inc.

Macro Assembler
4.3.9.10 DABS

This directive allows one or more bytes of memory to be reserved at the specified
address. The general form of the directive is:

DABS memorySpace, address, bytes

where memorySpace is a number representing the memory space in which the reser-
vation will take place, address is the address at which the reservation will take place,
and bytes is the number of bytes that is to be reserved.

This directive differs to the DS directive in that it can be used to reserve memory at any
location, not just within the current psect. Indeed, these directives can be placed any-
where in the assembly code and do not contribute to the currently selected psect in any
way.

The memory space number is the same as the number specified with the space flag
option to psects (see Section 4.3.9.3.12 “Space”).

The code generator issues a DABS directive for every user-defined absolute C variable,
or for any variables that have been allocated an address by the code generator.

The linker reads this DABS-related information from object files and will ensure that the
reserved address are not used for other memory placement.

4.3.9.11 IF, ELSIF, ELSE AND ENDIF

These directives implement conditional assembly. The argument to IF and ELSIF
should be an absolute expression. If it is non-zero, then the code following it up to the
next matching ELSE, ELSIF or ENDIF will be assembled. If the expression is zero then
the code up to the next matching ELSE or ENDIF will be skipped. These directives do
not implement a runtime conditional statement in the same way that the C statement
if() does; they are evaluated at compile time.

At an ELSE the sense of the conditional compilation will be inverted, while an ENDIF
will terminate the conditional assembly block.

For example:

IF ABC
GOTO aardvark

ELSIF DEF
GOTO denver

ELSE
GOTO grapes

ENDIF

In this example, if ABC is non-zero, the first GOTO instruction will be assembled but not
the second or third. If ABC is zero and DEF is non-zero, the second GOTO instruction will
be assembled but the first and third will not. If both ABC and DEF are zero, the third
GOTO instruction will be assembled. Note in the above example, only one GOTO instruc-
tion will appear in the output; which one will be determined by the values assigned to
ABC and DEF.

Conditional assembly blocks may be nested.

4.3.9.12 MACRO AND ENDM

These directives provide for the definition of assembly macros, optionally with argu-
ments. See Section 4.3.9.5 “EQU” for simple association of a value with an identifier,
or Section 3.15.1 “Preprocessor Directives” for the preprocessor’s #define
macro directive, which can also work with arguments.
 2010 Microchip Technology Inc. DS51865B-page 131

HI-TECH C® for PIC10/12/16 User’s Guide
The MACRO directive should be preceded by the macro name and optionally followed
by a comma-separated list of formal arguments. When the macro is used, the macro
name should be used in the same manner as a machine opcode, followed by a list of
arguments to be substituted for the formal parameters.

For example:

;macro: movlf
;args: arg1 - the literal value to load
; arg2 - the NAME of the source variable
;descr: Move a literal value into a nominated file register

movlf MACRO arg1,arg2
MOVLW arg1
MOVWF arg2 mod 080h

ENDM

When used, this macro will expand to the 2 instructions in the body of the macro, with
the formal parameters substituted by the arguments. Thus:

 movlf 2,tempvar

expands to:

MOVLW 2
MOVWF tempvar mod 080h

The & character can be used to permit the concatenation of macro arguments with
other text, but is removed in the actual expansion. For example:

loadPort MACRO port, value
MOVLW value
MOVWF PORT&port

ENDM

will load PORTA if port is A when called, etc.

A comment may be suppressed within the expansion of a macro (thus saving space in
the macro storage) by opening the comment with a double semicolon, ;;.

When invoking a macro, the argument list must be comma-separated. If it is desired to
include a comma (or other delimiter such as a space) in an argument then angle
brackets < and > may be used to quote

If an argument is preceded by a percent sign, %, that argument will be evaluated as an
expression and passed as a decimal number, rather than as a string. This is useful if
evaluation of the argument inside the macro body would yield a different result.

The nul operator may be used within a macro to test a macro argument, for example:

IF nul arg3 ; argument was not supplied.
 ...
ELSE ; argument was supplied
 ...
ENDIF

See Section 4.3.9.13 “LOCAL” for use of unique local labels within macros.

By default, the assembly list file will show macro in an unexpanded format, i.e. as the
macro was invoked. Expansion of the macro in the listing file can be shown by using
the EXPAND assembler control, see Section 4.3.10.2 “EXPAND”.

4.3.9.13 LOCAL

The LOCAL directive allows unique labels to be defined for each expansion of a given
macro. Any symbols listed after the LOCAL directive will have a unique assembler
generated symbol substituted for them when the macro is expanded. For example:

down MACRO count
DS51865B-page 132  2010 Microchip Technology Inc.

Macro Assembler
LOCAL more
more: DECFSZ count

GOTO more
ENDM

when expanded will include a unique assembler generated label in place of more. For
example:

down foobar

expands to:

??0001 DECFSZ foobar
GOTO ??0001

If invoked a second time, the label more would expand to ??0002 and multiply defined
symbol errors will be averted.

4.3.9.14 ALIGN

The ALIGN directive aligns whatever is following, data storage or code etc., to the spec-
ified offset boundary within the current psect. The boundary is specified as a number
of bytes following the directive.

For example, to align output to a 2 byte (even) address within a psect, the following
could be used.

ALIGN 2

Note that what follows will only begin on an even absolute address if the psect begins
on an even address, i.e. alignment is done within the current psect. See
Section 4.3.9.3.10 “Reloc” for psect alignment.

The ALIGN directive can also be used to ensure that a psect’s length is a multiple of a
certain number. For example, if the above ALIGN directive was placed at the end of a
psect, the psect would have a length that was always an even number of bytes long.

4.3.9.15 REPT

The REPT directive temporarily defines an unnamed macro, then expands it a number
of times as determined by its argument.

For example:

REPT 3
ADDWF fred,w

ENDM

will expand to:

ADDWF fred,w
ADDWF fred,w
ADDWF fred,w

See also Section 4.3.9.16 “IRP and IRPC”.

4.3.9.16 IRP AND IRPC

The IRP and IRPC directives operate in a similar way to REPT, however instead of
repeating the block a fixed number of times, it is repeated once for each member of an
argument list.

In the case of IRP, the list is a conventional macro argument list; in the case or IRPC,
it is each character in one argument. For each repetition the argument is substituted for
one formal parameter.

For example:

IRP number,4865h,6C6Ch,6F00h
 DW number
 2010 Microchip Technology Inc. DS51865B-page 133

HI-TECH C® for PIC10/12/16 User’s Guide
ENDM

would expand to:

 DW 4865h
 DW 6C6Ch
 DW 6F00h

Note that you can use local labels and angle brackets in the same manner as with
conventional macros.

The IRPC directive is similar, except it substitutes one character at a time from a string
of non-space characters.

For example:

IRPC char,ABC
 DB ’char’
ENDM

will expand to:

 DB ’A’
 DB ’B’
 DB ’C’

4.3.9.17 BANKSEL

This directive can be used to generate code to select the bank of the operand. The
operand should be the symbol or address of an object that resides in the data memory.

Depending on the target device, the generated code will either contain one or more bit
instructions to set/clear bits in the appropriate register, or use a MOVLB instruction in
the case of enhanced Mid-Range PIC devices. In case this directive expands to more
than one instruction, it should not immediately follow a BTFSX instruction.

For example:

MOVLW 20
BANKSEL (_foobar) ; select bank for next file instruction
MOVWF _foobar&07fh ; write data and mask address

4.3.9.18 PAGESEL

This directive can be used to generate code to select the current page, i.e. the page
which contains this directive.

Depending on the target device, the generated code will either contain one or more bit
instructions to set/clear bits in the appropriate register, or use a MOVLP instruction in
the case of enhanced Mid-Range PIC devices. In case this directive expands to more
than one instruction, it should not immediately follow a BTFSX instruction.

For example:

CALL _getInput
PAGESEL ; select this page

4.3.9.19 PROCESSOR

The output of the assembler may vary depending on the target device. The device
name is typically set using the --CHIP option to the command-line driver PICC, see
Section 2.7.20 “--CHIP: Define Processor”, or using the assembler’s --CHIP
option, see Section 4.2.15 “--CHIP: Specify Device Name”, but can also be set with
this directive, e.g.

PROCESSOR 16F877

This directive will override any processor selected by a command-line option.
DS51865B-page 134  2010 Microchip Technology Inc.

Macro Assembler
4.3.9.20 SIGNAT

This directive is used to associate a 16-bit signature value with a label. At link time the
linker checks that all signatures defined for a particular label are the same and pro-
duces an error if they are not. The SIGNAT directive is used by HI-TECH C to enforce
link time checking of C function prototypes and calling conventions.

Use the SIGNAT directive if you want to write assembly language routines which are
called from C. For example:

SIGNAT _fred,8192

will associate the signature value 8192 with the symbol _fred. If a different signature
value for _fred is present in any object file, the linker will report an error.

The easiest way to determine the correct signature value for a routine is to write a C
routine with the same prototype as the assembly routine and check the signature value
determined by the code generator. This will be shown in the assembly list file, see
Section 2.7.17 “--ASMLIST: Generate Assembler List Files” and
Section 4.4 “Assembly List Files”.

4.3.10 Assembler Controls

Assembler controls may be included in the assembler source to control assembler
operation. These keywords have no significance anywhere else in the program. The
control is invoked by the directive OPT followed by the control name. Some keywords
are followed by one or more arguments. For example:

OPT EXPAND

A list of keywords is given in Table 4-7, and each is described further below.

Note 1: The default options are listed with an asterisk (*)

TABLE 4-7: ASPIC ASSEMBLER CONTROLS

Control Meaning Format

COND* Include conditional code in the list-
ing

COND

EXPAND Expand macros in the listing output EXPAND

INCLUDE Textually include another source
file

INCLUDE < pathname >

LIST* Define options for listing output LIST [< listopt >, ..., < listopt >]

NOCOND Leave conditional code out of the
listing

NOCOND

NOEXPAND* Disable macro expansion NOEXPAND

NOLIST Disable listing output NOLIST

NOXREF Disable generation of cross
reference file

NOXREF

PAGE Start a new page in the listing
output

PAGE

SPACE Add blank lines to listing SPACE 3

SUBTITLE Specify the subtitle of the program SUBTITLE “< subtitle >”

TITLE Specify the title of the program TITLE “< title >”

XREF Enable cross reference file
generation

XREF
 2010 Microchip Technology Inc. DS51865B-page 135

HI-TECH C® for PIC10/12/16 User’s Guide
4.3.10.1 COND

Any conditional code will be included in the listing output. See also the NOCOND control
in Section 4.3.10.5 “NOCOND”.

4.3.10.2 EXPAND

When EXPAND is in effect, the code generated by macro expansions will appear in the
listing output. See also the NOEXPAND control in Section 4.3.10.6 “NOEXPAND”.

4.3.10.3 INCLUDE

This control causes the file specified by pathname to be textually included at that point
in the assembly file. The INCLUDE control must be the last control keyword on the line,
for example:

OPT INCLUDE "options.h"

The driver does not pass any search paths to the assembler, so if the include file is not
located in the working directory, the pathname must specify the exact location.

See also the driver option -P in Section 2.7.11 “-P: Preprocess Assembly Files”
which forces the C preprocessor to preprocess assembly file, thus allowing use of pre-
processor directives, such as #include (see Section 3.15.1 “Preprocessor Direc-
tives”).

4.3.10.4 LIST

If the listing was previously turned off using the NOLIST control, the LIST control on its
own will turn the listing on.

Alternatively, the LIST control may includes options to control the assembly and the
listing. The options are listed in Table 4-8.

See also the NOLIST control in Section 4.3.10.7 “NOLIST”.

4.3.10.5 NOCOND

Using this control will prevent conditional code from being included in the assembly list
file output. See also the COND control in Section 4.3.10.1 “COND”.

4.3.10.6 NOEXPAND

The NOEXPAND control disables macro expansion in the assembly list file. The macro
call will be listed instead. See also the EXPAND control in Section 4.3.10.2 “EXPAND”.
Assembly macro are discussed in Section 4.3.9.12 “MACRO and ENDM”.

4.3.10.7 NOLIST

This control turns the listing output off from this point onward. See also the LIST control
in Section 4.3.10.4 “LIST”.

TABLE 4-8: LIST CONTROL OPTIONS

List Option Default Description

c= nnn 80 Set the page (i.e. column) width.

n= nnn 59 Set the page length.

t= ON|OFF OFF Truncate listing output lines. The default wraps
lines.

p=< processor > n/a Set the processor type.

r=< radix > HEX Set the default radix to HEX, dec or oct.

x= ON|OFF OFF Turn macro expansion on or off.
DS51865B-page 136  2010 Microchip Technology Inc.

Macro Assembler
4.3.10.8 NOXREF

The NOXREF control will disable generation of the raw cross reference file. See also the
XREF control in Section 4.3.10.13 “XREF”.

4.3.10.9 PAGE

The PAGE control causes a new page to be started in the listing output. A Control-L
(form feed) character will also cause a new page when encountered in the source.

4.3.10.10 SPACE

The SPACE control will place a number of blank lines in the listing output as specified
by its parameter.

4.3.10.11 SUBTITLE

The SUBTITLE control defines a subtitle to appear at the top of every listing page, but
under the title. The string should be enclosed in single or double quotes. See also the
TITLE control in Section 4.3.10.12 “TITLE”.

4.3.10.12 TITLE

This control keyword defines a title to appear at the top of every listing page. The string
should be enclosed in single or double quotes. See also the SUBTITLE control in
Section 4.3.10.11 “SUBTITLE”.

4.3.10.13 XREF

The XREF control is equivalent to the driver command line option --CR (see
Section 2.7.23 “--CR: Generate Cross Reference Listing”). It causes the assembler
to produce a raw cross reference file. The utility CREF should be used to actually
generate the formatted cross-reference listing.

4.4 ASSEMBLY LIST FILES

The assembler will produce an assembly list file if instructed. The PICC driver option
--ASMLIST is typically used to request generation of such a file, see
Section 2.7.17 “--ASMLIST: Generate Assembler List Files”.

The assembly list file shows the assembly output produced by the compiler for both C
and assembly source code. If the assembler optimizers are enabled, the assembly
output may be different to assembly source code and so is still useful for assembly
programming.

The list file is in a human readable form and cannot take any further part in the compi-
lation sequence. It differs from an assembly output file in that it contains address and
op-code data. In addition, the assembler optimizer simplifies some expressions and
removes some assembler directives from the listing file for clarity, although these direc-
tives are included in the true assembly output files. If you are using the assembly list
file to look at the code produced by the compiler, you may wish to turn off the assembler
optimizer so that all the compiler-generated directives are shown in this file. Re-enable
the optimizer when continuing development. Section 2.7.42 “--OPT: Invoke Compiler
Optimizations” gives more information on controlling the optimizers.

Provided the link stage has successfully concluded, the listing file will be updated by
the linker so that it contains absolute addresses and symbol values. Thus you may use
the assembler list file to determine the position of, and exact op codes of, instructions.

There is one assembly list file produce by the assembler for each assembly file passed
to it, and so there will be one file produced for all the C source code in a project, includ-
ing p-code based library code. This file will also contains some of the C initialization
 2010 Microchip Technology Inc. DS51865B-page 137

HI-TECH C® for PIC10/12/16 User’s Guide
that forms part of the runtime startup code. There will also be one file produced for each
assembly source file. There is typically at least one assembly file in each project, that
containing some of the runtime startup file, typically called startup.as.

4.4.1 General Format

The format of the main listing has the form as shown in Section Figure 4-1: “General
form of assembly listing file”.

The line numbers purely relate to the assembly list file and are not associated with the
lines numbers in the C or assembly source files. Any assembly that begins with a semi-
colon indicates it is a comment added by the code generator. Such comments contain
either the original source code which corresponds to the generated assembly, or is a
comment inserted by the code generator to explain some action taken.

Before the output for each function there is detailed information regarding that function
summarized by the code generator. This information relates to register usage, local
variable information, functions called and the calling function.

FIGURE 4-1: GENERAL FORM OF ASSEMBLY LISTING FILE

4.4.2 Pointer Reference Graph

Other important information contained in the assembly list file is the pointer reference
graph (look for pointer list with targets: in the list file). This is a list of each and every
pointer contained in the program and each target the pointer can reference through the
program. The size and type of each target is indicated as well as the size and type of
the pointer variable itself.

For example, the following shows a pointer called task_tmr in the C code, and which
is local to the function timer_intr(). It is a pointer to an unsigned int and it is
one byte wide. There is only one target to this pointer and it is the member
timer_count in the structure called task. This target variable resides in the BANK0
class and is two bytes wide.

timer_intr@task_tmr PTR unsigned int size(1); Largest target is 2
 -> task.timer_count(BANK0[2]),

The pointer reference graph shows both pointers to data objects and pointers to func-
tions.

 768 ;sp2_inpADC.c: 119: void ADC_start(unsigned char chan)

 769 ;sp2_inpADC.c: 120: {

 770 0243 _ADC_start:

 771 ; Regs used in _ADC_start: [reg0,reg3]

 772 0243 00A3 instruction operands

 773 ;sp2_inpADC.c: 121: chan &= 0x07;

 774 0244 3007 instruction operands

 775 0245 05A3 instruction operands

 776 ;sp2_inpADC.c: 128: }

 777 0252 0008 instruction

 778 ; ========= function _ADC_start ends ========

1

2

3

4

5

========

line number

address

op code

source comment

assembly
DS51865B-page 138  2010 Microchip Technology Inc.

Macro Assembler
4.4.3 Call Graph

The other important information block in the assembly list file is the call graph (look for
Call graph: in the list file). This is produced for target devices that use a compiled stack
to facilitate local variables, such as function parameters and auto variables. See
Section 3.5.4 “Absolute Variables” for more detailed information on compiled stack
operation.

The call graph in the list file shows the information collated and interpreted by the code
generator, which is primarily used to allow overlapping of functions’ APBs. The
following information can be obtained from studying the call graph.

• The functions in the program that are “root” nodes marking the top of a call tree,
and which are called spontaneously

• The functions that the linker deemed were called, or may have been called, during
program execution

• The program’s hierarchy of function calls

• The size of the auto and parameter areas within each function’s APB

• The offset of each function’s APB within the compiled stack

• The estimated call tree depth.

These features are discussed below.

A typical call graph may look that shown inFigure 4-2.

FIGURE 4-2: CALL GRAPH FORM

The graph starts with the function main(). Note that the function name will always be
shown in the assembly form, thus the function main() appears as the symbol _main.
main() is always a root of a call tree. Interrupt functions will form separate trees.

All the functions that main() calls, or may call, are shown below. These have been
grouped in the orange box in the figure. A function’s inclusion into the call graph does
not imply the function was actually called, but there is a possibility that the function was
called. For example, code such as:

int test(int a) {
 if(a)
 foo();
 else
 bar();
}

will list foo() and bar() under test(), as either may be called. If a is always true,
then the function bar() will never be called even though it appears in the call graph.

Call graph: Base Space Used Autos Args Refs Density

_main 10 0 24 0.00

 4 COMMO 6

 16 BANK0 4

 _rv

 _rvx

 _rvy

 _rvx 0 2 9 0.00

 8 BANK0 2

 _rv2

 _rvy 0 2 3 0.00

 0 BANK0 2

 _rv 8 4 12 0.00

 0 COMMO 4

 8 BANK0 8

 _rv2

 _rv2 4 4 6 0.00

 0 BANK0 8

Estimated maximum call depth 2

_main 10 0 24 0.00

 4 COMMO 6

 16 BANK0 4

 _rv

 _rvx

 _rvy
 2010 Microchip Technology Inc. DS51865B-page 139

HI-TECH C® for PIC10/12/16 User’s Guide
In addition to these functions there is information relating to the memory allocated in
the compiled stack for main(). This memory will be used for auto, temporary and
parameter variables defined in main(). The only difference between an auto and
temporary variable is that auto variables are defined by the programmer, and
temporaries are defined by the compiler, but both behave in the same way.

In the orange box for main() you can see that it defines 10 auto and temporary vari-
able. It defines no parameters (main() never has parameters). There is a total of 24
references in the assembly code to local objects in main().

Rather than the compiled stack being one memory allocation in one memory space, it
can have components placed in multiple memory spaces to utilize all available memory
of the target device. This break down is shown under the memory summary line for
each function. In this example, it shows that some of the local objects for main() are
placed in the common memory, but others are placed in bank 0 data RAM.

The Used column indicates how many bytes of memory are used by each section of
the compiled stack and the Space column indicates in which space that has been
placed. The Base value indicates the offset that block has in the respective section of
the compiled stack. For example, the figure tells us main()has 6 bytes of memory allo-
cated at an offset of 4 in the compiled stack section that lives in common memory. It
also has 4 bytes of memory allocated in bank 0 memory at an offset of 16 in the bank
0 compiled stack component.

Below the information for main() (outside the orange box) you will see the same infor-
mation repeated for the functions that main() called, viz. rv(), rvx() and rvy().
Indentation is used to indicate the maximum depth that function reaches in the call
graph. The arrows in the figure highlight this indentation.

After each tree in the call graph, there is an indication of the maximum call (stack) depth
that might be realized by that tree. This may be used as a guide to the stack usage of
the program. No definitive value can be given for the program’s total stack usage for
several reasons:

• Certain parts of the call tree may never be reached, reducing that tree’s stack
usage.

• The contribution of interrupt (or other) trees to the main() tree cannot be deter-
mined as the point in main ’s call tree at which the interrupt (or other function
invocation) will occur cannot be known;

• The assembler optimizer may have replaced function calls with jumps to
functions, reducing that tree’s stack usage.

• The assembler’s procedural abstraction optimizations may have added in calls to
abstracted routines. (Checks are made to ensure this does not exceed the
maximum stack depth.)

The code generator also produces a warning if the maximum stack depth appears to
have been exceeded. For the above reasons, this warning, too, is intended to be a only
a guide to potential stack problems.
DS51865B-page 140  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Chapter 5. Linker
5.1 INTRODUCTION

This chapter describes the theory behind, and the usage of, the linker.

The application name of the linker is HLINK. In most instances it will not be necessary
to invoke the linker directly, as the compiler driver, PICC, will automatically execute the
linker with all necessary arguments. Using the linker directly is not simple, and should
be attempted only by those with a sound knowledge of the compiler and linking in gen-
eral. The compiler often makes assumptions about the way in which the program will
be linked. If the psects are not linked correctly, code failure may result.

If it is absolutely necessary to use the linker directly, the best way to start is to copy the
linker arguments constructed by the compiler driver, and modify them as appropriate.
This will ensure that the necessary startup module and arguments are present.

5.2 OPERATION

A command to the linker takes the following form:

hlink [options] files

The options are zero or more linker options, each of which modifies the behavior of
the linker in some way. The files is one or more object files, and zero or more object
code library names (.lib extension). P-code libraries (.lpp extension) are always
passed to the code generator application and cannot be passed to the linker.

The options recognized by the linker are listed in Table 5-1 and discussed in the
following paragraphs.

TABLE 5-1: LINKER COMMAND-LINE OPTIONS

Option Effect

-8 Use 8086 style segment:offset address form

-Aclass=low-high ,... Specify address ranges for a class

-Cx Call graph options

-Cpsect=class Specify a class name for a global psect

-Cbaseaddr Produce binary output file based at baseaddr

-Dclass=delta Specify a class delta value

-Dsymfile Produce old-style symbol file

-Eerrfile Write error messages to errfile

-F Produce .obj file with only symbol records

-G spec Specify calculation for segment selectors

-H symfile Generate symbol file

-H+ symfile Generate enhanced symbol file

-I Ignore undefined symbols

-J num Set maximum number of errors before aborting

-K Prevent overlaying function parameter and auto areas

-L Preserve relocation items in .obj file

-LM Preserve segment relocation items in .obj file
 2010 Microchip Technology Inc. DS51865B-page 141

HI-TECH C® for PIC10/12/16 User’s Guide
If the standard input is a file then this file is assumed to contain the command-line
argument. Lines may be broken by leaving a backslash \ at the end of the preceding
line. In this fashion, HLINK commands of almost unlimited length may be issued. For
example a link command file called x.lnk and containing the following text:

-Z -OX.OBJ -MX.MAP \
-Ptext=0,data=0/,bss,nvram=bss/. \
X.OBJ Y.OBJ Z.OBJ

may be passed to the linker by one of the following:

hlink @x.lnk
hlink < x.lnk

Several linker options require memory addresses or sizes to be specified. The syntax
for all these is similar. By default, the number will be interpreted as a decimal value. To
force interpretation as a HEX number, a trailing H, or h, should be added, e.g. 765FH
will be treated as a HEX number.

5.2.1 -Aclass =low-high,...

Normally psects are linked according to the information given to a -P option (see
Section 5.2.18 “-Pspec”) but sometimes it is desirable to have a class of psects linked
into more than one non-contiguous address range. This option allows a number of
address ranges to be specified as a class. For example:

-ACODE=1020h-7FFEh,8000h-BFFEh

specifies that psects in the class CODE are to be linked into the given address ranges,
unless they are specifically linked otherwise.

-N Sort symbol table in map file by address order

-Nc Sort symbol table in map file by class address order

-Ns Sort symbol table in map file by space address order

-Mmapfile Generate a link map in the named file

-Ooutfile Specify name of output file

-Pspec Specify psect addresses and ordering

-Qprocessor Specify the processor type (for cosmetic reasons only)

-S Inhibit listing of symbols in symbol file

-Sclass=limit[,bound] Specify address limit, and start boundary for a class of
psects

-Usymbol Pre-enter symbol in table as undefined

-Vavmap Use file avmap to generate an Avocet format symbol file

-Wwarnlev Set warning level (-9 to 9)

-Wwidth Set map file width (>=10)

-X Remove any local symbols from the symbol file

-Z Remove trivial local symbols from the symbol file

--DISL=list Specify disabled messages

--EDF=path Specify message file location

--EMAX=number Specify maximum number of errors

--NORLF Do not relocate list file

--VER Print version number and stop

TABLE 5-1: LINKER COMMAND-LINE OPTIONS (CONTINUED)

Option Effect
DS51865B-page 142  2010 Microchip Technology Inc.

Linker
Where there are a number of identical, contiguous address ranges, they may be
specified with a repeat count following an x character. For example:

-ACODE=0-0FFFFhx16

specifies that there are 16 contiguous ranges, each 64k bytes in size, starting from
address zero. Even though the ranges are contiguous, no psect will straddle a 64k
boundary, thus this may result in different psect placement to the case where the option

-ACODE=0-0FFFFFh

had been specified, which does not include boundaries on 64k multiples.

The -A option does not specify the memory space associated with the address. Once
a psect is allocated to a class, the space value of the psect is then assigned to the
class, see Section 4.3.9.3.12 “Space”.

5.2.2 -Cx

This option is now obsolete.

-Cpsect=class

This option will allow a psect to be associated with a specific class. Normally this is not
required on the command line since psect classes are specified in object files. See
Section 4.3.9.3.3 “Class”.

5.2.3 -Dclass=delta

This option allows the delta value for psects that are members of the specified class to
be defined. The delta value should be a number and represents the number of bytes
per addressable unit of objects within the psects. Most psects do not need this option
as they are defined with a delta value. See Section 4.3.9.3.4 “Delta”.

5.2.4 -Dsymfile

Use this option to produce an old-style symbol file. An old-style symbol file is an ASCII
file, where each line has the link address of the symbol followed by the symbol name.

5.2.5 -Eerrfile

Error messages from the linker are written to the standard error stream. Under DOS
there is no convenient way to redirect this to a file (the compiler drivers will redirect
standard error if standard output is redirected). This option will make the linker write all
error messages to the specified file instead of the screen, which is the default standard
error destination.

5.2.6 -F

Normally the linker will produce an object file that contains both program code and data
bytes, and symbol information. Sometimes it is desired to produce a symbol-only object
file that can be used again in a subsequent linker run to supply symbol values. The -F
option will suppress data and code bytes from the output file, leaving only the symbol
records.

This option can be used when part of one project (i.e. a separate build) is to be shared
with other, as might be the case with a bootloader and application. The files for one
project are compiled using this linker option to produce a symbol-only object file; this is
then linked with the files for the other project.
 2010 Microchip Technology Inc. DS51865B-page 143

HI-TECH C® for PIC10/12/16 User’s Guide
5.2.7 -Gspec

When linking programs using segmented, or bank-switched psects, there are two ways
the linker can assign segment addresses, or selectors, to each segment. A segment is
defined as a contiguous group of psects where each psect in sequence has both its link
and load address concatenated with the previous psect in the group. The segment
address or selector for the segment is the value derived when a segment type
relocation is processed by the linker.

By default the segment selector will be generated by dividing the base load address of
the segment by the relocation quantum of the segment, which is based on the reloc=
flag value given to psects at the assembler level, see Section 4.3.9.3.10 “Reloc”. The
-G option allows an alternate method for calculating the segment selector. The
argument to -G is a string similar to:

A /10h-4h

where A represents the load address of the segment and / represents division. This
means “Take the load address of the psect, divide by 10 HEX, then subtract 4". This
form can be modified by substituting N for A, * for / (to represent multiplication), and
adding rather than subtracting a constant. The token N is replaced by the ordinal
number of the segment, which is allocated by the linker. For example:

N*8+4

means "take the segment number, multiply by 8 then add 4". The result is the segment
selector. This particular example would allocate segment selectors in the sequence 4,
12, 20, ... for the number of segments defined.

The selector of each psect is shown in the map file. See Section 5.4.2.2 “Psect Infor-
mation listed by Module”.

5.2.8 -Hsymfile

This option will instruct the linker to generate a symbol file. The optional argument
symfile specifies the name of the file to receive the data. The default file name is
l.sym.

5.2.9 -H+symfile

This option will instruct the linker to generate an enhanced symbol file, which provides,
in addition to the standard symbol file, class names associated with each symbol and
a segments section which lists each class name and the range of memory it occupies.
This format is recommended if the code is to be run in conjunction with a debugger. The
optional argument symfile specifies a file to receive the symbol file. The default file
name is l.sym.

5.2.10 -I

Usually failure to resolve a reference to an undefined symbol is a fatal error. Use of this
option will cause undefined symbols to be treated as warnings instead.

5.2.11 -Jerrcount

The linker will stop processing object files after a certain number of errors (other than
warnings). The default number is 10, but the -J option allows this to be altered.

5.2.12 -K

For compilers that use a compiled stack, the linker will try and overlay function auto and
parameter blocks to reduce the total amount of RAM required. For debugging pur-
poses, this feature can be disabled with this option, however doing so will increase the
data memory requirements.
DS51865B-page 144  2010 Microchip Technology Inc.

Linker
5.2.13 -L

When the linker produces an output file it does not usually preserve any relocation
information, since the file is now absolute. In some circumstances a further "relocation"
of the program will be done at load time. The -L option will generate in the output file
one null relocation record for each relocation record in the input.

5.2.14 -LM

Similar to the above option, this preserves relocation records in the output file, but only
segment relocations.

5.2.15 -Mmapfile

This option causes the linker to generate a link map in the named file, or on the stan-
dard output if the file name is omitted. The format of the map file is illustrated in Section
Section 5.4 “Map Files”.

5.2.16 -N, -Ns and-Nc

By default the symbol table in the map file will be sorted by name. The -N option will
cause it to be sorted numerically, based on the value of the symbol. The -Ns and -Nc
options work similarly except that the symbols are grouped by either their space value,
or class.

5.2.17 -Ooutfile

This option allows specification of an output file name for the linker. The default output
file name is l.obj. Use of this option will override the default.

5.2.18 -Pspec

Psects are linked together and assigned addresses based on information supplied to
the linker via -P options. The argument to the -P option consists basically of comma
-separated sequences thus:

-Ppsect =lnkaddr+min/ldaddr+min,psect=lnkaddr/ldaddr,...

There are several variations, but essentially each psect is listed with its desired link and
load addresses, and a minimum value. All values may be omitted, in which case a
default will apply, depending on previous values.

If present, the minimum value, min, is preceded by a + sign. It sets a minimum value
for the link or load address. The address will be calculated as described below, but if it
is less than the minimum then it will be set equal to the minimum.

The link and load addresses are either numbers, or the names of other psects, classes,
or special tokens.

If the link address is a negative number, the psect is linked in reverse order with the top
of the psect appearing at the specified address minus one. Psects following a negative
address will be placed before the first psect in memory.

If a psect’s link address is omitted, it will be derived from the top of the previous psect.
For example, in the following:

-Ptext=100h,data,bss

the text psect is linked at 100h (its load address defaults to the same). The data
psect will be linked (and loaded) at an address which is 100 HEX plus the length of the
text psect, rounded up as necessary if the data psect has a reloc value associated
with it (see Section 4.3.9.3.10 “Reloc”). Similarly, the bss psect will concatenate with
the data psect. Again:

-Ptext=-100h,data,bss
 2010 Microchip Technology Inc. DS51865B-page 145

HI-TECH C® for PIC10/12/16 User’s Guide
will link in ascending order bss, data then text with the top of the text psect
appearing at address 0ffh.

If the load address is omitted entirely, it defaults to the same as the link address. If the
slash / character is supplied, but no address is supplied after it, the load address will
concatenate with the previous psect. For example:

-Ptext=0,data=0/,bss

will cause both text and data to have a link address of zero; text will have a load
address of zero, and data will have a load address starting after the end of text. The
bss psect will concatenate with data in terms of both link and load addresses.

The load address may be replaced with a dot character, ".". This tells the linker to set
the load address of this psect to the same as its link address. The link or load address
may also be the name of another (previously linked) psect. This will explicitly
concatenate the current psect with the previously specified psect, e.g.

-Ptext=0,data=8000h/,bss/. -Pnvram=bss,heap

This example shows text at zero, data linked at 8000h but loaded after text; bss
is linked and loaded at 8000h plus the size of data, and nvram and heap are concat-
enated with bss. Note here the use of two -P options. Multiple -P options are
processed in order.

If -A options (see Section 5.2.1 “-Aclass =low-high,...”) have been used to specify
address ranges for a class then this class name may be used in place of a link or load
address, and space will be found in one of the address ranges. For example:

-ACODE=8000h-BFFEh,E000h-FFFEh
-Pdata=C000h/CODE

This will link data at C000h, but find space to load it in the address ranges associated
with the CODE class. If no sufficiently large space is available in this class, an error will
result. Note that in this case the data psect will still be assembled into one contiguous
block, whereas other psects in the class CODE will be distributed into the address
ranges wherever they will fit. This means that if there are two or more psects in class
CODE, they may be intermixed in the address ranges.

Any psects allocated by a -P option will have their load address range subtracted from
the address ranges associate with classes in the same memory space. This allows a
range to be specified with the -A option without knowing in advance how much of the
lower part of the range, for example, will be required for other psects.

The final link and load address of psects are shown in the map file. See
Section 5.4.2.2 “Psect Information listed by Module”.

5.2.19 -Qprocessor

This option allows a processor type to be specified. This is purely for information placed
in the map file. The argument to this option is a string describing the processor. There
are no behavioral changes attributable to the processor type.

5.2.20 -S

This option prevents symbol information relating from being included in the symbol file
produced by the linker. Segment information is still included.

5.2.21 -Sclass =limit[,bound]

A class of psects may have an upper address limit associated with it. The following
example places a limit on the maximum address of the CODE class of psects to one less
than 400h.

-SCODE=400h
DS51865B-page 146  2010 Microchip Technology Inc.

Linker
Note that to set an upper limit to a psect, this must be set in assembler code using the
psect limit flag, see Section 4.3.9.3.6 “Limit”).

If the bound (boundary) argument is used, the class of psects will start on a multiple of
the bound address. This example below places the FARCODE class of psects at a
multiple of 1000h, but with an upper address limit of 6000h.

-SFARCODE=6000h,1000h

5.2.22 -Usymbol

This option will enter the specified symbol into the linker’s symbol table as an undefined
symbol. This is useful for linking entirely from libraries, or for linking a module from a
library where the ordering has been arranged so that by default a later module will be
linked.

5.2.23 -Vavmap

To produce an Avocet format symbol file, the linker needs to be given a map file to allow
it to map psect names to Avocet memory identifiers. The avmap file will normally be
supplied with the compiler, or created automatically by the compiler driver as required.

5.2.24 -Wnum

The -W option can be used to set the warning level, in the range -9 to 9, or the width of
the map file, for values of num >= 10.

-W9 will suppress all warning messages. -W0 is the default. Setting the warning level
to -9 (-W-9) will give the most comprehensive warning messages.

5.2.25 -X

Local symbols can be suppressed from a symbol file with this option. Global symbols
will always appear in the symbol file.

5.2.26 -Z

Some local symbols are compiler generated and not of interest in debugging. This
option will suppress from the symbol file all local symbols that have the form of a single
alphabetic character, followed by a digit string. The set of letters that can start a trivial
symbol is currently “klfLSu “. The -Z option will strip any local symbols starting with
one of these letters, and followed by a digit string.

5.2.27 --DISL=message numbers Disable Messages

This option is mainly used by the command-line driver, PICC, to disable particular
message numbers. It takes a comma-separate list of message numbers that will be
disabled during compilation.

This option is applied if compiling using PICC, the command-line driver and the
--MSGDISABLE driver option, see Section 2.7.37 “--MSGDISABLE: Disable Warn-
ing Messages”.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

5.2.28 --EDF=message file: Set Message File Path

This option is mainly used by the command-line driver, PICC, to specify the path of the
message description file. The default file is located in the dat directory in the compiler’s
installation directory.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.
 2010 Microchip Technology Inc. DS51865B-page 147

HI-TECH C® for PIC10/12/16 User’s Guide
5.2.29 --EMAX=number: Specify Maximum Number of Errors

This option is mainly used by the command-line driver, PICC, to specify the maximum
number of errors that can be encountered before the assembler terminates. The default
number is 10 errors.

This option is applied if compiling using PICC, the command-line driver and the
--ERRORS driver option, see Section 2.7.28 “--ERRORS: Maximum Number of
Errors”.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

5.2.30 --NORLF: Do Not Relocate List File

Use of this option prevents the linker applying fixups to the assembly list file produced
by the assembler. This option is normally using by the command line driver, PICC,
when performing pre-link stages, but is omitted when performing the final link step so
that the list file shows the final absolute addresses.

If you are attempting to resolve fixup errors, this option should be disabled so as to fixup
the assembly list file and allow absolute addresses to be calculated for this file. If the
compiler driver detects the presence of a preprocessor macro __DEBUG which is
equated to 1, then this option will be disabled when building. This macro is set when
choosing a Debug build in MPLAB IDE, so always have this selected if you encounter
such errors.

5.2.31 --VER: Print Version Number

This option printed information relating to the version and build of the linker. The linker
will terminate after processing this option, even if other options and files are present on
the command line.

5.3 RELOCATION AND PSECTS

This section looks at the input files that the linker has to work with.

The linker can read both relocatable object files and object-file libraries (.lib exten-
sion). The library files are a collection of object files packaged into a single unit, so
essentially we only need consider the format of object files.

Each object file consists of a number of records. Each record has a type that indicates
what sort of information it holds. Some record types hold general information about the
target device and its configuration, other records types may hold data, and others,
program debugging information, for example.

A lot of the information in object files relates to psects. Psects are an assembly domain
construct and are essentially a block of something, either instructions or data. Every-
thing that contributes to the program is located in a psect. See
Section 4.3.8 “Program Sections”. There is a particular record type that is used to
hold the data in psects. The bulk of each object file consists of psect records containing
the executable code and variables etc.

We are now in a position to look at the fundamental tasks the linker performs, which
are:

• combining all the relocatable object files into one

• relocation of psects contained in the object files into memory

• fixup of symbolic references in the psects
DS51865B-page 148  2010 Microchip Technology Inc.

Linker
There is typically at least two object files that are passed to the linker. One will be pro-
duced from all the C code in the project, including C library code. There is only one of
these files since the code generator compiles and combines all the C code of the pro-
gram and produces just the one assembly output. The other file passed to the linker will
be the object code produced from the runtime startup code, see
Section 2.4.2 “Runtime Startup Code”.

If there are assembly source files in the project, then there will also be one object file
produced for each source file and these will be passed to the linker. Existing object files,
or object file libraries can also be specified in a project, and if present, these will also
be passed to the linker.

The output of the linker is also an object file, but there is only ever one file produced.
The file is absolute since relocation will have been performed by the linker. The output
file will consist of the information from all input object files merged together.

Relocation consists of placing the psect data into the memory of the target device.

The target device memory specification is passed to the linker by the way of linker
options. These options are generated by the command-line driver, PICC. There are no
linker scripts or means of specifying options in any source file. The default linker
options rarely need adjusting, but can be changed, if required and with caution, using
the driver option -L-, see Section 2.7.7 “-L-: Adjust Linker Options Directly”.

Once psects are placed at actual memory locations, symbolic references made in the
psects data can be replaced with absolute values. This is a process called fixup.

For each psect record in the object file, there is a corresponding relocation record that
indicates which bytes (or bits) in the psect record need to be adjusted once relocation
is complete. The relocation records also specify how the values are to be determined.
A linker fixup overflow error can occur if the value determined by the linker is too large
to fit in the “hole” reserved for the value in the psect. See Section “(477) fixup over-
flow in expression (location 0x* (0x*+*), size *, value 0x*) (Linker)” for information
on finding the cause of these errors.

5.4 MAP FILES

The map file contains information relating to the relocation of psects and the addresses
assigned to symbols within those psects.

5.4.1 Generation

If compilation is being performed via an IDE such as HI-TIDE or MPLAB IDE, a map
file is generated by default without you having to adjust the compiler options. If you are
using the driver from the command line then you’ll need to use the -M option to request
that the map file be produced, see Section 5.2.15 “-Mmapfile”. Map files use the
extension .map.

Map files are produced by the linker. If the compilation process is stopped before the
linker is executed, then no map file is produced. The linker will still produce a map file
even if it encounters errors, which will allow you to use this file to track down the cause
of the errors. However, if the linker ultimately reports too many errors then it did
not run to completion, and the map file will be either not created or not complete. You
can use the --ERRORS option (see Section 2.7.28 “--ERRORS: Maximum Number
of Errors”) on the command line to increase the number of errors before the linker
exits.
 2010 Microchip Technology Inc. DS51865B-page 149

HI-TECH C® for PIC10/12/16 User’s Guide
5.4.2 Contents

The sections in the map file, in order of appearance, are as follows.

• The compiler name and version number

• A copy of the command line used to invoke the linker

• The version number of the object code in the first file linked

• The machine type

• The call graph information

• A psect summary sorted by the psect’s parent object file

• A psect summary sorted by the psect’s CLASS

• A segment summary

• Unused address ranges summary

• The symbol table

Portions of an example map file, along with explanatory text, are shown in the following
sections.

5.4.2.1 GENERAL INFORMATION

At the top of the map file is general information relating to the execution of the linker.

When analyzing a program, always confirm the compiler version number shown in the
map file if you have more than one compiler version installed to ensure the desired
compiler is being executed.

The device selected with the --CHIP option (Section 2.7.20 “--CHIP: Define Proces-
sor”) or that select in your IDE, should appear after the Machine type entry.

The object code version relates to the file format used by relocatable object files pro-
duced by the assembler. Unless either the assembler or linker have been updated inde-
pendently, this should not be of concern.

A typical map file may begin something like the following. This example has been cut
down for clarity.

--edf=C:\Program Files\HI-TECH Software\PICC\PRO\9.65pl1\dat\en_msgs.txt \
-cs -h+test.sym -z -Q16F946 -ol.obj -Mtest.map -E1 -ACODE=00h-07FFhx4 \
-ACONST=00h-0FFhx32 -AENTRY=00h-0FFhx32 -ASTRING=00h-0FFhx32 \
-ARAM=020h-06Fh,0A0h-0EFh,0120h-016Fh,01A0h-01EFh \
-AABS1=020h-07Fh,0A0h-0EFh,0120h-016Fh,01A0h-01EFh -ABANK0=020h-07Fh \
-ABANK1=0A0h-0EFh -ABANK2=0120h-016Fh -ABANK3=01A0h-01EFh \
-ACOMMON=070h-07Fh \
-preset_vec=00h,intentry,intcode,intret,init,init23,end_init,...\
-pstrings=CODE -ppowerup=CODE -ptemp=-COMMON -pcommon=-COMMON \
-prbss_0=BANK0,rbit_0=BANK0,rdata_0=BANK0,idata_0=CODE -pnvram=BANK0 \
-prbss_1=BANK1,rbit_1=BANK1,rdata_1=BANK1,idata_1=CODE \
-pnvram_1=BANK1,nvbit_1=BANK1 \
-ACONFIG=02007h-02007h -pconfig=CONFIG -DCONFIG=2 -AIDLOC=02000h-02003h \
-pidloc=IDLOC -DIDLOC=2 -AEEDATA=00h-0FFh/02100h -peeprom_data=EEDATA \
-DEEDATA=2 -pfloat_text0=CODE,float_text1=CODE,float_text2=CODE \
-pfloat_text3=CODE,float_text4=CODE -DCODE=2 startup.obj test.obj

Object code version is 3.10

Machine type is 16F946

The Linker command line shows all the command-line options and files that were
passed to the linker for the last build. Remember, these are linker options and not
command-line driver options.
DS51865B-page 150  2010 Microchip Technology Inc.

Linker
The linker options are necessarily complex. Fortunately, they rarely need adjusting
from their default settings. They are formed by the command-line driver, PICC, based
on the selected target device and the specified driver options. You can often confirm
that driver options were valid by looking at the linker options in the map file. For exam-
ple, if you ask the driver to reserve an area of memory, you should see a change in the
linker options used.

If the default linker options must be changed, this can be done indirectly through the
driver using the driver -L- option, see Section 2.7.7 “-L-: Adjust Linker Options
Directly”. If you use this option, always confirm the change appears correctly in the
map file.

5.4.2.2 PSECT INFORMATION LISTED BY MODULE

The next section in the map file lists those modules that made a contribution to the out-
put, and information regarding the psects these modules defined.

This section is heralded by the line that contains the headings:

Name Link Load Length Selector Space Scale

Under this on the far left is a list of object files. These object files include both files gen-
erated from source modules and those that were extracted from object library files
(.lib extension). In the latter case, the name of the library file is printed before the
object file list. Note that since the code generator combines all C source files (and
p-code libraries), there will only be one object file representing the entire C part of the
program. The object file corresponding to the runtime startup code is normally present
in this list.

The information in this section of the map file can be used to confirm that a module is
making a contribution to the output file and to determine the exact psects that each
module defines.

Shown are all the psects (under the Name column) that were linked into the program
from each object file, and information about that psect.

The linker deals with two kinds of addresses: link and load. Generally speaking the link
address of a psect is the address by which it will be accessed at run time.

The load address, which is often the same as the link address, is the address at which
the psect will start within the output file (HEX or binary file etc.). If a psect is used to
hold bits, the load address is irrelevant and is instead used to hold the link address (in
bit units) converted into a byte address.

The Length of the psect is shown in the units used by that psect.

The Selector is less commonly used and is of no concern when compiling for PIC
devices.

The Space field is important as it indicates the memory space in which the psect was
placed. For Harvard architecture machines, with separate memory spaces (such as the
PIC10/12/16 devices), this field must be used in conjunction with the address to specify
an exact storage location. A space of 0 indicates the program memory, and a space of
1 indicates the data memory. See Section 4.3.9.3.12 “Space”.

The Scale of a psect indicates the number of address units per byte. This is left blank
if the scale is 1 and will show 8 for psects that hold bit objects. The load address of
psects that hold bits is used to display the link address converted into units of bytes,
rather than the load address. See Section 4.3.9.3.2 “Bit”.

For example, the following appears in a map file.

 Name Link Load Length Selector Space Scale
ext.obj text 3A 3A 22 30 0
 bss 4B 4B 10 4B 1
 rbit 50 A 2 0 1 8
 2010 Microchip Technology Inc. DS51865B-page 151

HI-TECH C® for PIC10/12/16 User’s Guide
This indicates that one of the files that the linker processed was called ext.obj. (This
may have been derived from C code or a source file called ext.as.)

This object file contained a text psect, as well as psects called bss and rbit.

The psect text was linked at address 3A and bss at address 4B. At first glance, this
seems to be a problem given that text is 22 words long, however note that they are in
different memory areas, as indicated by the space flag (0 for text and 1 for bss), and
so do not occupy the same memory.

The psect rbit contains bit objects, and this can be confirmed by looking it the scale
value, which is 8. Again, at first glance there seems there could be an issue with rbit
linked over the top of bss. Their space flags are the same, but since rbit contains bit
objects, its link address is in units of bits. Note that the load address field of rbit psect
displays the link address converted to byte units, i.e. 50h/8 => Ah.

Underneath the object file list there may be a label COMMON. This shows the contri-
bution to the program from program-wide psects, in particular that used by the compiled
stack.

5.4.2.3 PSECT INFORMATION LISTED BY CLASS

The next section in the map file shows the same psect information but grouped by the
psects’ class.

This section is heralded by the line that contains the headings:

TOTAL Name Link Load Length

Under this are the class names followed by those psects which belong to this class, see
Section 4.3.9.3.3 “Class”. These psects are the same as those listed by module in the
above section; there is no new information contained in this section, just a different
presentation.

5.4.2.4 SEGMENT LISTING

The class listing in the map file is followed by a listing of segments. A segment is con-
ceptual grouping of contiguous psects in the same memory space, and are used by the
linker as an aid in psect placement. There is no segment assembler directive and
segments cannot be controlled in any way.

This section is heralded by the line that contains the headings:

SEGMENTS Name Load Length Top Selector Space Class

The name of a segment is derived from the psect in the contiguous group with the low-
est link address. This can lead to confusion with the psect with the same name. Do not
read psect information from this section of the map file.

Typically this section of the map file can be ignored by the user.

5.4.2.5 UNUSED ADDRESS RANGES

The last of the memory summaries show the memory is has not been allocated, and is
hence unused. The linker is aware of any memory allocated by the code generator (for
absolute variables), and so this free space is accurate.

This section follows the heading:

UNUSED ADDRESS RANGES

and is followed by a list of classes and the memory still available in each class. If there
is more than one memory range available in a class, each range is printed on a
separate line. Any paging boundaries within a class are not displayed, but the column
Largest block shows the largest contiguous free space which takes into account any
paging in the memory range. If you are looking to see why psects cannot be placed into
memory (e.g. cant-find-space type errors) then this important information to study.
DS51865B-page 152  2010 Microchip Technology Inc.

Linker
Note that the memory associated with a class can overlap that in others, thus the total
free space is not simply the addition of all the unused ranges.

5.4.2.6 SYMBOL TABLE

The final section in the map file list global symbols that the program defines. This
section has a heading:

Symbol Table

and is followed by two columns in which the symbols are alphabetically listed. As
always with the linker, any C derived symbol is shown with its assembler equivalent
symbol name. See Section 3.13.3.1 “Equivalent Assembly Symbols”.

The symbols listed in this table are:

• Global assembly labels

• Global EQU /SET assembler directive labels

• Linker-defined symbols

Assembly symbols are made global via the GLOBAL assembler directive, see
Section 4.3.9.1 “GLOBAL” for more information.

Linker-defined symbols act like EQU directives, however they are defined by the linker
during the link process, and no definition for them will appear in any source or
intermediate file. See Section 3.16.3 “Linker-Defined Symbols”.

Each symbol is shown with the psect in which they are placed, and the value (usually
an address) which the symbol has been assigned. There is no information encoded into
a symbol to indicate whether it represents code or data, nor in which memory space it
resides.

If the psect of a symbol is shown as (abs), this implies that the symbol is not directly
associated with a psect. Such is the case for absolute C variables, or any symbols that
are defined using an EQU directive in assembly.

Note that a symbol table is also shown in each assembler list file. (See
Section 2.7.17 “--ASMLIST: Generate Assembler List Files” for information on gen-
erating these files.) These differ to that shown in the map file in that they list also list
local symbols, and only show symbols defined in the corresponding module.
 2010 Microchip Technology Inc. DS51865B-page 153

HI-TECH C® for PIC10/12/16 User’s Guide
NOTES:
DS51865B-page 154  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Chapter 6. Utilities
6.1 INTRODUCTION

This chapters discusses some of the utility applications that are bundled with the
compiler.

Some of these applications may not be normally invoked when building, but can be
manually executed to perform certain tasks.

6.2 LIBRARIAN

The librarian program, LIBR, has the function of combining several files into a single
file known as a library. The reasons you might want to use a library in a project are:

• there will be fewer files to link

• the file content will be accessed faster

• libraries uses less disk space

The librarian can build p-code libraries (.lpp extension) from p-code files (.p1 exten-
sion), or object code libraries (.lib extension) from object files (.obj extension).
P-code libraries should be only created if all the library source code is written in C.
Object code libraries should be used for assembly code that is to be built into a library.

With both library types, only those modules required by a program will be extracted and
included in the program output.

6.2.1 The Library Format

The modules in a library are simply concatenated, but a directory of the modules and
symbols in the library is maintained at the beginning of a library file. Since this directory
is smaller than the sum of the modules, on the first pass the linker can perform faster
searches just reading the directory, and not all the modules. On the second pass it need
read only those modules which are required, seeking over the others. This all
minimizes disk I/O when linking.

It should be noted that the library format is not a general purpose archiving mechanism
as is used by some other compiler systems. This has the advantage that the format
may be optimized toward speeding up the linkage process.

6.2.2 Using the Librarian

Library files can be built directly using the command-line driver, see
Section 2.7.44 “--OUTPUT= type: Specify Output File Type”. In this case the driver
will invoke LIBR with the appropriate options saving you from having to use the librar-
ian directly. You may wish to perform this step manually, or you may need to look at the
contents of library files, for example. This section shows how the librarian can be exe-
cuted from the command-line. The librarian cannot be called from IDEs, such as
MPLAB IDE.

The librarian program is called LIBR, and the formats of commands to it are as follows:

LIBR [options] k file.lpp [file1.p1 file2.p1...]
LIBR [options] k file.lib [file1.obj file2.obj ...]
 2010 Microchip Technology Inc. DS51865B-page 155

HI-TECH C® for PIC10/12/16 User’s Guide
The options are zero or more librarian options which affect the output of the program.
These are listed in Table 6-1.

A key letter, k, denotes the command requested of the librarian (replacing, extracting
or deleting modules, listing modules or symbols). These commands are listed in
Table 6-2.

The first file name listed after the key is the name of the library file to be used. The
following files, if required, are the modules of the library required by the command
specified.

If you are building a p-code library, the modules listed must be p-code files. If you are
building an object file library, the modules listed must be object files.

When replacing or extracting modules, the names of the modules to be replaced or
extracted must be specified. If no names are supplied, all the modules in the library will
be replaced or extracted respectively.

Adding a file to a library is performed by requesting the librarian to replace it in the
library. Since it is not present, the module will be appended to the library. If the r key is
used and the library does not exist, it will be created.

When using the d key letter, the named modules will be deleted from the library. In this
instance, it is an error not to give any module names.

The m and s key letters will list the named modules and, in the case of the s key letter,
the global symbols defined or referenced within. A D or U letter is used to indicate
whether each symbol is defined in the module, or referenced but undefined. As with the
r and x key letters, an empty list of modules means all the modules in the library.

The o key takes a list of module names and re-orders the matching modules in the
library file so they have the same order as that listed on the command line. Modules
which are not listed are left in their existing order, and will appear after the re-ordered
modules.

TABLE 6-1: LIBRARIAN COMMAND-LINE OPTIONS

Option Effect

-P width Specify page width

-W Suppress non-fatal errors

TABLE 6-2: LIBRARIAN KEY LETTER COMMANDS

Key Meaning

r Replace modules

d Delete modules

x Extract modules

m List modules

s List modules with symbols

o Re-order modules
DS51865B-page 156  2010 Microchip Technology Inc.

Utilities
6.2.2.1 EXAMPLES

Here are some examples of usage of the librarian. The following command:

LIBR s htpic--c.lpp ctime.p1

lists the global symbols in the modules ctime.p1, as shown here:

ctime.p1 D _moninit
 D _localtime
 D _gmtime
 D _asctime
 D _ctime

The D letter before each symbol indicates that these symbols are defined by the
module.

Using the command above without specifying the module name will list all the symbols
defined (or undefined) in the library.

The following command deletes the object modules a.obj, b.obj and c.obj from
the library lcd.lib:

LIBR d lcd.lib a.obj b.obj c.obj

6.2.3 Supplying Arguments

Since it is often necessary to supply many object file arguments to LIBR, arguments
will be read from standard input if no command-line arguments are given. If the stan-
dard input is attached to the console, LIBR will prompt for input.

Multiple line input may be given by using a backslash as a continuation character on
the end of a line. If standard input is redirected from a file, LIBR will take input from the
file, without prompting. For example:

libr
libr> r file.lib 1.obj 2.obj 3.obj \
libr> 4.obj 5.obj 6.obj

will perform much the same as if the object files had been typed on the command line.
The libr> prompts were printed by LIBR itself, the remainder of the text was typed
as input.

libr <lib.cmd

LIBR will read input from lib.cmd, and execute the command found therein. This
allows a virtually unlimited length command to be given to LIBR.

6.2.4 Ordering of Libraries

The librarian creates libraries with the modules in the order in which they were given
on the command line. When updating a library the order of the modules is preserved.
Any new modules added to a library after it has been created will be appended to the
end.

The ordering of the modules in a library is significant to the linker. If a library contains
a module which references a symbol defined in another module in the same library, the
module defining the symbol should come after the module referencing the symbol.

6.2.5 Error Messages

LIBR issues various error messages, most of which represent a fatal error, while some
represent a harmless occurrence which will nonetheless be reported unless the -W
option was used. In this case all warning messages will be suppressed.
 2010 Microchip Technology Inc. DS51865B-page 157

HI-TECH C® for PIC10/12/16 User’s Guide
6.3 OBJTOHEX

The HI-TECH linker is capable of producing object files as output. Any other format
required must be produced by running the utility program OBJTOHEX. This allows con-
version of object files as produced by the linker into a variety of different formats,
including various HEX formats. The program is invoked thus:

OBJTOHEX [options] inputfile outputfile

All of the arguments are optional. The options for OBJTOHEX are listed in Table 6-3.

If outputfile is omitted it defaults to l.HEX or l.bin depending on whether the -b
option is used. The inputfile defaults to l.obj.

Except where noted, any address will be interpreted as a decimal value. To force inter-
pretation as a HEX number, a trailing H, or h, should be added, e.g. 765FH will be
treated as a HEX number.

TABLE 6-3: OBJTOHEX COMMAND-LINE OPTIONS

Option Meaning

-8 Produce a CP/M-86 output file

-A Produce an ATDOS .atx output file

-Bbase Produce a binary file with offset of base. Default file name is l.obj

-Cckfile Read a list of checksum specifications from ckfile or standard input

-D Produce a COD file

-E Produce an MS-DOS .exe file

-Ffill Fill unused memory with words of value fill - default value is 0FFh

-I Produce an Intel HEX file with linear addressed extended records.

-L Pass relocation information into the output file (used with .exe files)

-M Produce a Motorola HEX file (S19, S28 or S37 format)

-N Produce an output file for Minix

-Pstk Produce an output file for an Atari ST, with optional stack size

-R Include relocation information in the output file

-Sfile Write a symbol file into file

-T Produce a Tektronix HEX file.

-TE Produce an extended TekHEX file.

-U Produce a COFF output file

-UB Produce a UBROF format file

-V Reverse the order of words and long words in the output file

- n,m Format either Motorola or Intel HEX file, where n is the maximum number of
bytes per record and m specifies the record size rounding. Non-rounded
records are zero padded to a multiple of m. m itself must be a multiple of 2.

--EDF Specify message file location

--EMAX Specify maximum number of errors

--MSGDISABLE Specify disabled messages

--VER Print version number and stop
DS51865B-page 158  2010 Microchip Technology Inc.

Utilities
6.3.1 Checksum Specifications

If you are generating a HEX file output, use HEXMATE’s checksum tools, described in
Section 6.6 “HEXMATE”.

For other file formats, the OBJTOHEX checksum specification allows automated
checksum calculation and takes the form of several lines, each line describing one
checksum. The syntax of a checksum line is:

addr1-addr2 where1-where2 +offset

All of addr1, addr2, where1, where2 and offset are HEX numbers, without the
usual H suffix.

Such a specification says that the bytes at addr1 through to addr2 inclusive should
be summed and the sum placed in the locations where1 through where2 inclusive.
For an 8 bit checksum these two addresses should be the same. For a checksum
stored low byte first, where1 should be less than where2, and vice versa.

The +offset value is optional, but if supplied, the value will be used to initialize the
checksum. Otherwise it is initialized to zero.

For example:

0005-1FFF 3-4 +1FFF

This will sum the bytes in 5 through 1FFFH inclusive, then add 1FFFH to the sum. The
16 bit checksum will be placed in locations 3 and 4, low byte in 3. The checksum is ini-
tialized with 1FFFH to provide protection against an all zero ROM, or a ROM misplaced
in memory. A run time check of this checksum would add the last address of the ROM
being checksummed into the checksum. For the ROM in question, this should be
1FFFH. The initialization value may, however, be used in any desired fashion.

6.4 CREF

The cross reference list utility, CREF, is used to format raw cross-reference information
produced by the compiler or the assembler into a sorted listing.

A raw cross-reference file is produced with the --CR command-line driver option. The
assembler will generate a raw cross-reference file with a -C assembler option or a
XREF control line.

The general form of the CREF command is:

cref [options] files

where options is zero or more options as described below and files is one or more
raw cross-reference files.

CREF will accept wildcard filenames and I/O redirection. Long command lines may be
supplied by invoking CREF with no arguments and typing the command line in response
to the cref> prompt. A backslash at the end of the line will be interpreted to mean that
more command lines follow.
 2010 Microchip Technology Inc. DS51865B-page 159

HI-TECH C® for PIC10/12/16 User’s Guide
CREF takes the options listed in Section Table 6-4: “CREF command-line options”.

Each option is described in more detail in the following sections.

6.4.1 -Fprefix
It is often desired to exclude from the cross-reference listing any symbols defined in a
system header file, e.g. <stdio.h>. The -F option allows specification of a path name
prefix that will be used to exclude any symbols defined in a file whose path name
begins with that prefix. For example, -F\ will exclude any symbols from all files with a
path name starting with \.

6.4.2 -Hheading
The -H option takes a string as an argument which will be used as a header in the list-
ing. The default heading is the name of the first raw cross-ref information file specified.

6.4.3 -Llen
Specify the length of the paper on which the listing is to be produced, e.g. if the listing
is to be printed on 55 line paper you would use a -L55 option. The default is 66 lines.

6.4.4 -Ooutfile
Allows specification of the output file name. By default the listing will be written to the
standard output and may be redirected in the usual manner. Alternatively outfile
may be specified as the output file name.

6.4.5 -Pwidth
This option allows the specification of the width to which the listing is to be formatted,
e.g. -P132 will format the listing for a 132 column printer. The default is 80 columns.

6.4.6 -Sstoplist
The -S option should have as its argument the name of a file containing a list of sym-
bols not to be listed in the cross-reference. Symbols should be listed, one per line in
the file. Use the C domain symbols. Multiple stoplists may be supplied with multiple -S
options.

TABLE 6-4: CREF COMMAND-LINE OPTIONS

Option Meaning

-Fprefix Exclude symbols from files with a pathname
or filename starting with prefix

-Hheading Specify a heading for the listing file

-Llen Specify the page length for the listing file

-Ooutfile Specify the name of the listing file

-Pwidth Set the listing width

-Sstoplist Read file stoplist and ignore any symbols
listed.

-Xprefix Exclude any symbols starting with prefix

--EDF Specify message file location

--EMAX Specify maximum number of errors

--MSGDISABLE Specify disabled messages

--VER Print version number and stop
DS51865B-page 160  2010 Microchip Technology Inc.

Utilities
6.4.7 -Xprefix
The -X option allows the exclusion of symbols from the listing, based on a prefix given
as argument to -X. For example if it was desired to exclude all symbols starting with
the character sequence xyz then the option -Xxyz would be used. If a digit appears
in the character sequence then this will match any digit in the symbol, e.g. -XX0 would
exclude any symbols starting with the letter X followed by a digit.

6.4.8 --EDF=message file: Set Message File Path

This option is mainly used by the command-line driver, PICC, to specify the path of the
message description file. The default file is located in the dat directory in the compiler’s
installation directory.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

6.4.9 --EMAX=number: Specify Maximum Number of Errors

This option is mainly used by the command-line driver, PICC, to specify the maximum
number of errors that can be encountered before CREF terminates. The default number
is 10 errors.

This option is applied if compiling using PICC, the command-line driver and the
--ERRORS driver option, see Section 2.7.28 “--ERRORS: Maximum Number of
Errors”.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

6.4.10 --MSGDISABLE=message numbers Disable Messages

This option is mainly used by the command-line driver, PICC, to disable particular
message numbers. It takes a comma-separate list of message numbers that will be
disabled during compilation.

This option is applied if compiling using PICC, the command-line driver and the
--MSGDISABLE driver option, see Section 2.7.37 “--MSGDISABLE: Disable Warn-
ing Messages”.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

6.4.11 --VER: Print Version Number

This option prints information relating to the version and build of CREF. CREF will termi-
nate after processing this option, even if other options and files are present on the com-
mand line.
 2010 Microchip Technology Inc. DS51865B-page 161

HI-TECH C® for PIC10/12/16 User’s Guide
6.5 CROMWELL

The CROMWELL utility converts code and symbol files into different formats. These files
are typically used by debuggers and allow source-level debugging of code. The output
formats available are shown in Table 6-5.

The CROMWELL application is automatically executed by the command-line driver when
required. The following information is required if running the application manually.

The general form of the CROMWELL command is:

CROMWELL [options] inputFiles -okey [outputFile]

where options can be any of the options shown in Table 6-6.

The outputFile (optional) is the name of the output file. The inputFiles are
typically the HEX and SYM file.

CROMWELL automatically searches for the SDB files and reads those if they are found.
The options are further described in the following paragraphs.

TABLE 6-5: CROMWELL FORMAT TYPES

Key Format

cod Bytecraft COD file

coff COFF file format

elf ELF/DWARF file

eomf51 Extended OMF-51 format

hitech HI-TECH Software format

icoff ICOFF file format

ihex Intel HEX file format

mcoff Microchip COFF file format

omf51 OMF-51 file format

pe P&E file format

s19 Motorola HEX file format

TABLE 6-6: CROMWELL COMMAND-LINE OPTIONS

Option Description

-Pname[,architecture] Processor name and architecture

-N Identify code classes

-D Dump input file

-C Identify input files only

-F Fake local symbols as global

-Okey Set the output format

-Ikey Set the input format

-L List the available formats

-E Strip file extensions

-B Specify big-endian byte ordering

-M Strip underscore character

-V Verbose mode

--EDF=path Specify message file location

--EMAX=number Specify maximum number of errors

--MSGDISABLE=list Specify disabled messages

--VER Print version number and stop
DS51865B-page 162  2010 Microchip Technology Inc.

Utilities
6.5.1 -Pname[,architecture]

The -P options takes a string which is the name of the processor used. CROMWELL may
use this in the generation of the output format selected.

Note that to produce output in COFF format an additional argument to this option which
also specifies the processor architecture is required. Hence for this format the usage
of this option must take the form: -Pname,architecture. Table 6-7 enumerates the
architectures supported for producing COFF files.

6.5.2 -N

To produce some output file formats (e.g. COFF), CROMWELL requires that the names
of the program memory space psect classes be provided. The names of the classes
are specified as a comma-separated list. See the map file (Section 5.4 “Map Files”)
to determine which classes the linker uses.

For example, mid-range devices typically requires -NCODE,CONST,ENTRY,STRING.

6.5.3 -D

The -D option is used to display details about the named input file in a human-readable
format.This option is useful if you need to check the contents of the file, which are
usually binary files. The input file can be one of the file types as shown in Table 6-5.

6.5.4 -C

This option will attempt to identify if the specified input files are one of the formats as
shown in Table 6-5. If the file is recognized, a confirmation of its type will be displayed.

6.5.5 -F

When generating a COD file, this option can be used to force all local symbols to be
represented as global symbols. The may be useful where an emulator cannot read
local symbol information from the COD file.

6.5.6 -Okey

This option specifies the format of the output file. The key can be any of the types listed
in Table 6-5.

6.5.7 -Ikey

This option can be used to specify the default input file format. The key can be any of
the types listed in Table 6-5.

TABLE 6-7: ARCHITECTURE ARGUMENTS

Architecture Description

PIC12 Microchip baseline PIC® MCU chips

PIC14 Microchip Mid-Range PIC MCU chips

PIC14E Microchip Enhanced Mid-Range PIC MCU
chips

PIC16 Microchip high-end (17CXXX) PIC MCU chips

PIC18 Microchip PIC18 chips

PIC24 Microchip PIC24F and PIC24H chips

PIC30 Microchip dsPIC30 and dsPIC33 chips
 2010 Microchip Technology Inc. DS51865B-page 163

HI-TECH C® for PIC10/12/16 User’s Guide
6.5.8 -L

Use this option to show what file format types are supported. A list similar to that given
in Table 6-5 will be shown.

6.5.9 -E

Use this option to tell CROMWELL to ignore any filename extensions that were given.
The default extension will be used instead.

6.5.10 -B

In formats that support different endian types, use this option to specify big-endian byte
ordering.

6.5.11 -M

When generating COD files this option will remove the preceding underscore character
from symbols.

6.5.12 -V

Turns on verbose mode which will display information about operations CROMWELL is
performing.

6.5.13 --EDF=message file: Set Message File Path

This option is mainly used by the command-line driver, PICC, to specify the path of the
message description file. The default file is located in the dat directory in the compiler’s
installation directory.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

6.5.14 --EMAX=number: Specify Maximum Number of Errors

This option is mainly used by the command-line driver, PICC, to specify the maximum
number of errors that can be encountered before CROMWELL terminates. The default
number is 10 errors.

This option is applied if compiling using PICC, the command-line driver and the
--ERRORS driver option, see Section 2.7.28 “--ERRORS: Maximum Number of
Errors”.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

6.5.15 --MSGDISABLE=message numbers Disable Messages

This option is mainly used by the command-line driver, PICC, to disable particular
message numbers. It takes a comma-separate list of message numbers that will be
disabled during compilation.

This option is applied if compiling using PICC, the command-line driver and the
--MSGDISABLE driver option, see Section 2.7.37 “--MSGDISABLE: Disable Warn-
ing Messages”.

See Section 2.6 “Compiler Messages” for full information about the compiler’s
messaging system.

6.5.16 --VER: Print Version Number

This option printed information relating to the version and build of CROMWELL.
CROMWELL will terminate after processing this option, even if other options and files are
present on the command line.
DS51865B-page 164  2010 Microchip Technology Inc.

Utilities
6.6 HEXMATE

The HEXMATE utility is a program designed to manipulate Intel HEX files. HEXMATE is
a post-link stage utility which is automatically invoked by the compiler driver, and that
provides the facility to:

• Calculate and store variable-length checksum values

• Fill unused memory locations with known data sequences

• Merge multiple Intel HEX files into one output file

• Convert INHX32 files to other INHX formats (e.g. INHX8M)

• Detect specific or partial opcode sequences within a HEX file

• Find/replace specific or partial opcode sequences

• Provide a map of addresses used in a HEX file

• Change or fix the length of data records in a HEX file.

• Validate checksums within Intel HEX files.

Typical applications for HEXMATE might include:

• Merging a bootloader or debug module into a main application at build time

• Calculating a checksum over a range of program memory and storing its value in
program memory or EEPROM

• Filling unused memory locations with an instruction to send the PC to a known
location if it gets lost.

• Storage of a serial number at a fixed address.

• Storage of a string (e.g. time stamp) at a fixed address.

• Store initial values at a particular memory address (e.g. initialize EEPROM)

• Detecting usage of a buggy/restricted instruction

• Adjusting HEX file to meet requirements of particular bootloaders

6.6.1 HEXMATE Command Line Options

HEXMATE is automatically called by the command line driver, PICC. This is primarily to
merge in HEX files with the output generated by the source files, however there are
some PICC options which directly map to HEXMATE options, and so other functionality
can be requested without having to run HEXMATE explicitly on the command line. For
other functionality, the following details the options available when running this
application.

If HEXMATE is to be run directly, its usage is:

HEXMATE [specs,]file1.HEX [[specs,]file2.HEX ... [specs,]fileN.HEX]
[options]

Where file1.HEX through to fileN.HEX form a list of input Intel HEX files to merge
using HEXMATE. If only one HEX file is specified, then no merging takes place, but other
functionality is specified by additional options. Table 6-8 lists the command line options
that HEXMATE accepts.

TABLE 6-8: HEXMATE COMMAND-LINE OPTIONS

Option Effect

-ADDRESSING Set address fields in all HEXMATE options to use word
addressing or other

-BREAK Break continuous data so that a new record begins at a set
address

-CK Calculate and store a checksum value

-FILL Program unused locations with a known value

-FIND Search and notify if a particular code sequence is detected
 2010 Microchip Technology Inc. DS51865B-page 165

HI-TECH C® for PIC10/12/16 User’s Guide
The input parameters to HEXMATE are now discussed in greater detail. Note that any
integral values supplied to the HEXMATE options should be entered as hexadecimal
values without leading 0x or trailing h characters. Note also that any address fields
specified in these options are to be entered as byte addresses, unless specified
otherwise in the -ADDRESSING option.

6.6.1.1 SPECIFICATIONS,FILENAME.HEX

Intel HEX files that can be processed by HEXMATE should be in either INHX32 or
INHX8M format. Additional specifications can be applied to each HEX file to put
restrictions or conditions on how this file should be processed.

If any specifications are used they must precede the filename. The list of specifications
will then be separated from the filename by a comma.

A range restriction can be applied with the specification rStart-End. A range restric-
tion will cause only the address data falling within this range to be used. For example:

r100-1FF,myfile.hex

will use myfile.hex as input, but only process data which is addressed within the
range 100h-1FFh (inclusive) from that file.

An address shift can be applied with the specification sOffset. If an address shift is
used, data read from this HEX file will be shifted (by the offset specified) to a new
address when generating the output. The offset can be either positive or negative. For
example:

r100-1FFs2000,myfile.HEX

will shift the block of data from 100h-1FFh to the new address range 2100h-21FFh.

Be careful when shifting sections of executable code. Program code should only be
shifted if it is position independent.

6.6.1.2 + PREFIX

When the + operator precedes an argument or input file, the data obtained from that
source will be forced into the output file and will overwrite another other data existing
at that address range. For example:

+input.HEX +-STRING@1000="My string"

-FIND...,DELETE Remove the code sequence if it is detected (use with caution)

-FIND...,REPLACE Replace the code sequence with a new code sequence

-FORMAT Specify maximum data record length or select INHX variant

-HELP Show all options or display help message for specific option

-LOGFILE Save HEXMATE analysis of output and various results to a file

-Ofile Specify the name of the output file

-SERIAL Store a serial number or code sequence at a fixed address

-SIZE Report the number of bytes of data contained in the resultant
HEX image.

-STRING Store an ASCII string at a fixed address

-STRPACK Store an ASCII string at a fixed address using string packing

-W Adjust warning sensitivity

+ Prefix to any option to overwrite other data in its address range
if necessary

TABLE 6-8: HEXMATE COMMAND-LINE OPTIONS (CONTINUED)

Option Effect
DS51865B-page 166  2010 Microchip Technology Inc.

Utilities
Ordinarily, HEXMATE will issue an error if two sources try to store differing data at the
same location. Using the + operator informs HEXMATE that if more than one data
source tries to store data to the same address, the one specified with a + prefix will take
priority.

6.6.1.3 -ADDRESSING

By default, all address arguments in HEXMATE options expect that values will be
entered as byte addresses. In some device architectures the native addressing format
may be something other than byte addressing. In these cases it would be much simpler
to be able to enter address-components in the device’s native format. To facilitate this,
the -ADDRESSING option is used.

This option takes exactly one parameter which configures the number of bytes con-
tained per address location. If for example a device’s program memory naturally used
a 16-bit (2 byte) word-addressing format, the option -ADDRESSING=2 will configure
HEXMATE to interpret all command line address fields as word addresses. The affect of
this setting is global and all HEXMATE options will now interpret addresses according to
this setting. This option will allow specification of addressing modes from one byte per
address to four bytes per address.

6.6.1.4 -BREAK

This option takes a comma-separated list of addresses. If any of these addresses are
encountered in the HEX file, the current data record will conclude and a new data
record will recommence from the nominated address. This can be useful to use new
data records to force a distinction between functionally different areas of program
space. Some HEX file readers depend on this.

6.6.1.5 -CK

The -CK option is for calculating a checksum. The usage of this option is:

-CK=start-end@destination [+offset][wWidth][tCode][gAlogithm]

where:

• start and end specify the address range over which the checksum will be
calculated.

• destination is the address where the checksum result will be stored. This
value cannot be within the range of calculation.

• offset is an optional initial value to add to the checksum result.

• Width is optional and specifies the byte-width of the checksum result. Results
can be calculated for byte-widths of 1 to 4 bytes. If a positive width is requested,
the result will be stored in big-endian byte order. A negative width will cause the
result to be stored in little-endian byte order. If the width is left unspecified, the
result will be 2 bytes wide and stored in little-endian byte order.

• Code is a hexadecimal code that will trail each byte in the checksum result. This
can allow each byte of the checksum result to be embedded within an instruction.

• Algorithm is an integer to select which HEXMATE algorithm to use to calculate
the checksum result. A list of selectable algorithms are given in Table 6-9. If
unspecified, the default checksum algorithm used is 8 bit addition (1).

A typical example of the use of the checksum option is:

-CK=0-1FFF@2FFE+2100w2
 2010 Microchip Technology Inc. DS51865B-page 167

HI-TECH C® for PIC10/12/16 User’s Guide
This will calculate a checksum over the range 0-1FFFh and program the checksum
result at address 2FFEh. The checksum value will be offset by 2100h. The result will
be two bytes wide.

6.6.1.6 -FILL

The -FILL option is used for filling unused memory locations with a known value. The
usage of this option is:

-FILL=Code@Start-End[,data]

where:

• Code is the opcode that will be assigned to unused locations in memory.
Multi-byte codes should be entered in little endian order.

• Start and End specify the address range over which this fill will apply.

• The data flag will specify that only records within the range that contain data will
be filled. The default is to fill all records in the range.

For example:

-FILL=3412@0-1FFF,data

will program opcode 1234h in all unused addresses from program memory address 0
to 1FFFh (Note the endianism).

This option accepts whole bytes of hexadecimal data from 1 to 8 bytes in length.

If the data flag has been specified, HEXMATE will only perform ROM filling to records
that actually contain data. This means that these records will be padded out to the
default data record length or the width specified in the -FORMAT option. Records will
also begin on addresses which are multiples of the data record length used. The default
data record length is 16 bytes. This facility is particularly useful or is a requirement for
some bootloaders that expect that all data records will be of a particular length and
address alignment.

6.6.1.7 -FIND

This option is used to detect and log occurrences of an opcode or partial code
sequence. The usage of this option is:

-FIND=Findcode [mMask]@Start-End [/Align][w][t”Title”]

where:

• Findcode is the hexadecimal code sequence to search for and is entered in little
endian byte order.

• Mask is optional. It specifies a bit mask applied over the Findcode value to allow
a less restrictive search. It is entered in little endian byte order.

TABLE 6-9: HEXMATE CHECKSUM ALGORITHM SELECTION

Selector Algorithm description

-4 Subtraction of 32 bit values from initial value

-3 Subtraction of 24 bit values from initial value

-2 Subtraction of 16 bit values from initial value

-1 Subtraction of 8 bit values from initial value

1 Addition of 8 bit values from initial value

2 Addition of 16 bit values from initial value

3 Addition of 24 bit values from initial value

4 Addition of 32 bit values from initial value

7 Fletcher’s checksum (8 bit)

8 Fletcher’s checksum (16 bit)
DS51865B-page 168  2010 Microchip Technology Inc.

Utilities
• Start and End limit the address range to search.

• Align is optional. It specifies that a code sequence can only match if it begins on
an address which is a multiple of this value.

• w, if present, will cause HEXMATE to issue a warning whenever the code sequence
is detected.

• Title is optional. It allows a title to be given to this code sequence. Defining a
title will make log-reports and messages more descriptive and more readable. A
title will not affect the actual search results.

Here are some examples.

The option -FIND=3412@0-7FFF/2w will detect the code sequence 1234h when
aligned on a 2 (two) byte address boundary, between 0h and 7FFFh. w indicates that
a warning will be issued each time this sequence is found.

In this next example, -FIND=3412M0F00@0-7FFF/2wt"ADDXY", the option is the
same as in last example but the code sequence being matched is masked with 000Fh,
so HEXMATE will search for any of the opcodes 123xh, where x is any digit. If a
byte-mask is used, is must be of equal byte-width to the opcode it is applied to. Any
messaging or reports generated by HEXMATE will refer to this opcode by the name,
ADDXY as this was the title defined for this search.

If HEXMATE is generating a log file, it will contain the results of all searches. -FIND
accepts whole bytes of HEX data from 1 to 8 bytes in length. Optionally, -FIND can be
used in conjunction with REPLACE or DELETE (as described below).

6.6.1.8 -FIND...,DELETE

If the DELETE form of the -FIND option is used, any matching sequences will be
removed. This function should be used with extreme caution and is not normally
recommended for removal of executable code.

6.6.1.9 -FIND...,REPLACE

If the REPLACE form of the -FIND option is used, any matching sequences will be
replaced, or partially replaced, with new codes. The usage for this sub-option is:

-FIND...,REPLACE=Code [mMask]

where:

• Code is a little endian hexadecimal code to replace the sequences that match the
-FIND criteria.

• Mask is an optional bit mask to specify which bits within Code will replace the
code sequence that has been matched. This may be useful if, for example, it is
only necessary to modify 4 bits within a 16-bit instruction. The remaining 12 bits
can masked and be left unchanged.

6.6.1.10 -FORMAT

The -FORMAT option can be used to specify a particular variant of INHX format or
adjust maximum record length. The usage of this option is:

-FORMAT=Type [,Length]

where:

• Type specifies a particular INHX format to generate.

• Length is optional and sets the maximum number of bytes per data record. A
valid length is between 1 and 16, with 16 being the default.

Consider the case of a bootloader trying to download an INHX32 file which fails
because it cannot process the extended address records which are part of the INHX32
standard. You know that this bootloader can only program data addressed within the
 2010 Microchip Technology Inc. DS51865B-page 169

HI-TECH C® for PIC10/12/16 User’s Guide
range 0 to 64k, and that any data in the HEX file outside of this range can be safely
disregarded. In this case, by generating the HEX file in INHX8M format the operation
might succeed. The HEXMATE option to do this would be -FORMAT=INHX8M.

Now consider if the same bootloader also required every data record to contain eight
bytes of data, no more, no less. This is possible by combining the -FORMAT with -FILL
options. Appropriate use of -FILL can ensure that there are no gaps in the data for the
address range being programmed. This will satisfy the minimum data length require-
ment. To set the maximum length of data records to eight bytes, just modify the
previous option to become -FORMAT=INHX8M,8.

The possible types that are supported by this option are listed in Table 6-10. Note that
INHX032 is not an actual INHX format. Selection of this type generates an INHX32 file
but will also initialize the upper address information to zero. This is a requirement of
some device programmers.

6.6.1.11 -HELP

Using -HELP will list all HEXMATE options. By entering another HEXMATE option as a
parameter of -HELP will show a detailed help message for the given option. For
example:

-HELP=string

will show additional help for the -STRING HEXMATE option.

6.6.1.12 -LOGFILE

The -LOGFILE option saves HEX file statistics to the named file. For example:

-LOGFILE=output.log

will analyze the HEX file that HEXMATE is generating and save a report to a file named
output.log.

6.6.1.13 -MASK

Use this option to logically AND a memory range with a particular bitmask. This is used
to ensure that the unimplemented bits in program words (if any) are left blank. The
usage of this option is as follows:

-MASK=hexcode@start-end

Where hexcode is a hexadecimal value that will be ANDed with data within the start
to end address range. Multibyte mask values can be entered in little endian byte order.

6.6.1.14 -OFILE

The generated Intel HEX output will be created in this file. For example:

-Oprogram.hex

will save the resultant output to program.hex. The output file can take the same name
as one of its input files, but by doing so it will replace the input file entirely.

TABLE 6-10: INHX TYPES USED IN -FORMAT OPTION

Type Description

INHX8M Cannot program addresses beyond 64K

INHX32 Can program addresses beyond 64K with extended linear address records

INHX032 INHX32 with initialization of upper address to zero
DS51865B-page 170  2010 Microchip Technology Inc.

Utilities
6.6.1.15 -SERIAL

This option will store a particular HEX value at a fixed address. The usage of this option
is:

-SERIAL=Code [+/-Increment]@Address [+/-Interval][rRepetitions]

where:

• Code is a hexadecimal value to store and is entered in little endian byte order.

• Increment is optional and allows the value of Code to change by this value with
each repetition (if requested).

• Address is the location to store this code, or the first repetition thereof.

• Interval is optional and specifies the address shift per repetition of this code.

• Repetitions is optional and specifies the number of times to repeat this code.

For example:

-SERIAL=000001@EFFE

will store HEX code 00001h to address EFFEh.

Another example:

-SERIAL=0000+2@1000+10r5

will store 5 codes, beginning with value 0000 at address 1000h. Subsequent codes
will appear at address intervals of +10h and the code value will change in increments
of +2h.

6.6.1.16 -SIZE

Using the -SIZE option will report the number of bytes of data within the resultant HEX
image to standard output. The size will also be recorded in the log file if one has been
requested.

6.6.1.17 -STRING

The -STRING option will embed an ASCII string at a fixed address. The usage of this
option is:

-STRING@Address [tCode]=”Text”

where:

• Address is the location to store this string.

• Code is optional and allows a byte sequence to trail each byte in the string. This
can allow the bytes of the string to be encoded within an instruction.

• Text is the string to convert to ASCII and embed.

For example:

-STRING@1000="My favorite string"

will store the ASCII data for the string, My favorite string (including the nul
character terminator) at address 1000h.

And again:

-STRING@1000t34="My favorite string"

will store the same string with every byte in the string being trailed with the HEX code
34h.
 2010 Microchip Technology Inc. DS51865B-page 171

HI-TECH C® for PIC10/12/16 User’s Guide
6.6.1.18 -STRPACK

This option performs the same function as -STRING but with two important differences.
Firstly, only the lower seven bits from each character are stored. Pairs of 7 bit charac-
ters are then concatenated and stored as a 14 bit word rather than in separate bytes.
This is known as string packing. This is usually only useful for devices where program
space is addressed as 14 bit words (PIC10/12/16 devices). The second difference is
that -STRING’s t specifier is not applicable with the -STRPACK option.
DS51865B-page 172  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Chapter 7. Library Functions
The functions and preprocessor macros within the standard compiler library are alpha-
betically listed in this chapter.

The synopsis indicates the header file in which a declaration or definition for function
or macro is found. It also shows the function prototype for functions, or the equivalent
prototype for macros.

__CONFIG

Synopsis

#include <htc.h>

__CONFIG(data)

Description

This macro is used to program the configuration fuses that set the device’s operating
modes.

The macro assumes the argument is a16-bit value, which will be used to program the
configuration bits.

16-bit masks have been defined to describe each programmable attribute available on
each device. These masks can be found in the chip-specific header files included via
<htc.h>.

Multiple attributes can be selected by ANDing them together.

Example

#include <htc.h>

__CONFIG(RC & UNPROTECT)

void
main (void)
{
}

See also

__EEPROM_DATA(), __IDLOC(), __IDLOC7()
 2010 Microchip Technology Inc. DS51865B-page 173

HI-TECH C® for PIC10/12/16 User’s Guide
__DELAY_MS, __DELAY_US

Synopsis

__delay_ms(x) // request a delay in milliseconds
__delay_us(x) // request a delay in microseconds

Description

As it is often more convenient request a delay in time-based terms rather than in cycle
counts, the macros __delay_ms(x) and __delay_us(x) are provided. These mac-
ros simply wrap around _delay(n) and convert the time based request into instruction
cycles based on the system frequency. In order to achieve this, these macros require
the prior definition of preprocessor symbol _XTAL_FREQ. This symbol should be
defined as the oscillator frequency (in Hertz) used by the system.

An error will result if these macros are used without defining oscillator frequency
symbol or if the delay period requested is too large.

See also

_delay()

__EEPROM_DATA

Synopsis

#include <htc.h>

__EEPROM_DATA(a,b,c,d,e,f,g,h)

Description

This macro is used to store initial values into the device’s EEPROM registers at the time
of programming.

The macro must be given blocks of 8 bytes to write each time it is called, and can be
called repeatedly to store multiple blocks.

__EEPROM_DATA() will begin writing to EEPROM address zero, and will
auto-increment the address written to by 8, each time it is used.

Example

#include <htc.h>

__EEPROM_DATA(0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07)
__EEPROM_DATA(0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F)

void
main (void)
{
}

See also

__CONFIG()
DS51865B-page 174  2010 Microchip Technology Inc.

Library Functions
__IDLOC

Synopsis

#include <htc.h>

__IDLOC(x)

Description

This macro places data into the device’s special locations outside of addressable
memory reserved for ID. This would be useful for storage of serial numbers etc.

The macro will attempt to write 4 nibbles of data to the 4 locations reserved for ID
purposes.

Example

#include <htc.h>

/* will store 1, 5, F and 0 in the ID registers */
__IDLOC(15F0);

void
main (void)
{
}

See also

__IDLOC7(), __CONFIG()

__IDLOC7

Synopsis

#include <htc.h>

__IDLOC7(a,b,c,d)

Description

This macro places data into the device’s special locations outside of addressable
memory reserved for ID. This would be useful for storage of serial numbers etc.

The macro will attempt to write 7 bits of data to each of the 4 locations reserved for ID
purposes.

Example

#include <htc.h>

/* will store 7Fh, 70, 1 and 5Ah in the ID registers */
__IDLOC(0x7F,70,1,0x5A);

void
main (void)
{
}

 2010 Microchip Technology Inc. DS51865B-page 175

HI-TECH C® for PIC10/12/16 User’s Guide
Note

Not all devices permit 7 bit programming of the ID locations. Refer to the device data
sheet to see whether this macro can be used on your particular device.

See also

__IDLOC(), __CONFIG()

_DELAY()

Synopsis

#include <htc.h>

void _delay(unsigned long cycles);

Description

This is an inline function that is expanded by the code generator. When called, this rou-
tine expands to an inline assembly delay sequence. The sequence will consist of code
that delays for the number of cycles that is specified as argument. The argument must
be a literal constant.

An error will result if the delay period requested is too large. For very large delays, call
this function multiple times.

Example

#include <htc.h>

void
main (void)
{
 control |= 0x80;
 _delay(10); // delay for 10 cycles
 control &= 0x7F;
}

See Also

__delay_us(), __delay_ms()
DS51865B-page 176  2010 Microchip Technology Inc.

Library Functions
ABS

Synopsis

#include <stdlib.h>

int abs (int j)

Description

The abs() function returns the absolute value of j.

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{
 int a = -5;

 printf(" absolute value of %d is %d\n" a, abs(a));
}

See Also

labs(), fabs()

Return Value

The absolute value of j.

ACOS

Synopsis

#include <math.h>

double acos (double f)

Description

The acos() function implements the inverse of cos(), i.e. it is passed a value in the
range -1 to +1, and returns an angle in radians whose cosine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

/* Print acos() values for -1 to 1 in degrees. */

void
main (void)
{
 float i, a;

 for(i = -1.0; i < 1.0 ; i += 0.1) {
 a = acos(i)*180.0/3.141592;
 printf("(%f) = %f degrees\n" i, a);
 }
 2010 Microchip Technology Inc. DS51865B-page 177

HI-TECH C® for PIC10/12/16 User’s Guide
}

See Also

sin(), cos(), tan(), asin(), atan(), atan2()

Return Value

An angle in radians, in the range 0 to 

ASCTIME

Synopsis

#include <time.h>

char * asctime (struct tm * t)

Description

The asctime() function takes the time broken down into the struct tm structure,
pointed to by its argument, and returns a 26 character string describing the current date
and time in the format:

Sun Sep 16 01:03:52 1973\n\0

Note the newline at the end of the string. The width of each field in the string is fixed.
The example gets the current time, converts it to a struct tm with localtime(), it
then converts this to ASCII and prints it. The time() function will need to be provided
by the user (see time() for details).

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{
 time_t clock;
 struct tm * tp;

 time(&clock);
 tp = localtime(&clock);
 printf("s" asctime(tp));
}

See Also

ctime(), gmtime(), localtime(), time()

Return Value

A to the string.

Note

The example will require the user to provide the time() routine as it cannot be
supplied with the compiler. See time() for more details.
DS51865B-page 178  2010 Microchip Technology Inc.

Library Functions
ASIN

Synopsis

#include <math.h>

double asin (double f)

Description

The asin() function implements the converse of sin(), i.e. it is passed a value in the
range -1 to +1, and returns an angle in radians whose sine is equal to that value.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
 float i, a;

 for(i = -1.0; i < 1.0 ; i += 0.1) {
 a = asin(i)*180.0/3.141592;
 printf("(%f) = %f degrees\n" i, a);
 }
}

See Also

sin(), cos(), tan(), acos(), atan(), atan2()

Return Value

An angle in radians, in the range - 

ASSERT

Synopsis

#include <assert.h>

void assert (int e)

Description

This macro is used for debugging purposes; the basic method of usage is to place
assertions liberally throughout your code at points where correct operation of the code
depends upon certain conditions being true initially. An assert() routine may be used
to ensure at run time that an assumption holds true. For example, the following
statement asserts that the tp is not equal to NULL:

assert(tp);

If at run time the expression evaluates to false, the program will abort with a message
identifying the source file and line number of the assertion, and the expression used as
an argument to it. A fuller discussion of the uses of assert() is impossible in limited
space, but it is closely linked to methods of proving program correctness.
 2010 Microchip Technology Inc. DS51865B-page 179

HI-TECH C® for PIC10/12/16 User’s Guide
Example

void
ptrfunc (struct xyz * tp)
{
 assert(tp != 0);
}

Note

When required for ROM based systems, the underlying routine _fassert(...) will
need to be implemented by the user.

ATAN

Synopsis

#include <math.h>

double atan (double x)

Description

This function returns the arc tangent of its argument, i.e. it returns an angle e in the
range - 

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
 printf("f\n" atan(1.5));
}

See Also

sin(), cos(), tan(), asin(), acos(), atan2()

Return Value

The arc tangent of its argument.
DS51865B-page 180  2010 Microchip Technology Inc.

Library Functions
ATAN2

Synopsis

#include <math.h>

double atan2 (double x, double x)

Description

This function returns the arc tangent of y/x.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
 printf("f\n" atan2(10.0, -10.0));
}

See Also

sin(), cos(), tan(), asin(), acos(), atan()

Return Value

The arc tangent of y/x.

ATOF

Synopsis

#include <stdlib.h>

double atof (const char * s)

Description

The atof() function scans the character string passed to it, skipping leading blanks. It
then converts an ASCII representation of a number to a double. The number may be in
decimal, normal floating point or scientific notation.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 char buf[80];
 double i;

 gets(buf);
 i = atof(buf);
 printf(" %s: converted to %f\n" buf, i);
}

 2010 Microchip Technology Inc. DS51865B-page 181

HI-TECH C® for PIC10/12/16 User’s Guide
See Also

atoi(), atol(), strtod()

Return Value

A double precision floating-point number. If no number is found in the string, 0.0 will be
returned.

ATOI

Synopsis

#include <stdlib.h>

int atoi (const char * s)

Description

The atoi() function scans the character string passed to it, skipping leading blanks
and reading an optional sign. It then converts an ASCII representation of a decimal
number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 char buf[80];
 int i;

 gets(buf);
 i = atoi(buf);
 printf(" %s: converted to %d\n" buf, i);
}

See Also

xtoi(), atof(), atol()

Return Value

A signed integer. If no number is found in the string, 0 will be returned.

ATOL

Synopsis

#include <stdlib.h>

long atol (const char * s)

Description

The atol() function scans the character string passed to it, skipping leading blanks. It
then converts an ASCII representation of a decimal number to a long integer.
DS51865B-page 182  2010 Microchip Technology Inc.

Library Functions
Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 char buf[80];
 long i;

 gets(buf);
 i = atol(buf);
 printf(" %s: converted to %ld\n" buf, i);
}

See Also

atoi(), atof()

Return Value

A long integer. If no number is found in the string, 0 will be returned.

BSEARCH

Synopsis

#include <stdlib.h>

void * bsearch (const void * key, void * base, size_t n_memb,
size_t size, int (*compar)(const void *, const void *))

Description

The bsearch() function searches a sorted array for an element matching a particular
key. It uses a binary search algorithm, calling the function pointed to by compar to
compare elements in the array.

Example

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

struct value {
 char name[40];
 int value;
} values[100];

int
val_cmp (const void * p1, const void * p2)
{
 return strcmp(((const struct value *)p1)->name,
 ((const struct value *)p2)->name);
}

void
main (void)
{
 char inbuf[80];
 int i;
 2010 Microchip Technology Inc. DS51865B-page 183

HI-TECH C® for PIC10/12/16 User’s Guide
 struct value * vp;

 i = 0;
 while(gets(inbuf)) {
 sscanf(inbuf,"s %d" values[i].name, &values[i].value);
 i++;
 }
 qsort(values, i, sizeof values[0], val_cmp);
 vp = bsearch("" values, i, sizeof values[0], val_cmp);
 if(!vp)
 printf(" ’fred’ was not found\n";
 else
 printf(" ’fred’ has value %d\n" vp->value);
}

See Also

qsort()

Return Value

A to the matched array element (if there is more than one matching element, any of
these may be returned). If no match is found, a null is returned.

Note

The comparison function must have the correct prototype.

CEIL

Synopsis

#include <math.h>

double ceil (double f)

Description

This routine returns the smallest whole number not less than f.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
 double j;

 scanf("lf" &j);
 printf(" ceiling of %lf is %lf\n" j, ceil(j));
}

DS51865B-page 184  2010 Microchip Technology Inc.

Library Functions
CGETS

Synopsis

#include <conio.h>

char * cgets (char * s)

Description

The cgets() function will read one line of input from the console into the buffer passed
as an argument. It does so by repeated calls to getche(). As characters are read,
they are buffered, with backspace deleting the previously typed character, and ctrl-U
deleting the entire line typed so far. Other characters are placed in the buffer, with a
carriage return or line feed (newline) terminating the function. The collected string is
null terminated.

Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{
 for(;;) {
 cgets(buffer);
 if(strcmp(buffer, "" == 0)
 break;
 cputs(" ’exit’ to finish\n";
 }
}

See Also

getch(), getche(), putch(), cputs()

Return Value

The return value is the character passed as the sole argument.

CLRWDT

Synopsis

#include <htc.h>

CLRWDT();

Description

This macro is used to clear the device’s internal watchdog timer.
 2010 Microchip Technology Inc. DS51865B-page 185

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <htc.h>

void
main (void)
{
 WDTCON=1;
 /* enable the WDT */

 CLRWDT();
}

COS

Synopsis

#include <math.h>

double cos (double f)

Description

This function yields the cosine of its argument, which is an angle in radians. The cosine
is calculated by expansion of a polynomial series approximation.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{
 double i;

 for(i = 0 ; i <= 180.0 ; i += 10)
 printf("(%3.0f) = %f, cos = %f\n" i, sin(i*C), cos(i*C));
}

See Also

sin(), tan(), asin(), acos(), atan(), atan2()

Return Value

A double in the range -1 to +1.
DS51865B-page 186  2010 Microchip Technology Inc.

Library Functions
COSH, SINH, TANH

Synopsis

#include <math.h>

double cosh (double f)
double sinh (double f)
double tanh (double f)

Description

These functions are the implement hyperbolic equivalents of the trigonometric
functions; cos(), sin() and tan().

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
 printf("f\n" cosh(1.5));
 printf("f\n" sinh(1.5));
 printf("f\n" tanh(1.5));
}

Return Value

The function cosh() returns the hyperbolic cosine value.

The function sinh() returns the hyperbolic sine value.

The function tanh() returns the hyperbolic tangent value.

CPUTS

Synopsis

#include <conio.h>

void cputs (const char * s)

Description

The cputs() function writes its argument string to the console, outputting carriage
returns before each newline in the string. It calls putch() repeatedly. On a hosted sys-
tem cputs() differs from puts() in that it writes to the console directly, rather than
using file I/O. In an embedded system cputs() and puts() are equivalent.
 2010 Microchip Technology Inc. DS51865B-page 187

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <conio.h>
#include <string.h>

char buffer[80];

void
main (void)
{
 for(;;) {
 cgets(buffer);
 if(strcmp(buffer, "" == 0)
 break;
 cputs(" ’exit’ to finish\n";
 }
}

See Also

cputs(), puts(), putch()

CTIME

Synopsis

#include <time.h>

char * ctime (time_t * t)

Description

The ctime() function converts the time in seconds pointed to by its argument to a
string of the same form as described for asctime(). Thus the example program prints
the current time and date.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{
 time_t clock;

 time(&clock);
 printf("s" ctime(&clock));
}

See Also

gmtime(), localtime(), asctime(), time()

Return Value

A to the string.

Note

The example will require the user to provide the time() routine as one cannot be
supplied with the compiler. See time() for more detail.
DS51865B-page 188  2010 Microchip Technology Inc.

Library Functions
DEVICE_ID_READ()

Synopsis

#include <htc.h>

unsigned int device_id_read(void);

Description

This function returns the device ID code that is factory-programmed into the chip. This
code can be used to identify the device and its revision number.

Example

#include <htc.h>

void
main (void)
{
 unsigned int id_value;
 unsigned int device_code;
 unsigned char revision_no;

 id_value = device_id_read();
 /* lower 5 bits represent revision number
 * upper 11 bits identify device */
 device_code = (id_value >> 5);
 revision_no = (unsigned char)(id_value & 0x1F);

}

See Also

flash_read(), config_read()

Return Value

device_id_read() returns the 16-Bit factory-programmed device id code used to
identify the device type and its revision number.

Note

The device_id_read() is applicable only to those devices which are capable of
reading their own program memory.
 2010 Microchip Technology Inc. DS51865B-page 189

HI-TECH C® for PIC10/12/16 User’s Guide
DI, EI

Synopsis

#include <htc.h>

void ei (void)
void di (void)

Description

The di() and ei() routines disable and re-enable interrupts respectively. These are
implemented as macros. The example shows the use of ei() and di() around access
to a long variable that is modified during an interrupt. If this was not done, it would be
possible to return an incorrect value, if the interrupt occurred between accesses to
successive words of the count value.

The ei() macro should never be called in an interrupt function, and there is no need
to call di() in an interrupt function.

Example

#include <htc.h>

long count;

void
interrupt tick (void)
{
 count++;
}

long
getticks (void)
{
 long val; /* Disable interrupts around access
 to count, to ensure consistency.*/
 di();
 val = count;
 ei();
 return val;
}

DIV

Synopsis

#include <stdlib.h>

div_t div (int numer, int demon)

Description

The div() function computes the quotient and remainder of the numerator divided by
the denominator.
DS51865B-page 190  2010 Microchip Technology Inc.

Library Functions
Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 div_t x;

 x = div(12345, 66);
 printf(" = %d, remainder = %d\n" x.quot, x.rem);
}

See Also

udiv(), ldiv(), uldiv()

Return Value

Returns the quotient and remainder into the div_t structure.

EEPROM_READ, EEPROM_WRITE

Synopsis

#include <htc.h>

unsigned char eeprom_read (unsigned int address);
void eeprom_write (unsigned int address, unsigned char value);

Description

These functions allow access to the on-chip eeprom (when present). The eeprom is not
in the directly-accessible memory space and a special byte sequence is loaded to the
eeprom control registers to access this memory. Writing a value to the eeprom is a slow
process and the eeprom_write() function polls the appropriate registers to ensure that
any previous writes have completed before writing the next datum.

Reading data is completed in the one cycle and no polling is necessary to check for a
read completion.

Example

#include <htc.h>

void
main (void)
{
 unsigned char data;
 unsigned int address = 0x0010;

 data=eeprom_read(address);
 eeprom_write(address, data);
}

See Also

flash_erase(), flash_read(), flash_write()
 2010 Microchip Technology Inc. DS51865B-page 191

HI-TECH C® for PIC10/12/16 User’s Guide
Note

The high and low priority interrupt are disabled during sensitive sequences required to
access EEPROM. Interrupts are restored after the sequence has completed.
eeprom_write() will clear the EEIF hardware flag before returning.

Both eeprom_read() and eeprom_write() are available in a similar macro form.
The essential difference between the macro and function implementations is that
EEPROM_READ(), the macro, does not test nor wait for any prior write operations to
complete.

EVAL_POLY

Synopsis

#include <math.h>

double eval_poly (double x, const double * d, int n)

Description

The eval_poly() function evaluates a polynomial, whose coefficients are contained in
the array d, at x, for example:

y = x*x*d2 + x*d1 + d0.

The order of the polynomial is passed in n.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
 double x, y;
 double d[3] = {1.1, 3.5, 2.7};

 x = 2.2;
 y = eval_poly(x, d, 2);
 printf(" polynomial evaluated at %f is %f\n" x, y);
}

Return Value

A double value, being the polynomial evaluated at x.

EXP

Synopsis

#include <math.h>

double exp (double f)

Description

The exp() routine returns the exponential function of its argument, i.e. e to the power
of f.
DS51865B-page 192  2010 Microchip Technology Inc.

Library Functions
Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
 double f;

 for(f = 0.0 ; f <= 5 ; f += 1.0)
 printf(" to %1.0f = %f\n" f, exp(f));
}

See Also

log(), log10(), pow()

FABS

Synopsis

#include <math.h>

double fabs (double f)

Description

This routine returns the absolute value of its double argument.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
 printf("f %f\n" fabs(1.5), fabs(-1.5));
}

See Also

abs(), labs()

FLASH_COPY

Synopsis

#include <htc.h>

void flash_copy(const unsigned char * source_addr,
 unsigned char length, unsigned short dest_addr);

Description

This utility function is useful for copying a large section of memory to a new location in
Flash memory.

Note it is only applicable to those devices which have an internal set of Flash buffer
registers.
 2010 Microchip Technology Inc. DS51865B-page 193

HI-TECH C® for PIC10/12/16 User’s Guide
When the function is called, it needs to be supplied with a const to the source address
of the data to copy. The may point to a valid address in either RAM or Flash memory.

A length parameter must be specified to indicate the number of words of the data to be
copied.

Finally the Flash address where this data is destined must be specified.

Example

#include <htc.h>

const unsigned char ROMSTRING[] = ""

void
main (void){
 const unsigned char * ptr = &ROMSTRING[0];
 flash_copy(ptr, 5, 0x70);
}

See Also

EEPROM_READ(), EEPROM_WRITE(), FLASH_READ(), FLASH_WRITE()

Note

This function is only applicable to those devices which use internal buffer registers
when writing to Flash.

Ensure that the function does not attempt to overwrite the section of program memory
from which it is currently executing, and extreme caution must be exercised if modifying
code at the device’s reset or interrupt vectors. A reset or interrupt must not be triggered
while this sector is in erasure.

FLASH_ERASE(), FLASH_READ()

Synopsis

#include <htc.h>

void flash_erase (unsigned short addr);
unsigned int flash_read (unsigned short addr);

Description

These functions allow access to the Flash memory of the microcontroller (if supported).

Reading from the Flash memory can be done one word at a time with use of the
flash_read() function. flash_read() returns the data value found at the specified
word address in Flash memory.

Entire sectors of 32 words can be restored to an unprogrammed state (value=FF) with
use of the flash_erase() function. Specifying an address to the flash_erase()
function, will erase all 32 words in the sector that contains the given address.
DS51865B-page 194  2010 Microchip Technology Inc.

Library Functions
Example

#include <htc.h>

void
main (void)
{
 unsigned int data;
 unsigned short address=0x1000;

 data = flash_read(address);

 flash_erase(address);

}

Return Value

flash_read() returns the data found at the given address, as an unsigned int.

Note

The functions flash_erase() and flash_read() are only available on those devices
that support such functionality.

FMOD

Synopsis

#include <math.h>

double fmod (double x, double y)

Description

The function fmod returns the remainder of x/y as a floating-point quantity.

Example

#include <math.h>

void
main (void)
{
 double rem, x;

 x = 12.34;
 rem = fmod(x, 2.1);
}

Return Value

The floating-point remainder of x/y.
 2010 Microchip Technology Inc. DS51865B-page 195

HI-TECH C® for PIC10/12/16 User’s Guide
FLOOR

Synopsis

#include <math.h>

double floor (double f)

Description

This routine returns the largest whole number not greater than f.

Example

#include <stdio.h>
#include <math.h>

void
main (void)
{
 printf("f\n" floor(1.5));
 printf("f\n" floor(-1.5));
}

FREXP

Synopsis

#include <math.h>

double frexp (double f, int * p)

Description

The frexp() function breaks a floating-point number into a normalized fraction and an
integral power of 2. The integer is stored into the int object pointed to by p. Its return
value x is in the interval (0.5, 1.0) or zero, and f equals x times 2 raised to the power
stored in *p. If f is zero, both parts of the result are zero.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
 double f;
 int i;

 f = frexp(23456.34, &i);
 printf(".34 = %f * 2^%d\n" f, i);
}

See Also

ldexp()
DS51865B-page 196  2010 Microchip Technology Inc.

Library Functions
FTOA

Synopsis

#include <stdlib.h>

char * ftoa (float f, int * status)

Description

The function ftoa converts the contents of f into a string which is stored into a buffer
which is then return.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 char * buf;
 float input = 12.34;
 int status;
 buf = ftoa(input, &status);
 printf(" buffer holds %s\n" buf);
}

See Also

strtol(), itoa(), utoa(), ultoa()

Return Value

This routine returns a reference to the buffer into which the result is written.

GETCHAR

Synopsis

#include <stdio.h>

int getchar (void)

Description

The getchar() routine is a getc(stdin) operation. It is a macro defined in stdio.h.
Note that under normal circumstances getchar() will NOT return unless a carriage
return has been typed on the console. To get a single character immediately from the
console, use the function getch().

Example

#include <stdio.h>

void
main (void)
{
 int c;

 while((c = getchar()) != EOF)
 putchar(c);
 2010 Microchip Technology Inc. DS51865B-page 197

HI-TECH C® for PIC10/12/16 User’s Guide
}

See Also

getc(), fgetc(), freopen(), fclose()

Note

This routine is not usable in a ROM based system.

GETS

Synopsis

#include <stdio.h>

char * gets (char * s)

Description

The gets() function reads a line from standard input into the buffer at s, deleting the
newline (c.f. fgets()). The buffer is null terminated. In an embedded system, gets()
is equivalent to cgets(), and results in getche() being called repeatedly to get
characters. Editing (with backspace) is available.

Example

#include <stdio.h>

void
main (void)
{
 char buf[80];

 printf(" a line: ";
 if(gets(buf))
 puts(buf);
}

See Also

fgets(), freopen(), puts()

Return Value

It returns its argument, or NULL on end-of-file.

GET_CAL_DATA

Synopsis

#include <htc.h>

double get_cal_data (const unsigned char * code_ptr)

Description

This function returns the 32-bit floating-point calibration data from the PIC MCU 14000
calibration space. Only use this function to access KREF, KBG, VHTHERM and KTC (that
is, the 32-bit floating-point parameters). FOSC and TWDT can be accessed directly as
they are bytes.
DS51865B-page 198  2010 Microchip Technology Inc.

Library Functions
Example

#include <htc.h>

void
main (void)
{
 double x;
 unsigned char y;

 /* Get the slope reference ratio. */
 x = get_cal_data(KREF);

 /* Get the WDT time-out. */
 y =TWDT;
}

Return Value

The value of the calibration parameter

Note

This function can only be used on the PIC14000.

GMTIME

Synopsis

#include <time.h>

struct tm * gmtime (time_t * t)

Description

This function converts the time pointed to by t which is in seconds since 00:00:00 on
Jan 1, 1970, into a broken down time stored in a structure as defined in time.h. The
structure is defined in the ’Data Types’ section.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{
 time_t clock;
 struct tm * tp;

 time(&clock);
 tp = gmtime(&clock);
 printf("’s %d in London\n" tp->tm_year+1900);
}

See Also

ctime(), asctime(), time(), localtime()

Return Value

Returns a structure of type tm.
 2010 Microchip Technology Inc. DS51865B-page 199

HI-TECH C® for PIC10/12/16 User’s Guide
Note

The example will require the user to provide the time() routine as one cannot be
supplied with the compiler. See time() for more detail.

ISALNUM, ISALPHA, ISDIGIT, ISLOWER ET. AL.

Synopsis

#include <ctype.h>

int isalnum (char c)
int isalpha (char c)
int isascii (char c)
int iscntrl (char c)
int isdigit (char c)
int islower (char c)
int isprint (char c)
int isgraph (char c)
int ispunct (char c)
int isspace (char c)
int isupper (char c)
int isxdigit(char c)

Description

These macros, defined in ctype.h, test the supplied character for membership in one
of several overlapping groups of characters. Note that all except isascii() are
defined for c, if isascii(c) is true or if c = EOF.

 isalnum(c) c is in 0-9 or a-z or A-Z
 isalpha(c) c is in A-Z or a-z
 isascii(c) c is a 7 bit ascii character
 iscntrl(c) c is a control character
 isdigit(c) c is a decimal digit
 islower(c) c is in a-z
 isprint(c) c is a printing char
 isgraph(c) c is a non-space printable character
 ispunct(c) c is not alphanumeric
 isspace(c) c is a space, tab or newline
 isupper(c) c is in A-Z
 isxdigit(c) c is in 0-9 or a-f or A-F

Example

#include <ctype.h>
#include <stdio.h>

void
main (void)
{
 char buf[80];
 int i;

 gets(buf);
 i = 0;
 while(isalnum(buf[i]))
 i++;
 buf[i] = 0;
 printf("%s’ is the word\n" buf);
}

DS51865B-page 200  2010 Microchip Technology Inc.

Library Functions
See Also

toupper(), tolower(), toascii()

ISDIG

Synopsis

#include <ctype.h>

int isdig (int c)

Description

The isdig() function tests the input character c to see if is a decimal digit (0 – 9) and
returns true is this is the case; false otherwise.

Example

#include <ctype.h>

void
main (void)
{
 char buf[] = ""
 if(isdig(buf[0]))
 printf(" type detected\n";
}

See Also

isdigit() (listed under isalnum())

Return Value

Zero if the character is a decimal digit; a non-zero value otherwise.

ITOA

Synopsis

#include <stdlib.h>

char * itoa (char * buf, int val, int base)

Description

The function itoa converts the contents of val into a string which is stored into buf.
The conversion is performed according to the radix specified in base. buf is assumed
to reference a buffer which has sufficient space allocated to it.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 char buf[10];
 itoa(buf, 1234, 16);
 printf(" buffer holds %s\n" buf);
 2010 Microchip Technology Inc. DS51865B-page 201

HI-TECH C® for PIC10/12/16 User’s Guide
}

See Also

strtol(), utoa(), ltoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

LABS

Synopsis

#include <stdlib.h>

int labs (long int j)

Description

The labs() function returns the absolute value of long value j.

Example

#include <stdio.h>
#include <stdlib.h>

void
main (void)
{
 long int a = -5;

 printf(" absolute value of %ld is %ld\n" a, labs(a));
}

See Also

abs()

Return Value

The absolute value of j.

LDEXP

Synopsis

#include <math.h>

double ldexp (double f, int i)

Description

The ldexp() function performs the inverse of frexp() operation; the integer i is
added to the exponent of the floating-point f and the resultant returned.
DS51865B-page 202  2010 Microchip Technology Inc.

Library Functions
Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
 double f;

 f = ldexp(1.0, 10);
 printf(".0 * 2\textasciicircum 10 = %f\n" f);
}

See Also

frexp()

Return Value

The return value is the integer i added to the exponent of the floating-point value f.

LDIV

Synopsis

#include <stdlib.h>

ldiv_t ldiv (long number, long denom)

Description

The ldiv() routine divides the numerator by the denominator, computing the quotient
and the remainder. The sign of the quotient is the same as that of the mathematical
quotient. Its absolute value is the largest integer which is less than the absolute value
of the mathematical quotient.

The ldiv() function is similar to the div() function, the difference being that the
arguments and the members of the returned structure are all of type long int.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 ldiv_t lt;

 lt = ldiv(1234567, 12345);
 printf(" = %ld, remainder = %ld\n" lt.quot, lt.rem);
}

See Also

div(), uldiv(), udiv()

Return Value

Returns a structure of type ldiv_t
 2010 Microchip Technology Inc. DS51865B-page 203

HI-TECH C® for PIC10/12/16 User’s Guide
LOCALTIME

Synopsis

#include <time.h>

struct tm * localtime (time_t * t)

Description

The localtime() function converts the time pointed to by t which is in seconds since
00:00:00 on Jan 1, 1970, into a broken down time stored in a structure as defined in
time.h. The routine localtime() takes into account the contents of the global integer
time_zone. This should contain the number of minutes that the local time zone is west-
ward of Greenwich. On systems where it is not possible to predetermine this value,
localtime() will return the same result as gmtime().

Example

#include <stdio.h>
#include <time.h>

 char * wday[] = {
 "" "" "" ""
 "" "" ""
};

void
main (void)
{
 time_t clock;
 struct tm * tp;

 time(&clock);
 tp = localtime(&clock);
 printf(" is %s\n" wday[tp->tm_wday]);
}

See Also

ctime(), asctime(), time()

Return Value

Returns a structure of type tm.

Note

The example will require the user to provide the time() routine as one cannot be
supplied with the compiler. See time() for more detail.
DS51865B-page 204  2010 Microchip Technology Inc.

Library Functions
LOG, LOG10

Synopsis

#include <math.h>

double log (double f)
double log10 (double f)

Description

The log() function returns the natural logarithm of f. The function log10() returns the
logarithm to base 10 of f.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
 double f;

 for(f = 1.0 ; f <= 10.0 ; f += 1.0)
 printf("(%1.0f) = %f\n" f, log(f));
}

See Also

exp(), pow()

Return Value

Zero if the argument is negative.

LONGJMP

Synopsis

#include <setjmp.h>

void longjmp (jmp_buf buf, int val)

Description

The longjmp() function, in conjunction with setjmp(), provides a mechanism for
non-local goto’s. To use this facility, setjmp() should be called with a jmp_buf
argument in some outer level function. The call from setjmp() will return 0.

To return to this level of execution, longjmp() may be called with the same jmp_buf
argument from an inner level of execution. Note however that the function which called
setjmp() must still be active when longjmp() is called. Breach of this rule will cause
disaster, due to the use of a stack containing invalid data. The val argument to
longjmp() will be the value apparently returned from the setjmp(). This should
normally be non-zero, to distinguish it from the genuine setjmp() call.
 2010 Microchip Technology Inc. DS51865B-page 205

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{
 longjmp(jb, 5);
}

void
main (void)
{
 int i;

 if(i = setjmp(jb)) {
 printf(" returned %d\n" i);
 exit(0);
 }
 printf(" returned 0 - good\n";
 printf(" inner...\n";
 inner();
 printf(" returned - bad!\n";
}

See Also

setjmp()

Return Value

The longjmp() routine never returns.

Note

The function which called setjmp() must still be active when longjmp() is called.
Breach of this rule will cause disaster, due to the use of a stack containing invalid data.

LTOA

Synopsis

#include <stdlib.h>

char * ltoa (char * buf, long val, int base)

Description

The function itoa converts the contents of val into a string which is stored into buf.
The conversion is performed according to the radix specified in base. buf is assumed
to reference a buffer which has sufficient space allocated to it.
DS51865B-page 206  2010 Microchip Technology Inc.

Library Functions
Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 char buf[10];
 utoi(buf, 12345678L, 16);
 printf(" buffer holds %s\n" buf);
}

See Also

strtol(), itoa(), utoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.

MEMCHR

Synopsis

#include <string.h>

void * memchr (const void * block, int val, size_t length)

Description

The memchr() function is similar to strchr() except that instead of searching null-ter-
minated strings, it searches a block of memory specified by length for a particular byte.
Its arguments are a to the memory to be searched, the value of the byte to be searched
for, and the length of the block. A to the first occurrence of that byte in the block is
returned.

Example

#include <string.h>
#include <stdio.h>

unsigned int ary[] = {1, 5, 0x6789, 0x23};

void
main (void)
{
 char * cp;

 cp = memchr(ary, 0x89, sizeof ary);
 if(!cp)
 printf(" found\n";
 else
 printf(" at offset %u\n" cp - (char *)ary);
}

See Also

strchr()
 2010 Microchip Technology Inc. DS51865B-page 207

HI-TECH C® for PIC10/12/16 User’s Guide
Return Value

A to the first byte matching the argument if one exists; NULL otherwise.

MEMCMP

Synopsis

#include <string.h>

int memcmp (const void * s1, const void * s2, size_t n)

Description

The memcmp() function compares two blocks of memory, of length n, and returns a
signed value similar to strncmp(). Unlike strncmp() the comparison does not stop
on a null character.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
 int buf[10], cow[10], i;

 buf[0] = 1;
 buf[2] = 4;
 cow[0] = 1;
 cow[2] = 5;
 buf[1] = 3;
 cow[1] = 3;
 i = memcmp(buf, cow, 3*sizeof(int));
 if(i < 0)
 printf(" than\n";
 else if(i > 0)
 printf(" than\n";
 else
 printf("\n";
}

See Also

strncpy(), strncmp(), strchr(), memset(), memchr()

Return Value

Returns negative one, zero or one, depending on whether s1 points to string which is
less than, equal to or greater than the string pointed to by s2 in the collating sequence.
DS51865B-page 208  2010 Microchip Technology Inc.

Library Functions
MEMCPY

Synopsis

#include <string.h>

void * memcpy (void * d, const void * s, size_t n)

Description

The memcpy() function copies n bytes of memory starting from the location pointed to
by s to the block of memory pointed to by d. The result of copying overlapping blocks
is undefined. The memcpy() function differs from strcpy() in that it copies a specified
number of bytes, rather than all bytes up to a null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{
 char buf[80];

 memset(buf, 0, sizeof buf);
 memcpy(buf, " partial string" 10);
 printf(" = ’%s’\n" buf);
}

See Also

strncpy(), strncmp(), strchr(), memset()

Return Value

The memcpy() routine returns its first argument.

MEMMOVE

Synopsis

#include <string.h>

void * memmove (void * s1, const void * s2, size_t n)

Description

The memmove() function is similar to the function memcpy() except copying of
overlapping blocks is handled correctly. That is, it will copy forwards or backwards as
appropriate to correctly copy one block to another that overlaps it.

See Also

strncpy(), strncmp(), strchr(), memcpy()

Return Value

The function memmove() returns its first argument.
 2010 Microchip Technology Inc. DS51865B-page 209

HI-TECH C® for PIC10/12/16 User’s Guide
MEMSET

Synopsis

#include <string.h>

void * memset (void * s, int c, size_t n)

Description

The memset() function fills n bytes of memory starting at the location pointed to by s
with the byte c.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{
 char abuf[20];

 strcpy(abuf, " is a string";
 memset(abuf, ’x’, 5);
 printf(" = ’%s’\n" abuf);
}

See Also

strncpy(), strncmp(), strchr(), memcpy(), memchr()

MKTIME

Synopsis

#include <time.h>

time_t mktime (struct tm * tmptr)

Description

The mktime() function converts the local calendar time referenced by the tm structure
tmptr into a time being the number of seconds passed since Jan 1st 1970, or -1 if the
time cannot be represented.

Example

#include <time.h>
#include <stdio.h>

void
main (void)
{
 struct tm birthday;

 birthday.tm_year = 1955;
 birthday.tm_mon = 2;
 birthday.tm_mday = 24;
 birthday.tm_hour = birthday.tm_min = birthday.tm_sec = 0;
 printf(" have been alive approximately %ld seconds\n"
 mktime(&birthday));
DS51865B-page 210  2010 Microchip Technology Inc.

Library Functions
}

See Also

ctime(), asctime()

Return Value

The time contained in the tm structure represented as the number of seconds since the
1970 Epoch, or -1 if this time cannot be represented.

MODF

Synopsis

#include <math.h>

double modf (double value, double * iptr)

Description

The modf() function splits the argument value into integral and fractional parts, each
having the same sign as value. For example, -3.17 would be split into the integral part
(-3) and the fractional part (-0.17).

The integral part is stored as a double in the object pointed to by iptr.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
 double i_val, f_val;

 f_val = modf(-3.17, &i_val);
}

Return Value

The signed fractional part of value.

NOP

Synopsis

#include <htc.h>

NOP();

Description

Execute NOP instruction here. This is often useful to finetune delays or create a handle
for breakpoints. The NOP instruction is sometimes required during some sensitive
sequences in hardware.
 2010 Microchip Technology Inc. DS51865B-page 211

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <htc.h>

void
crude_delay(unsigned char x) {
 while(x--){
 NOP(); /* Do nothing for 3 cycles */
 NOP();
 NOP();
 }
}

POW

Synopsis

#include <math.h>

double pow (double f, double p)

Description

The pow() function raises its first argument, f, to the power p.

Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
 double f;

 for(f = 1.0 ; f <= 10.0 ; f += 1.0)
 printf("(2, %1.0f) = %f\n" f, pow(2, f));
}

See Also

log(), log10(), exp()

Return Value

f to the power of p.

PRINTF, VPRINTF

Synopsis

#include <stdio.h>

int printf (const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vprintf (const char * fmt, va_list va_arg)
DS51865B-page 212  2010 Microchip Technology Inc.

Library Functions
Description

The printf() function is a formatted output routine, operating on stdout. The
printf() routine is passed a format string, followed by a list of zero or more argu-
ments. In the format string are conversion specifications, each of which is used to print
out one of the argument list values.

Each conversion specification is of the form %m.nc where the percent symbol % intro-
duces a conversion, followed by an optional width specification m. The n specification
is an optional precision specification (introduced by the dot) and c is a letter specifying
the type of the conversion.

A minus sign (’-’) preceding m indicates left rather than right adjustment of the converted
value in the field. Where the field width is larger than required for the conversion, blank
padding is performed at the left or right as specified. Where right adjustment of a
numeric conversion is specified, and the first digit of m is 0, then padding will be per-
formed with zeroes rather than blanks. For integer formats, the precision indicates a
minimum number of digits to be output, with leading zeros inserted to make up this
number if required.

A hash character (#) preceding the width indicates that an alternate format is to be
used. The nature of the alternate format is discussed below. Not all formats have
alternates. In those cases, the presence of the hash character has no effect.

If the character * is used in place of a decimal constant, e.g. in the format %*d, then one
integer argument will be taken from the list to provide that value. The types of
conversion are:

f Floating point - m is the total width and n is the number of digits after the decimal point.
If n is omitted it defaults to 6. If the precision is zero, the decimal point will be omitted
unless the alternate format is specified.

e Print the corresponding argument in scientific notation. Otherwise similar to f.

g Use e or f format, whichever gives maximum precision in minimum width. Any trailing
zeros after the decimal point will be removed, and if no digits remain after the decimal
point, it will also be removed.

o x X u d Integer conversion - in radices 8, 16, 16, 10 and 10 respectively. The conver-
sion is signed in the case of d, unsigned otherwise. The precision value is the total
number of digits to print, and may be used to force leading zeroes. E.g. %8.4x will print
at least 4 HEX digits in an 8 wide field. Preceding the key letter with an l indicates that
the value argument is a long integer. The letter X prints out hexadecimal numbers using
the upper case letters A-F rather than a- f as would be printed when using x. When the
alternate format is specified, a leading zero will be supplied for the octal format, and a
leading 0x or 0X for the HEX format.

s Print a string - the value argument is assumed to be a character . At most n charac-
ters from the string will be printed, in a field m characters wide.

c The argument is assumed to be a single character and is printed literally.

Any other characters used as conversion specifications will be printed. Thus % will
produce a single percent sign.

The vprintf() function is similar to printf() but takes a variable argument list rather
than a list of arguments. See the description of va_start() for more information on
variable argument lists. An example of using vprintf() is given below.
 2010 Microchip Technology Inc. DS51865B-page 213

HI-TECH C® for PIC10/12/16 User’s Guide
Example

printf(" = %4d%" 23)
 yields ’Total = 23%’

printf(" is %lx", size)
 where size is a long, prints size
 as hexadecimal.

printf(" = %.8s" ""
 yields ’Name = a1234567’

printf("%*d" 3, 4)
 yields ’xx 4’

/* vprintf example */

#include <stdio.h>

int
error (char * s, ...)
{
 va_list ap;

 va_start(ap, s);
 printf(": ";
 vprintf(s, ap);
 putchar(’\n’);
 va_end(ap);
}

void
main (void)
{
 int i;

 i = 3;
 error(" 1 2 %d" i);
}

See Also

sprintf()

Return Value

The printf() and vprintf() functions return the number of characters written to
stdout.
DS51865B-page 214  2010 Microchip Technology Inc.

Library Functions
PUTCHAR

Synopsis

#include <stdio.h>

int putchar (int c)

Description

The putchar() function calls putch() to print one character to stdout, and is defined
in stdio.h.

Example

#include <stdio.h>

char * x = " is a string"

void
main (void)
{
 char * cp;

 cp = x;
 while(*x)
 putchar(*x++);
 putchar(’\n’);
}

See Also

putc(), getc(), freopen(), fclose()

Return Value

The character passed as argument, or EOF if an error occurred.

PUTS

Synopsis

#include <stdio.h>

int puts (const char * s)

Description

The puts() function writes the string s to the stdout stream, appending a newline. The
null character terminating the string is not copied.

Example

#include <stdio.h>

void
main (void)
{
 puts(", world!";
}

 2010 Microchip Technology Inc. DS51865B-page 215

HI-TECH C® for PIC10/12/16 User’s Guide
See Also

fputs(), gets(), freopen(), fclose()

Return Value

EOF is returned on error; zero otherwise.

QSORT

Synopsis

#include <stdlib.h>

void qsort (void * base, size_t nel, size_t width,
int (*func)(const void *, const void *))

Description

The qsort() function is an implementation of the quicksort algorithm. It sorts an array
of nel items, each of length width bytes, located contiguously in memory at base. The
argument func is a to a function used by qsort() to compare items. It calls func with
s to two items to be compared. If the first item is considered to be greater than, equal
to or less than the second then func should return a value greater than zero, equal to
zero or less than zero respectively.

Example

#include <stdio.h>
#include <stdlib.h>

int array[] = {
 567, 23, 456, 1024, 17, 567, 66
};

int
sortem (const void * p1, const void * p2)
{
 return *(int *)p1 - *(int *)p2;
}

void
main (void)
{
 register int i;

 qsort(aray, sizeof array/sizeof array[0],
 sizeof array[0], sortem);
 for(i = 0 ; i != sizeof array/sizeof array[0] ; i++)
 printf("d\t" array[i]);
 putchar(’\n’);
}

Note

The function parameter must be a to a function of type similar to:

int func (const void *, const void *)

i.e. it must accept two const void * parameters, and must be prototyped.
DS51865B-page 216  2010 Microchip Technology Inc.

Library Functions
RAND

Synopsis

#include <stdlib.h>

int rand (void)

Description

The rand() function is a pseudo-random number generator. It returns an integer in the
range 0 to 32767, which changes in a pseudo-random fashion on each call. The algo-
rithm will produce a deterministic sequence if started from the same point. The starting
point is set using the srand() call. The example shows use of the time() function to
generate a different starting point for the sequence each time.

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{
 time_t toc;
 int i;

 time(&toc);
 srand((int)toc);
 for(i = 0 ; i != 10 ; i++)
 printf("d\t" rand());
 putchar(’\n’);
}

See Also

srand()

Note

The example will require the user to provide the time() routine as one cannot be
supplied with the compiler. See time() for more detail.

ROUND

Synopsis

#include <math.h>

double round (double x)

Description

The round function round the argument to the nearest integer value, but in
floating-point format. Values midway between integer values are rounded up.
 2010 Microchip Technology Inc. DS51865B-page 217

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <math.h>

void
main (void)
{
 double input, rounded;
 input = 1234.5678;
 rounded = round(input);
}

See Also

trunc()

SETJMP

Synopsis

#include <setjmp.h>

int setjmp (jmp_buf buf)

Description

The setjmp() function is used with longjmp() for non-local goto’s. See longjmp()
for further information.

Example

#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

jmp_buf jb;

void
inner (void)
{
 longjmp(jb, 5);
}

void
main (void)
{
 int i;

 if(i = setjmp(jb)) {
 printf(" returned %d\n" i);
 exit(0);
 }
 printf(" returned 0 - good\n";
 printf(" inner...\n";
 inner();
 printf(" returned - bad!\n";
}

See Also

longjmp()
DS51865B-page 218  2010 Microchip Technology Inc.

Library Functions
Return Value

The setjmp() function returns zero after the real call, and non-zero if it apparently
returns after a call to longjmp().

SIN

Synopsis

#include <math.h>

double sin (double f)

Description

This function returns the sine function of its argument.

Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{
 double i;

 for(i = 0 ; i <= 180.0 ; i += 10)
 printf("(%3.0f) = %f\n" i, sin(i*C));
 printf("(%3.0f) = %f\n" i, cos(i*C));
}

See Also

cos(), tan(), asin(), acos(), atan(), atan2()

Return Value

Sine vale of f.

SLEEP

Synopsis

#include <htc.h>

SLEEP();

Description

This macro is used to put the device into a low-power standby mode.
 2010 Microchip Technology Inc. DS51865B-page 219

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <htc.h>
extern void init(void);

void
main (void)
{
 init(); /* enable peripherals/interrupts */

 while(1)
 SLEEP(); /* save power while nothing happening */
}

SPRINTF, VSPRINTF

Synopsis

#include <stdio.h>

int sprintf (char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsprintf (char * buf, const char * fmt, va_list ap)

Description

The sprintf() function operates in a similar fashion to printf(), except that instead
of placing the converted output on the stdout stream, the characters are placed in the
buffer at buf. The resultant string will be null terminated, and the number of characters
in the buffer will be returned.

The vsprintf() function is similar to sprintf() but takes a variable argument list
rather than a list of arguments. See the description of va_start() for more informa-
tion on variable argument lists.

See Also

printf(), sscanf()

Return Value

Both these routines return the number of characters placed into the buffer.

SQRT

Synopsis

#include <math.h>

double sqrt (double f)

Description

The function sqrt(), implements a square root routine using Newton’s approximation.
DS51865B-page 220  2010 Microchip Technology Inc.

Library Functions
Example

#include <math.h>
#include <stdio.h>

void
main (void)
{
 double i;

 for(i = 0 ; i <= 20.0 ; i += 1.0)
 printf(" root of %.1f = %f\n" i, sqrt(i));
}

See Also

exp()

Return Value

Returns the value of the square root.

Note

A domain error occurs if the argument is negative.

SRAND

Synopsis

#include <stdlib.h>

void srand (unsigned int seed)

Description

The srand() function initializes the random number generator accessed by rand()
with the given seed. This provides a mechanism for varying the starting point of the
pseudo-random sequence yielded by rand().

Example

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void
main (void)
{
 time_t toc;
 int i;

 time(&toc);
 srand((int)toc);
 for(i = 0 ; i != 10 ; i++)
 printf("d\t" rand());
 putchar(’\n’);
}

See Also

rand()
 2010 Microchip Technology Inc. DS51865B-page 221

HI-TECH C® for PIC10/12/16 User’s Guide
SSCANF, VSSCANF

Synopsis

#include <stdio.h>

int sscanf (const char * buf, const char * fmt, ...)

#include <stdio.h>
#include <stdarg.h>

int vsscanf (const char * buf, const char * fmt, va_list ap)

Description

The sscanf() function operates in a similar manner to scanf(), except that instead
of the conversions being taken from stdin, they are taken from the string at buf.

The vsscanf() function takes an argument rather than a list of arguments. See the
description of va_start() for more information on variable argument lists.

See Also

scanf(), fscanf(), sprintf()

Return Value

Returns the value of EOF if an input failure occurs, else returns the number of input
items.

STRCAT

Synopsis

#include <string.h>

char * strcat (char * s1, const char * s2)

Description

This function appends (concatenates) string s2 to the end of string s1. The result will
be null terminated. The argument s1 must point to a character array big enough to hold
the resultant string.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{
 char buffer[256];
 char * s1, * s2;

 strcpy(buffer, " of line";
 s1 = buffer;
 s2 = "... end of line"
 strcat(s1, s2);
 printf(" = %d\n" strlen(buffer));
 printf(" = \"s\"n" buffer);
}

DS51865B-page 222  2010 Microchip Technology Inc.

Library Functions
See Also

strcpy(), strcmp(), strncat(), strlen()

Return Value

The value of s1 is returned.

STRCHR, STRICHR

Synopsis

#include <string.h>

char * strchr (const char * s, int c)
char * strichr (const char * s, int c)

Description

The strchr() function searches the string s for an occurrence of the character c. If
one is found, a to that character is returned, otherwise NULL is returned.

The strichr() function is the case-insensitive version of this function.

Example

#include <strings.h>
#include <stdio.h>

void
main (void)
{
 static char temp[] = " it is..."
 char c = ’s’;

 if(strchr(temp, c))
 printf(" %c was found in string\n" c);
 else
 printf(" character was found in string";
}

See Also

strrchr(), strlen(), strcmp()

Return Value

A to the first match found, or NULL if the character does not exist in the string.

Note

Although the function takes an integer argument for the character, only the lower 8 bits
of the value are used.
 2010 Microchip Technology Inc. DS51865B-page 223

HI-TECH C® for PIC10/12/16 User’s Guide
STRCMP, STRICMP

Synopsis

#include <string.h>

int strcmp (const char * s1, const char * s2)
int stricmp (const char * s1, const char * s2)

Description

The strcmp() function compares its two, null terminated, string arguments and returns
a signed integer to indicate whether s1 is less than, equal to or greater than s2. The
comparison is done with the standard collating sequence, which is that of the ASCII
character set.

The stricmp() function is the case-insensitive version of this function.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{
 int i;

 if((i = strcmp("" "") < 0)
 printf(" is less than ABc\n";
 else if(i > 0)
 printf(" is greater than ABc\n";
 else
 printf(" is equal to ABc\n";
}

See Also

strlen(), strncmp(), strcpy(), strcat()

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is
negative, zero or positive, i.e. do not test explicitly for negative one (-1) or one (1).

STRCPY

Synopsis

#include <string.h>

char * strcpy (char * s1, const char * s2)

Description

This function copies a null terminated string s2 to a character array pointed to by s1.
The destination array must be large enough to hold the entire string, including the null
terminator.
DS51865B-page 224  2010 Microchip Technology Inc.

Library Functions
Example

#include <string.h>
#include <stdio.h>

void
main (void)
{
 char buffer[256];
 char * s1, * s2;

 strcpy(buffer, " of line";
 s1 = buffer;
 s2 = "... end of line"
 strcat(s1, s2);
 printf(" = %d\n" strlen(buffer));
 printf(" = \"s\"n" buffer);
}

See Also

strncpy(), strlen(), strcat(), strlen()

Return Value

The destination buffer s1 is returned.

STRCSPN

Synopsis

#include <string.h>

size_t strcspn (const char * s1, const char * s2)

Description

The strcspn() function returns the length of the initial segment of the string pointed to
by s1 which consists of characters NOT from the string pointed to by s2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
 static char set[] = ""

 printf("d\n" strcspn("" set));
 printf("d\n" strcspn("" set));
 printf("d\n" strcspn("" set));
}

See Also

strspn()

Return Value

Returns the length of the segment.
 2010 Microchip Technology Inc. DS51865B-page 225

HI-TECH C® for PIC10/12/16 User’s Guide
STRLEN

Synopsis

#include <string.h>

size_t strlen (const char * s)

Description

The strlen() function returns the number of characters in the string s, not including
the null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{
 char buffer[256];
 char * s1, * s2;

 strcpy(buffer, " of line";
 s1 = buffer;
 s2 = "... end of line"
 strcat(s1, s2);
 printf(" = %d\n" strlen(buffer));
 printf(" = \"s\"n" buffer);
}

Return Value

The number of characters preceding the null terminator.

STRNCAT

Synopsis

#include <string.h>

char * strncat (char * s1, const char * s2, size_t n)

Description

This function appends (concatenates) string s2 to the end of string s1. At most n char-
acters will be copied, and the result will be null terminated. s1 must point to a character
array big enough to hold the resultant string.
DS51865B-page 226  2010 Microchip Technology Inc.

Library Functions
Example

#include <string.h>
#include <stdio.h>

void
main (void)
{
 char buffer[256];
 char * s1, * s2;

 strcpy(buffer, " of line";
 s1 = buffer;
 s2 = "... end of line"
 strncat(s1, s2, 5);
 printf(" = %d\n" strlen(buffer));
 printf(" = \"s\"n" buffer);
}

See Also

strcpy(), strcmp(), strcat(), strlen()

Return Value

The value of s1 is returned.

STRNCMP, STRNICMP

Synopsis

#include <string.h>

int strncmp (const char * s1, const char * s2, size_t n)
int strnicmp (const char * s1, const char * s2, size_t n)

Description

The strncmp() function compares its two, null terminated, string arguments, up to a
maximum of n characters, and returns a signed integer to indicate whether s1 is less
than, equal to or greater than s2. The comparison is done with the standard collating
sequence, which is that of the ASCII character set.

The strnicmp() function is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
 int i;

 i = strncmp("" ""6);
 if(i == 0)
 printf(" strings are equal\n";
 else if(i > 0)
 printf(" 2 less than string 1\n";
 else
 printf(" 2 is greater than string 1\n";
 2010 Microchip Technology Inc. DS51865B-page 227

HI-TECH C® for PIC10/12/16 User’s Guide
}

See Also

strlen(), strcmp(), strcpy(), strcat()

Return Value

A signed integer less than, equal to or greater than zero.

Note

Other C implementations may use a different collating sequence; the return value is
negative, zero or positive, i.e. do not test explicitly for negative one (-1) or one (1).

STRNCPY

Synopsis

#include <string.h>

char * strncpy (char * s1, const char * s2, size_t n)

Description

This function copies a null terminated string s2 to a character array pointed to by s1. At
most n characters are copied. If string s2 is longer than n then the destination string will
not be null terminated. The destination array must be large enough to hold the entire
string, including the null terminator.

Example

#include <string.h>
#include <stdio.h>

void
main (void)
{
 char buffer[256];
 char * s1, * s2;

 strncpy(buffer, " of line" 6);
 s1 = buffer;
 s2 = "... end of line"
 strcat(s1, s2);
 printf(" = %d\n" strlen(buffer));
 printf(" = \"s\"n" buffer);
}

See Also

strcpy(), strcat(), strlen(), strcmp()

Return Value

The destination buffer s1 is returned.
DS51865B-page 228  2010 Microchip Technology Inc.

Library Functions
STRPBRK

Synopsis

#include <string.h>

char * strpbrk (const char * s1, const char * s2)

Description

The strpbrk() function returns a to the first occurrence in string s1 of any character
from string s2, or a null if no character from s2 exists in s1.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
 char * str = " is a string."

 while(str != NULL) {
 printf("s\n" str);
 str = strpbrk(str+1, "");
 }
}

Return Value

 to the first matching character, or NULL if no character found.

STRRCHR, STRRICHR

Synopsis

#include <string.h>

char * strrchr (char * s, int c)
char * strrichr (char * s, int c)

Description

The strrchr() function is similar to the strchr() function, but searches from the end
of the string rather than the beginning, i.e. it locates the last occurrence of the character
c in the null terminated string s. If successful it returns a to that occurrence, otherwise
it returns NULL.

The strrichr() function is the case-insensitive version of this function.
 2010 Microchip Technology Inc. DS51865B-page 229

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
 char * str = " is a string."

 while(str != NULL) {
 printf("s\n" str);
 str = strrchr(str+1, ’s’);
 }
}

See Also

strchr(), strlen(), strcmp(), strcpy(), strcat()

Return Value

A to the character, or NULL if none is found.

STRSPN

Synopsis

#include <string.h>

size_t strspn (const char * s1, const char * s2)

Description

The strspn() function returns the length of the initial segment of the string pointed to
by s1 which consists entirely of characters from the string pointed to by s2.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
 printf("d\n" strspn(" is a string" "");
 printf("d\n" strspn(" is a string" "");
}

See Also

strcspn()

Return Value

The length of the segment.
DS51865B-page 230  2010 Microchip Technology Inc.

Library Functions
STRSTR, STRISTR

Synopsis

#include <string.h>

char * strstr (const char * s1, const char * s2)
char * stristr (const char * s1, const char * s2)

Description

The strstr() function locates the first occurrence of the sequence of characters in the
string pointed to by s2 in the string pointed to by s1.

The stristr() routine is the case-insensitive version of this function.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
 printf("d\n" strstr(" is a string" "");
}

Return Value

 to the located string or a null if the string was not found.

STRTOD

Synopsis

#include <stdlib.h>

double strtok (const char * s, const char ** res)

Description

Parse the string s converting it to a double floating-point type. This function converts
the first occurrence of a substring of the input that is made up of characters of the
expected form after skipping leading white-space characters. If res is not NULL, it will
be made to point to the first character after the converted sub-string.

Example

#include <stdio.h>
#include <strlib.h>

void
main (void)
{
 char buf[] = "35.7 23.27 "
 char * end;
 double in1, in2;

 in1 = strtod(buf, &end);
 in2 = strtod(end, NULL);
 printf(" comps: %f, %f\n" in1, in2);
}

 2010 Microchip Technology Inc. DS51865B-page 231

HI-TECH C® for PIC10/12/16 User’s Guide
See Also

atof()

Return Value

Returns a double representing the floating-point value of the converted input string.

STRTOL

Synopsis

#include <stdlib.h>

double strtol (const char * s, const char ** res, int base)

Description

Parse the string s converting it to a long integer type. This function converts the first
occurrence of a substring of the input that is made up of characters of the expected
form after skipping leading white-space characters. The radix of the input is determined
from base. If this is zero, then the radix defaults to base 10. If res is not NULL, it will be
made to point to the first character after the converted sub-string.

Example

#include <stdio.h>
#include <strlib.h>

void
main (void)
{
 char buf[] = "0X299 0x792 "
 char * end;
 long in1, in2;

 in1 = strtol(buf, &end, 16);
 in2 = strtol(end, NULL, 16);
 printf(" (decimal): %ld, %ld\n" in1, in2);
}

See Also

strtod()

Return Value

Returns a long int representing the value of the converted input string using the
specified base.

STRTOK

Synopsis

#include <string.h>

char * strtok (char * s1, const char * s2)
DS51865B-page 232  2010 Microchip Technology Inc.

Library Functions
Description

A number of calls to strtok() breaks the string s1 (which consists of a sequence of
zero or more text tokens separated by one or more characters from the separator string
s2) into its separate tokens.

The first call must have the string s1. This call returns a to the first character of the first
token, or NULL if no tokens were found. The inter-token separator character is overwrit-
ten by a null character, which terminates the current token.

For subsequent calls to strtok(), s1 should be set to a NULL . These calls start
searching from the end of the last token found, and again return a to the first character
of the next token, or NULL if no further tokens were found.

Example

#include <stdio.h>
#include <string.h>

void
main (void)
{
 char * ptr;
 char buf[] = " is a string of words."
 char * sep_tok = ",?! "

 ptr = strtok(buf, sep_tok);
 while(ptr != NULL) {
 printf("s\n" ptr);
 ptr = strtok(NULL, sep_tok);
 }
}

Return Value

Returns a to the first character of a token, or a null if no token was found.

Note

The separator string s2 may be different from call to call.

TAN

Synopsis

#include <math.h>

double tan (double f)

Description

The tan() function calculates the tangent of f.
 2010 Microchip Technology Inc. DS51865B-page 233

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <math.h>
#include <stdio.h>

#define C 3.141592/180.0

void
main (void)
{
 double i;

 for(i = 0 ; i <= 180.0 ; i += 10)
 printf("(%3.0f) = %f\n" i, tan(i*C));
}

See Also

sin(), cos(), asin(), acos(), atan(), atan2()

Return Value

The tangent of f.

TIME

Synopsis

#include <time.h>

time_t time (time_t * t)

Description

This function is not provided as it is dependant on the target system supplying the cur-
rent time. This function will be user implemented. When implemented, this function
should return the current time in seconds since 00:00:00 on Jan 1, 1970. If the argu-
ment t is not equal to NULL, the same value is stored into the object pointed to by t.

Example

#include <stdio.h>
#include <time.h>

void
main (void)
{
 time_t clock;

 time(&clock);
 printf("s" ctime(&clock));
}

See Also

ctime(), gmtime(), localtime(), asctime()

Return Value

This routine when implemented will return the current time in seconds since 00:00:00
on Jan 1, 1970.
DS51865B-page 234  2010 Microchip Technology Inc.

Library Functions
Note

The time() routine is not supplied, if required the user will have to implement this
routine to the specifications outlined above.

TOLOWER, TOUPPER, TOASCII

Synopsis

#include <ctype.h>

char toupper (int c)
char tolower (int c)
char toascii (int c)

Description

The toupper() function converts its lower case alphabetic argument to upper case, the
tolower() routine performs the reverse conversion and the toascii() macro returns
a result that is guaranteed in the range 0-0177. The functions toupper() and
tolower() return their arguments if it is not an alphabetic character.

Example

#include <stdio.h>
#include <ctype.h>
#include <string.h>

void
main (void)
{
 char * array1 = ""
 int i;

 for(i=0;i < strlen(array1); ++i) {
 printf("c" tolower(array1[i]));
 }
 printf("n";
}

See Also

islower(), isupper(), isascii(), et. al.

TRUNC

Synopsis

#include <math.h>

double trunc (double x)

Description

The trunc function rounds the argument to the nearest integer value, in floating-point
format, that is not larger in magnitude than the argument.
 2010 Microchip Technology Inc. DS51865B-page 235

HI-TECH C® for PIC10/12/16 User’s Guide
Example

#include <math.h>

void
main (void)
{
 double input, rounded;
 input = 1234.5678;
 rounded = trunc(input);
}

See Also

round()

UDIV

Synopsis

#include <stdlib.h>

int udiv (unsigned num, unsigned demon)

Description

The udiv() function calculate the quotient and remainder of the division of number
and denom, storing the results into a udiv_t structure which is returned.

Example

#include <stdlib.h>

void
main (void)
{
 udiv_t result;
 unsigned num = 1234, den = 7;

 result = udiv(num, den);
}

See Also

uldiv(), div(), ldiv()

Return Value

Returns the quotient and remainder as a udiv_t structure.

ULDIV

Synopsis

#include <stdlib.h>

int uldiv (unsigned long num, unsigned long demon)

Description

The uldiv() function calculate the quotient and remainder of the division of number
and denom, storing the results into a uldiv_t structure which is returned.
DS51865B-page 236  2010 Microchip Technology Inc.

Library Functions
Example

#include <stdlib.h>

void
main (void)
{
 uldiv_t result;
 unsigned long num = 1234, den = 7;

 result = uldiv(num, den);
}

See Also

ldiv(), udiv(), div()

Return Value

Returns the quotient and remainder as a uldiv_t structure.

UTOA

Synopsis

#include <stdlib.h>

char * utoa (char * buf, unsigned val, int base)

Description

The function itoa() converts the unsigned contents of val into a string which is stored
into buf. The conversion is performed according to the radix specified in base. buf is
assumed to reference a buffer which has sufficient space allocated to it.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 char buf[10];
 utoi(buf, 1234, 16);
 printf(" buffer holds %s\n" buf);
}

See Also

strtol(), itoa(), ltoa(), ultoa()

Return Value

This routine returns a copy of the buffer into which the result is written.
 2010 Microchip Technology Inc. DS51865B-page 237

HI-TECH C® for PIC10/12/16 User’s Guide
VA_START, VA_ARG, VA_END

Synopsis

#include <stdarg.h>

void va_start (va_list ap, parmN)
type va_arg (ap, type)
void va_end (va_list ap)

Description

These macros are provided to give access in a portable way to parameters to a function
represented in a prototype by the ellipsis symbol (...), where type and number of
arguments supplied to the function are not known at compile time.

The right most parameter to the function (shown as parmN) plays an important role in
these macros, as it is the starting point for access to further parameters. In a function
taking variable numbers of arguments, a variable of type va_list should be declared,
then the macro va_start() invoked with that variable and the name of parmN. This will
initialize the variable to allow subsequent calls of the macro va_arg() to access suc-
cessive parameters.

Each call to va_arg() requires two arguments; the variable previously defined and a
type name which is the type that the next parameter is expected to be. Note that any
arguments thus accessed will have been widened by the default conventions to int,
unsigned int or double. For example if a character argument has been passed, it
should be accessed by va_arg(ap, int) since the char will have been widened to
int.

An example is given below of a function taking one integer parameter, followed by a
number of other parameters. In this example the function expects the subsequent
parameters to be s to char, but note that the compiler is not aware of this, and it is the
programmers responsibility to ensure that correct arguments are supplied.

Example

#include <stdio.h>
#include <stdarg.h>

void
pf (int a, ...)
{
 va_list ap;

 va_start(ap, a);
 while(a--)
 puts(va_arg(ap, char *));
 va_end(ap);
}

void
main (void)
{
 pf(3, " 1" " 2" " 3";
}

DS51865B-page 238  2010 Microchip Technology Inc.

Library Functions
XTOI

Synopsis

#include <stdlib.h>

unsigned xtoi (const char * s)

Description

The xtoi() function scans the character string passed to it, skipping leading blanks
reading an optional sign, and converts an ASCII representation of a hexadecimal
number to an integer.

Example

#include <stdlib.h>
#include <stdio.h>

void
main (void)
{
 char buf[80];
 int i;

 gets(buf);
 i = xtoi(buf);
 printf(" %s: converted to %x\n" buf, i);
}

See Also

atoi()

Return Value

An unsigned integer. If no number is found in the string, zero will be returned.
 2010 Microchip Technology Inc. DS51865B-page 239

HI-TECH C® for PIC10/12/16 User’s Guide
NOTES:
DS51865B-page 240  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Chapter 8. Error and Warning Messages
This chapter lists error, warning and advisory messages with an explanation of each
message. This is the complete and historical message set covering all HI-TECH C
compilers and all compiler versions. As a result not all messages shown here may be
relevant for the compiler, or compiler version, you are using.

Most messages have been assigned a unique number which appears in brackets
before each message description, and which is also printed by the compiler when the
message is issued. The messages shown here are sorted by their number. Un-num-
bered messages appear toward the end and are sorted alphabetically.

The name of the application(s) that could have produced the messages are listed in
brackets opposite the error message. In some cases examples of code or options that
could trigger the error are given. The use of * in the error message is used to represent
a string that the compiler will substitute that is specific to that particular error.

Note that one problem in your C or assembler source code may trigger more than one
error message. You should attempt to resolve errors or warnings in the order in which
they are produced.

(1) too many errors (*) (all applications)
The executing compiler application has encountered too many errors and will exit
immediately. Other uncompiled source files will be processed, but the compiler appli-
cations that would normally be executed in due course will not be run. The number of
errors that can be accepted can be controlled using the --ERRORS option, See
Section 2.7.28 “--ERRORS: Maximum Number of Errors”.

(2) error/warning (*) generated, but no description available (all
applications)

The executing compiler application has emitted a message (advisory/warning/error),
but there is no description available in the message description file (MDF) to print. This
may be because the MDF is out of date, or the message issue has not been translated
into the selected language.

(3) malformed error information on line *, in file * (all applications)
The compiler has attempted to load the messages for the selected language, but the
message description file (MDF) was corrupted and could not be read correctly.

(100) unterminated #if[n][def] block from line * (Preprocessor)
A #if or similar block was not terminated with a matching #endif, e.g.:

#if INPUT /* error flagged here */
void main(void)
{
 run();
} /* no #endif was found in this module */
 2010 Microchip Technology Inc. DS51865B-page 241

HI-TECH C® for PIC10/12/16 User’s Guide
(101) #* may not follow #else (Preprocessor)
A #else or #elif has been used in the same conditional block as a #else. These
can only follow a #if, e.g.:

#ifdef FOO
 result = foo;
#else
 result = bar;
#elif defined(NEXT) /* the #else above terminated the #if */
 result = next(0);
#endif

(102) #* must be in an #if (Preprocessor)
The #elif, #else or #endif directive must be preceded by a matching #if line. If
there is an apparently corresponding #if line, check for things like extra #endif’s, or
improperly terminated comments, e.g.:

#ifdef FOO
 result = foo;
#endif
 result = bar;
#elif defined(NEXT) /* the #endif above terminated the #if */
 result = next(0);
#endif

(103) #error: * (Preprocessor)
This is a programmer generated error; there is a directive causing a deliberate error.
This is normally used to check compile time defines etc. Remove the directive to
remove the error, but first check as to why the directive is there.

(104) preprocessor #assert failure (Preprocessor)
The argument to a preprocessor #assert directive has evaluated to zero. This is a
programmer induced error.

#assert SIZE == 4 /* size should never be 4 */

(105) no #asm before #endasm (Preprocessor)
A #endasm operator has been encountered, but there was no previous matching
#asm, e.g.:

void cleardog(void)
{
 clrwdt
#endasm /* in-line assembler ends here,
 only where did it begin? */
}

(106) nested #asm directives (Preprocessor)
It is not legal to nest #asm directives. Check for a missing or misspelt #endasm direc-
tive, e.g.:

#asm
MOVE r0, #0aah

#asm ; previous #asm must be closed before opening another
SLEEP

#endasm
DS51865B-page 242  2010 Microchip Technology Inc.

(107) illegal # directive "*" (Preprocessor, Parser)
The compiler does not understand the # directive. It is probably a misspelling of a
pre-processor # directive, e.g.:

#indef DEBUG /* oops -- that should be #undef DEBUG */

(108) #if[n][def] without an argument (Preprocessor)
The preprocessor directives #if, #ifdef and #ifndef must have an argument. The
argument to #if should be an expression, while the argument to #ifdef or #ifndef
should be a single name, e.g.:

#if /* oops -- no argument to check */
 output = 10;
#else
 output = 20;
#endif

(109) #include syntax error (Preprocessor)
The syntax of the filename argument to #include is invalid. The argument to
#include must be a valid file name, either enclosed in double quotes "" or angle
brackets < >. Spaces should not be included, and the closing quote or bracket must
be present. There should be nothing else on the line other than comments, e.g.:

#include stdio.h /* oops -- should be: #include <stdio.h> */

(110) too many file arguments; usage: cpp [input [output]]
(Preprocessor)

CPP should be invoked with at most two file arguments. Contact HI-TECH Support if
the preprocessor is being executed by a compiler driver.

(111) redefining preprocessor macro "*" (Preprocessor)
The macro specified is being redefined, to something different to the original definition.
If you want to deliberately redefine a macro, use #undef first to remove the original
definition, e.g.:

#define ONE 1
/* elsewhere: */
/* Is this correct? It will overwrite the first definition. */
#define ONE one

(112) #define syntax error (Preprocessor)
A macro definition has a syntax error. This could be due to a macro or formal parameter
name that does not start with a letter or a missing closing parenthesis,), e.g.:

#define FOO(a, 2b) bar(a, 2b) /* 2b is not to be! */

(113) unterminated string in preprocessor macro body (Preprocessor,
Assembler)

A macro definition contains a string that lacks a closing quote.

(114) illegal #undef argument (Preprocessor)
The argument to #undef must be a valid name. It must start with a letter, e.g.:

#undef 6YYY /* this isn’t a valid symbol name */
 2010 Microchip Technology Inc. DS51865B-page 243

HI-TECH C® for PIC10/12/16 User’s Guide
(115) recursive preprocessor macro definition of "*" defined by "*"
(Preprocessor)

The named macro has been defined in such a manner that expanding it causes a recur-
sive expansion of itself!

(116) end of file within preprocessor macro argument from line *
(Preprocessor)

A macro argument has not been terminated. This probably means the closing paren-
thesis has been omitted from a macro invocation. The line number given is the line
where the macro argument started, e.g.:

#define FUNC(a, b) func(a+b)
FUNC(5, 6; /* oops -- where is the closing bracket? */

(117) misplaced constant in #if (Preprocessor)
A constant in a #if expression should only occur in syntactically correct places. This
error is most probably caused by omission of an operator, e.g.:

#if FOO BAR /* oops -- did you mean: #if FOO == BAR ? */

(118) stack overflow processing #if expression (Preprocessor)
The preprocessor filled up its expression evaluation stack in a #if expression. Simplify
the expression — it probably contains too many parenthesized subexpressions.

(119) invalid expression in #if line (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(120) operator "*" in incorrect context (Preprocessor)
An operator has been encountered in a #if expression that is incorrectly placed, e.g.
two binary operators are not separated by a value, e.g.:

#if FOO * % BAR == 4 /* what is “* %” ? */
 #define BIG
#endif

(121) expression stack overflow at operator "*" (Preprocessor)
Expressions in #if lines are evaluated using a stack with a size of 128. It is possible
for very complex expressions to overflow this. Simplify the expression.

(122) unbalanced parenthesis at operator "*" (Preprocessor)
The evaluation of a #if expression found mismatched parentheses. Check the expres-
sion for correct parenthesizing, e.g.:

#if ((A) + (B) /* oops -- a missing), I think */
 #define ADDED
#endif

(123) misplaced "?" or ":"; previous operator is "*" (Preprocessor)
A colon operator has been encountered in a #if expression that does not match up
with a corresponding ? operator, e.g.:

#if XXX : YYY /* did you mean: #if COND ? XXX : YYY */
DS51865B-page 244  2010 Microchip Technology Inc.

(124) illegal character "*" in #if (Preprocessor)
There is a character in a #if expression that has no business being there. Valid char-
acters are the letters, digits and those comprising the acceptable operators, e.g.:

#if YYY /* what are these characters doing here? */
 int m;
#endif

(125) illegal character (* decimal) in #if (Preprocessor)
There is a non-printable character in a #if expression that has no business being
there. Valid characters are the letters, digits and those comprising the acceptable oper-
ators, e.g.:

#if ^S YYY /* what is this control characters doing here? */
 int m;
#endif

(126) strings can’t be used in #if (Preprocessor)
The preprocessor does not allow the use of strings in #if expressions, e.g.:

/* no string operations allowed by the preprocessor */
#if MESSAGE > “hello”
#define DEBUG
#endif

(127) bad syntax for defined() in #[el]if (Preprocessor)
The defined() pseudo-function in a preprocessor expression requires its argument
to be a single name. The name must start with a letter and should be enclosed in paren-
theses, e.g.:

/* oops -- defined expects a name, not an expression */
#if defined(a&b)
 input = read();
#endif

(128) illegal operator in #if (Preprocessor)
A #if expression has an illegal operator. Check for correct syntax, e.g.:

#if FOO = 6 /* oops -- should that be: #if FOO == 5 ? */

(129) unexpected "\" in #if (Preprocessor)
The backslash is incorrect in the #if statement, e.g.:

#if FOO == \34
 #define BIG
#endif

(130) unknown type "*" in #[el]if sizeof() (Preprocessor)
An unknown type was used in a preprocessor sizeof(). The preprocessor can only
evaluate sizeof() with basic types, or pointers to basic types, e.g.:

#if sizeof(unt) == 2 /* should be: #if sizeof(int) == 2 */
 i = 0xFFFF;
#endif

(131) illegal type combination in #[el]if sizeof() (Preprocessor)
The preprocessor found an illegal type combination in the argument to sizeof() in a
#if expression, e.g.
 2010 Microchip Technology Inc. DS51865B-page 245

HI-TECH C® for PIC10/12/16 User’s Guide
/* To sign, or not to sign, that is the error. */
#if sizeof(signed unsigned int) == 2
 i = 0xFFFF;
#endif

(132) no type specified in #[el]if sizeof() (Preprocessor)
Sizeof() was used in a preprocessor #if expression, but no type was specified. The
argument to sizeof() in a preprocessor expression must be a valid simple type, or
pointer to a simple type, e.g.:

#if sizeof() /* oops -- size of what? */
 i = 0;
#endif

(133) unknown type code (0x*) in #[el]if sizeof() (Preprocessor)
The preprocessor has made an internal error in evaluating a sizeof() expression.
Check for a malformed type specifier. This is an internal error. Contact HI-TECH Soft-
ware technical support with details.

(134) syntax error in #[el]if sizeof() (Preprocessor)
The preprocessor found a syntax error in the argument to sizeof , in a #if expres-
sion. Probable causes are mismatched parentheses and similar things, e.g.:

#if sizeof(int == 2) // oops - should be: #if sizeof(int) == 2
 i = 0xFFFF;
#endif

(135) unknown operator (*) in #if (Preprocessor)
The preprocessor has tried to evaluate an expression with an operator it does not
understand. This is an internal error. Contact HI-TECH Software technical support with
details.

(137) strange character "*" after ## (Preprocessor)
A character has been seen after the token catenation operator ## that is neither a letter
nor a digit. Since the result of this operator must be a legal token, the operands must
be tokens containing only letters and digits, e.g.:

/* the ’ character will not lead to a valid token */
#define cc(a, b) a ## ’b

(138) strange character (*) after ## (Preprocessor)
An unprintable character has been seen after the token catenation operator ## that is
neither a letter nor a digit. Since the result of this operator must be a legal token, the
operands must be tokens containing only letters and digits, e.g.:

/* the ’ character will not lead to a valid token */
#define cc(a, b) a ## ’b

(139) end of file in comment (Preprocessor)
End of file was encountered inside a comment. Check for a missing closing comment
flag, e.g.:

 /* Here the comment begins. I’m not sure where I end, though
}

DS51865B-page 246  2010 Microchip Technology Inc.

(140) can’t open * file "*": * (Driver, Preprocessor, Code Generator,
Assembler)

The command file specified could not be opened for reading. Confirm the spelling and
path of the file specified on the command line, e.g.:

picc @communds

should that be:

picc @commands

(141) can’t open * file "*": * (Any)
An output file could not be created. Confirm the spelling and path of the file specified
on the command line.

(144) too many nested #if blocks (Preprocessor)
#if , #ifdef etc. blocks may only be nested to a maximum of 32.

(146) #include filename too long (Preprocessor)
A filename constructed while looking for an include file has exceeded the length of an
internal buffer. Since this buffer is 4096 bytes long, this is unlikely to happen.

(147) too many #include directories specified (Preprocessor)
A maximum of 7 directories may be specified for the preprocessor to search for include
files. The number of directories specified with the driver is too great.

(148) too many arguments for preprocessor macro (Preprocessor)
A macro may only have up to 31 parameters, as per the C Standard.

(149) preprocessor macro work area overflow (Preprocessor)
The total length of a macro expansion has exceeded the size of an internal table. This
table is normally 32768 bytes long. Thus any macro expansion must not expand into a
total of more than 32K bytes.

(150) illegal "__" preprocessor macro "*" (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(151) too many arguments in preprocessor macro expansion
(Preprocessor)

There were too many arguments supplied in a macro invocation. The maximum num-
ber allowed is 31.

(152) bad dp/nargs in openpar(): c = * (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(153) out of space in preprocessor macro "*" argument expansion
(Preprocessor)

A macro argument has exceeded the length of an internal buffer. This buffer is normally
4096 bytes long.
 2010 Microchip Technology Inc. DS51865B-page 247

HI-TECH C® for PIC10/12/16 User’s Guide
(155) work buffer overflow concatenating "*" (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(156) work buffer "*" overflow (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(157) can’t allocate * bytes of memory (Code Generator, Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(158) invalid disable in preprocessor macro "*" (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(159) too many calls to unget() (Preprocessor)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(161) control line "*" within preprocessor macro expansion
(Preprocessor)

A preprocessor control line (one starting with a #) has been encountered while expand-
ing a macro. This should not happen.

(162) #warning: * (Preprocessor, Driver)
This warning is either the result of user-defined #warning preprocessor directive or
the driver encountered a problem reading the map file. If the latter then please
HI-TECH Software technical support with details

(163) unexpected text in control line ignored (Preprocessor)
This warning occurs when extra characters appear on the end of a control line, e.g. The
extra text will be ignored, but a warning is issued. It is preferable (and in accordance
with Standard C) to enclose the text as a comment, e.g.:

#if defined(END)
 #define NEXT
#endif END /* END would be better in a comment here */

(164) #include filename "*" was converted to lower case (Preprocessor)
The #include file name had to be converted to lowercase before it could be opened,
e.g.:

#include <STDIO.H> /* oops -- should be: #include <stdio.h> */

(165) #include filename "*" does not match actual name (check
upper/lower case) (Preprocessor)

In Windows versions this means the file to be included actually exists and is spelt the
same way as the #include filename, however the case of each does not exactly
match. For example, specifying #include “code.c” will include Code.c if it is found.
In Linux versions this warning could occur if the file wasn’t found.
DS51865B-page 248  2010 Microchip Technology Inc.

(166) too few values specified with option "*" (Preprocessor)
The list of values to the preprocessor (CPP) -S option is incomplete. This should not
happen if the preprocessor is being invoked by the compiler driver. The values passes
to this option represent the sizes of char , short , int , long , float and double
types.

(167) too many values specified with -S option; "*" unused
(Preprocessor)

There were too many values supplied to the -S preprocessor option. See message
166..

(168) unknown option "*" (Any)
This option given to the component which caused the error is not recognized.

(169) strange character (*) after ## (Preprocessor)
There is an unexpected character after #.

(170) symbol "*" in undef was never defined (Preprocessor)
The symbol supplied as argument to #undef was not already defined. This warning
may be disabled with some compilers. This warning can be avoided with code like:

#ifdef SYM
 #undef SYM /* only undefine if defined */
#endif

(171) wrong number of preprocessor macro arguments for "*" (* instead
of *) (Preprocessor)

A macro has been invoked with the wrong number of arguments, e.g.:

#define ADD(a, b) (a+b)
ADD(1, 2, 3) /* oops -- only two arguments required */

(172) formal parameter expected after # (Preprocessor)
The stringization operator # (not to be confused with the leading # used for preproces-
sor control lines) must be followed by a formal macro parameter, e.g.:

#define str(x) #y /* oops -- did you mean x instead of y? */

If you need to stringize a token, you will need to define a special macro to do it, e.g.

#define __mkstr__(x) #x

then use __mkstr__(token) wherever you need to convert a token into a string.

(173) undefined symbol "*" in #if, 0 used (Preprocessor)
A symbol on a #if expression was not a defined preprocessor macro. For the pur-
poses of this expression, its value has been taken as zero. This warning may be dis-
abled with some compilers. Example:

#if FOO+BAR /* e.g. FOO was never #defined */
 #define GOOD
#endif

(174) multi-byte constant "*" isn’t portable (Preprocessor)
Multi-byte constants are not portable, and in fact will be rejected by later passes of the
compiler, e.g.:

#if CHAR == ’ab’
 2010 Microchip Technology Inc. DS51865B-page 249

HI-TECH C® for PIC10/12/16 User’s Guide
 #define MULTI
#endif

(175) division by zero in #if; zero result assumed (Preprocessor)
Inside a #if expression, there is a division by zero which has been treated as yielding
zero, e.g.:

#if foo/0 /* divide by 0: was this what you were intending? */
 int a;
#endif

(176) missing newline (Preprocessor)
A new line is missing at the end of the line. Each line, including the last line, must have
a new line at the end. This problem is normally introduced by editors.

(177) symbol "*" in -U option was never defined (Preprocessor)
A macro name specified in a -U option to the preprocessor was not initially defined, and
thus cannot be undefined.

(179) nested comments (Preprocessor)
This warning is issued when nested comments are found. A nested comment may indi-
cate that a previous closing comment marker is missing or malformed, e.g.:

output = 0; /* a comment that was left unterminated
flag = TRUE; /* next comment:
 hey, where did this line go? */

(180) unterminated comment in included file (Preprocessor)
Comments begun inside an included file must end inside the included file.

(181) non-scalar types can’t be converted to other types (Parser)
You can’t convert a structure, union or array to another type, e.g.:

struct TEST test;
struct TEST * sp;
sp = test; /* oops -- did you mean: sp = &test; ? */

(182) illegal conversion between types (Parser)
This expression implies a conversion between incompatible types, e.g. a conversion of
a structure type into an integer, e.g.:

struct LAYOUT layout;
int i;
layout = i; /* int cannot be converted to struct */

Note that even if a structure only contains an int , for example, it cannot be assigned
to an int variable, and vice versa.

(183) function or function pointer required (Parser)
Only a function or function pointer can be the subject of a function call, e.g.:

int a, b, c, d;
a = b(c+d); /* b is not a function --
 did you mean a = b*(c+d) ? */
DS51865B-page 250  2010 Microchip Technology Inc.

(184) calling an interrupt function is illegal (Parser)
A function qualified interrupt can’t be called from other functions. It can only be
called by a hardware (or software) interrupt. This is because an interrupt function
has special function entry and exit code that is appropriate only for calling from an inter-
rupt. An interrupt function can call other non-interrupt functions.

(185) function does not take arguments (Parser, Code Generator)
This function has no parameters, but it is called here with one or more arguments, e.g.:

int get_value(void);
void main(void)
{
 int input;
 input = get_value(6); /* oops --
 parameter should not be here */
}

(186) too many function arguments (Parser)
This function does not accept as many arguments as there are here.

void add(int a, int b);
add(5, 7, input); /* call has too many arguments */

(187) too few function arguments (Parser)
This function requires more arguments than are provided in this call, e.g.:

void add(int a, int b);
add(5); /* this call needs more arguments */

(188) constant expression required (Parser)
In this context an expression is required that can be evaluated to a constant at compile
time, e.g.:

int a;
switch(input) {
 case a: /* oops!
 can’t use variable as part of a case label */
 input++;
}

(189) illegal type for array dimension (Parser)
An array dimension must be either an integral type or an enumerated value.

int array[12.5]; /* oops -- twelve and a half elements, eh? */

(190) illegal type for index expression (Parser)
An index expression must be either integral or an enumerated value, e.g.:

int i, array[10];
i = array[3.5]; /* oops --
 exactly which element do you mean? */

(191) cast type must be scalar or void (Parser)
A typecast (an abstract type declarator enclosed in parentheses) must denote a type
which is either scalar (i.e. not an array or a structure) or the type void , e.g.:

lip = (long [])input; /* oops -- maybe: lip = (long *)input */
 2010 Microchip Technology Inc. DS51865B-page 251

HI-TECH C® for PIC10/12/16 User’s Guide
(192) undefined identifier "*" (Parser)
This symbol has been used in the program, but has not been defined or declared.
Check for spelling errors if you think it has been defined.

(193) not a variable identifier "*" (Parser)
This identifier is not a variable; it may be some other kind of object, e.g. a label.

(194) ")" expected (Parser)
A closing parenthesis ,) , was expected here. This may indicate you have left out this
character in an expression, or you have some other syntax error. The error is flagged
on the line at which the code first starts to make no sense. This may be a statement
following the incomplete expression, e.g.:

if(a == b /* the closing parenthesis is missing here */
 b = 0; /* the error is flagged here */

(195) expression syntax (Parser)
This expression is badly formed and cannot be parsed by the compiler, e.g.:

a /=% b; /* oops -- maybe that should be: a /= b; */

(196) struct/union required (Parser)
A structure or union identifier is required before a dot "." , e.g.:

int a;
a.b = 9; /* oops -- a is not a structure */

(197) struct/union member expected (Parser)
A structure or union member name must follow a dot "." or arrow ("->").

(198) undefined struct/union "*" (Parser)
The specified structure or union tag is undefined, e.g.

struct WHAT what; /* a definition for WHAT was never seen */

(199) logical type required (Parser)
The expression used as an operand to if , while statements or to boolean operators
like ! and && must be a scalar integral type, e.g.:

struct FORMAT format;
if(format) /* this operand must be a scaler type */
 format.a = 0;

(200) taking the address of a register variable is illegal (Parser)
A variable declared register may not have storage allocated for it in memory, and thus
it is illegal to attempt to take the address of it by applying the & operator, e.g.:

int * proc(register int in)
{
 int * ip = ∈
 /* oops -- in may not have an address to take */
 return ip;
}

(201) taking the address of this object is illegal (Parser)
The expression which was the operand of the & operator is not one that denotes mem-
ory storage (“an lvalue”) and therefore its address can not be defined, e.g.:
DS51865B-page 252  2010 Microchip Technology Inc.

ip = &8; /* oops -- you can’t take the address of a literal */

(202) only lvalues may be assigned to or modified (Parser)
Only an lvalue (i.e. an identifier or expression directly denoting addressable storage)
can be assigned to or otherwise modified, e.g.:

int array[10];
int * ip;
char c;
array = ip; /* array isn’t a variable,
 it can’t be written to */

A typecast does not yield an lvalue, e.g.:

/* the contents of c cast to int
 is only a intermediate value */
(int)c = 1;

However you can write this using pointers:

*(int *)&c = 1

(203) illegal operation on bit variable (Parser)
Not all operations on bit variables are supported. This operation is one of those, e.g.:

bit b;
int * ip;
ip = &b; /* oops --
 cannot take the address of a bit object */

(204) void function can’t return a value (Parser)
A void function cannot return a value. Any return statement should not be followed
by an expression, e.g.:

void run(void)
{
 step();
 return 1;
 /* either run should not be void, or remove the 1 */
}

(205) integral type required (Parser)
This operator requires operands that are of integral type only.

(206) illegal use of void expression (Parser)
A void expression has no value and therefore you can’t use it anywhere an expression
with a value is required, e.g. as an operand to an arithmetic operator.

(207) simple type required for "*" (Parser)
A simple type (i.e. not an array or structure) is required as an operand to this operator.

(208) operands of "*" not same type (Parser)
The operands of this operator are of different pointer, e.g.:

int * ip;
char * cp, * cp2;
cp = flag ? ip : cp2;
/* result of ? : will be int * or char * */

Maybe you meant something like:

cp = flag ? (char *)ip : cp2;
 2010 Microchip Technology Inc. DS51865B-page 253

HI-TECH C® for PIC10/12/16 User’s Guide
(209) type conflict (Parser)
The operands of this operator are of incompatible types.

(210) bad size list (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(211) taking sizeof bit is illegal (Parser)
It is illegal to use the sizeof operator with the HI-TECH C bit type. When used
against a type the sizeof operator gives the number of bytes required to store an
object that type. Therefore its usage with the bit type make no sense and is an illegal
operation.

(212) missing number after pragma "pack" (Parser)
The pragma pack requires a decimal number as argument. This specifies the align-
ment of each member within the structure. Use this with caution as some processors
enforce alignment and will not operate correctly if word fetches are made on odd
boundaries, e.g.:

#pragma pack /* what is the alignment value */

Maybe you meant something like:

#pragma pack 2

(214) missing number after pragma "interrupt_level" (Parser)
The pragma interrupt_level requires an argument from 0 to 7.

(215) missing argument to pragma "switch" (Parser)
The pragma switch requires an argument of auto , direct or simple , e.g.:

#pragma switch /* oops -- this requires a switch mode */

maybe you meant something like:

#pragma switch simple

(216) missing argument to pragma "psect" (Parser)
The pragma psect requires an argument of the form oldname = newname where old-
name is an existing psect name known to the compiler, and newname is the desired
new name, e.g.:

#pragma psect /* oops -- this requires an psect to redirect */

maybe you meant something like:

#pragma psect text=specialtext

(218) missing name after pragma "inline" (Parser)
The inline pragma expects the name of a function to follow. The function name must
be recognized by the code generator for it to be expanded; other functions are not
altered, e.g.:

#pragma inline /* what is the function name? */

maybe you meant something like:

#pragma inline memcpy
DS51865B-page 254  2010 Microchip Technology Inc.

(219) missing name after pragma "printf_check" (Parser)
The printf_check pragma expects the name of a function to follow. This specifies
printf-style format string checking for the function, e.g.

#pragma printf_check /* what function is to be checked? */

Maybe you meant something like:

#pragma printf_check sprintf

Pragmas for all the standard printf-like function are already contained in <stdio.h>.

(220) exponent expected (Parser)
A floating point constant must have at least one digit after the e or E., e.g.:

float f;
f = 1.234e; /* oops -- what is the exponent? */

(221) hexadecimal digit expected (Parser)
After 0x should follow at least one of the HEX digits 0-9 and A-F or a-f , e.g.:

a = 0xg6; /* oops -- was that meant to be a = 0xf6 ? */

(222) binary digit expected (Parser)
A binary digit was expected following the 0b format specifier, e.g.

i = 0bf000; /* oops -- f000 is not a base two value */

(223) digit out of range (Parser, Assembler)
A digit in this number is out of range of the radix for the number, e.g. using the digit 8
in an octal number, or HEX digits A-F in a decimal number. An octal number is denoted
by the digit string commencing with a zero, while a HEX number starts with "0X" or "0x".
For example:

int a = 058;
/* leading 0 implies octal which has digits 0 - 7 */

(224) illegal "#" directive (Parser)
An illegal # preprocessor has been detected. Likely a directive has been misspelt in
your code somewhere.

(225) missing character in character constant (Parser)

The character inside the single quotes is missing, e.g.:

char c = ”; /* the character value of what? */

(226) char const too long (Parser)
A character constant enclosed in single quotes may not contain more than one charac-
ter, e.g.:

c = ’12’; /* oops -- only one character may be specified */

(227) "." expected after ".." (Parser)
The only context in which two successive dots may appear is as part of the ellipsis sym-
bol, which must have 3 dots. (An ellipsis is used in function prototypes to indicate a vari-
able number of parameters.)

Either .. was meant to be an ellipsis symbol which would require you to add an extra
dot, or it was meant to be a structure member operator which would require you remove
one dot.
 2010 Microchip Technology Inc. DS51865B-page 255

HI-TECH C® for PIC10/12/16 User’s Guide
(228) illegal character (*) (Parser)
This character is illegal in the C code. Valid characters are the letters, digits and those
comprising the acceptable operators, e.g.:

c = a; /* oops -- did you mean c = ’a’; ? */

(229) unknown qualifier "*" given to -A (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(230) missing argument to -A (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(231) unknown qualifier "*" given to -I (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(232) missing argument to -I (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(233) bad -Q option "*" (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(234) close error (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(236) simple integer expression required (Parser)
A simple integral expression is required after the operator @ , used to associate an
absolute address with a variable, e.g.:

int address;
char LOCK @ address;

(237) function "*" redefined (Parser)
More than one definition for a function has been encountered in this module. Function
overloading is illegal, e.g.:

int twice(int a)
{
 return a*2;
}
/* only one prototype & definition of rv can exist */
long twice(long a)
{
 return a*2;
}

(238) illegal initialization (Parser)
You can’t initialize a typedef declaration, because it does not reserve any storage that
can be initialized, e.g.:
DS51865B-page 256  2010 Microchip Technology Inc.

/* oops -- uint is a type, not a variable */
typedef unsigned int uint = 99;

(239) identifier "*" redefined (from line *) (Parser)
This identifier has already been defined in the same scope. It cannot be defined again,
e.g.:

 int a; /* a filescope variable called “a” */
 int a; /* attempting to define another of the same name */

Note that variables with the same name, but defined with different scopes are legal, but
not recommended.

(240) too many initializers (Parser)
There are too many initializers for this object. Check the number of initializers against
the object definition (array or structure), e.g.:

/* three elements, but four initializers */
int ivals[3] = { 2, 4, 6, 8};

(241) initialization syntax (Parser)
The initialization of this object is syntactically incorrect. Check for the correct placement
and number of braces and commas, e.g.:

int iarray[10] = {{’a’, ’b’, ’c’};
/* oops -- one two many {s */

(242) illegal type for switch expression (Parser)
A switch operation must have an expression that is either an integral type or an enu-
merated value, e.g:

double d;
switch(d) { /* oops -- this must be integral */
 case ’1.0’:
 d = 0;
}

(243) inappropriate break/continue (Parser)
A break or continue statement has been found that is not enclosed in an appropriate
control structure. A continue can only be used inside a while , for or do while
loop, while break can only be used inside those loops or a switch statement, e.g.:

switch(input) {
 case 0:
 if(output == 0)
 input = 0xff;
 } /* oops! this shouldn’t be here and closed the switch */
 break; /* this should be inside the switch */

(244) "default" case redefined (Parser)
There is only allowed to be one default label in a switch statement. You have more
than one, e.g.:

switch(a) {
default: /* if this is the default case... */
 b = 9;
 break;
default: /* then what is this? */
 b = 10;
 break;
 2010 Microchip Technology Inc. DS51865B-page 257

HI-TECH C® for PIC10/12/16 User’s Guide
(245) "default" case not in switch (Parser)
A label has been encountered called default but it is not enclosed by a switch state-
ment. A default label is only legal inside the body of a switch statement.

If there is a switch statement before this default label, there may be one too many
closing braces in the switch code which would prematurely terminate the switch
statement. See message 246.

(246) case label not in switch (Parser)
A case label has been encountered, but there is no enclosing switch statement. A
case label may only appear inside the body of a switch statement.

If there is a switch statement before this case label, there may be one too many clos-
ing braces in the switch code which would prematurely terminate the switch state-
ment, e.g.:

switch(input) {
 case ’0’:
 count++;
 break;
 case ’1’:
 if(count>MAX)
 count= 0;
 } /* oops -- this shouldn’t be here */
 break;
 case ’2’: /* error flagged here */

(247) duplicate label "*" (Parser)
The same name is used for a label more than once in this function. Note that the scope
of labels is the entire function, not just the block that encloses a label, e.g.:

start:
 if(a > 256)
 goto end;
start: /* error flagged here */
 if(a == 0)
 goto start; /* which start label do I jump to? */

(248) inappropriate "else" (Parser)
An else keyword has been encountered that cannot be associated with an if state-
ment. This may mean there is a missing brace or other syntactic error, e.g.:

/* here is a comment which I have forgotten to close...
if(a > b) {
 c = 0;
/* ... that will be closed here, thus removing the “if” */
else /* my “if” has been lost */
 c = 0xff;

(249) probable missing "}" in previous block (Parser)
The compiler has encountered what looks like a function or other declaration, but the
preceding function has not been ended with a closing brace. This probably means that
a closing brace has been omitted from somewhere in the previous function, although it
may well not be the last one, e.g.:

void set(char a)
{
 PORTA = a;
 /* the closing brace was left out here */
void clear(void) /* error flagged here */
DS51865B-page 258  2010 Microchip Technology Inc.

{
 PORTA = 0;
}

(251) array dimension redeclared (Parser)
An array dimension has been declared as a different non-zero value from its previous
declaration. It is acceptable to redeclare the size of an array that was previously
declared with a zero dimension, but not otherwise, e.g.:

extern int array[5];
int array[10]; /* oops -- has it 5 or 10 elements? */

(252) argument * conflicts with prototype (Parser)
The argument specified (argument 0 is the left most argument) of this function definition
does not agree with a previous prototype for this function, e.g.:

/* this is supposedly calc’s prototype */
extern int calc(int, int);
int calc(int a, long int b) /* hmmm -- which is right? */
{ /* error flagged here */
 return sin(b/a);
}

(253) argument list conflicts with prototype (Parser)
The argument list in a function definition is not the same as a previous prototype for
that function. Check that the number and types of the arguments are all the same.

extern int calc(int); /* this is supposedly calc’s prototype */
int calc(int a, int b) /* hmmm -- which is right? */
{ /* error flagged here */
 return a + b;
}

(254) undefined *: "*" (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(255) not a member of the struct/union "*" (Parser)
This identifier is not a member of the structure or union type with which it used here,
e.g.:

struct {
 int a, b, c;
} data;
if(data.d) /* oops --
 there is no member d in this structure */
 return;

(256) too much indirection (Parser)
A pointer declaration may only have 16 levels of indirection.

(257) only "register" storage class allowed (Parser)
The only storage class allowed for a function parameter is register , e.g.:

void process(static int input)
 2010 Microchip Technology Inc. DS51865B-page 259

HI-TECH C® for PIC10/12/16 User’s Guide
(258) duplicate qualifier (Parser)
There are two occurrences of the same qualifier in this type specification. This can
occur either directly or through the use of a typedef. Remove the redundant qualifier.
For example:

typedef volatile int vint;
/* oops -- this results in two volatile qualifiers */
volatile vint very_vol;

(259) can’t be qualified both far and near (Parser)
It is illegal to qualify a type as both far and near , e.g.:

far near int spooky; /* oops -- choose far or near, not both */

(260) undefined enum tag "*" (Parser)
This enum tag has not been defined, e.g.:

enum WHAT what; /* a definition for WHAT was never seen */

(261) struct/union member "*" redefined (Parser)
This name of this member of the struct or union has already been used in this struct
or union , e.g.:

struct {
 int a;
 int b;
 int a; /* oops -- a different name is required here */
} input;

(262) struct/union "*" redefined (Parser)
A structure or union has been defined more than once, e.g.:

struct {
 int a;
} ms;
struct {
 int a;
} ms; /* was this meant to be the same name as above? */

(263) members can’t be functions (Parser)
A member of a structure or a union may not be a function. It may be a pointer to a func-
tion, e.g.:

struct {
 int a;
 int get(int); /* should be a pointer: int (*get)(int); */
} object;

(264) bad bitfield type (Parser)
A bitfield may only have a type of int (signed or unsigned), e.g.:

struct FREG {
 char b0:1; /* these must be part of an int, not char */
 char :6;
 char b7:1;
} freg;
DS51865B-page 260  2010 Microchip Technology Inc.

(265) integer constant expected (Parser)
A colon appearing after a member name in a structure declaration indicates that the
member is a bitfield. An integral constant must appear after the colon to define the num-
ber of bits in the bitfield, e.g.:

struct {
 unsigned first: /* oops -- should be: unsigned first; */
 unsigned second;
} my_struct;

If this was meant to be a structure with bitfields, then the following illustrates an exam-
ple:

struct {
 unsigned first : 4; /* 4 bits wide */
 unsigned second: 4; /* another 4 bits */
} my_struct;

(266) storage class illegal (Parser)
A structure or union member may not be given a storage class. Its storage class is
determined by the storage class of the structure, e.g.:

struct {
 /* no additional qualifiers may be present with members */
 static int first;
} ;

(267) bad storage class (Code Generator)
The code generator has encountered a variable definition whose storage class is
invalid, e.g.:

auto int foo; /* auto not permitted with global variables */
int power(static int a) /* parameters may not be static */
{
 return foo * a;
}

(268) inconsistent storage class (Parser)
A declaration has conflicting storage classes. Only one storage class should appear in
a declaration, e.g.:

extern static int where; /* so is it static or extern? */

(269) inconsistent type (Parser)
Only one basic type may appear in a declaration, e.g.:

int float if; /* is it int or float? */

(270) variable can’t have storage class "register" (Parser)
Only function parameters or auto variables may be declared using the register
qualifier, e.g.:

register int gi; /* this cannot be qualified register */
int process(register int input) /* this is okay */
{
 return input + gi;
}

(271) type can’t be long (Parser)
Only int and float can be qualified with long.
 2010 Microchip Technology Inc. DS51865B-page 261

HI-TECH C® for PIC10/12/16 User’s Guide
long char lc; /* what? */

(272) type can’t be short (Parser)
Only int can be modified with short , e.g.:

short float sf; /* what? */

(273) type can’t be both signed and unsigned (Parser)
The type modifiers signed and unsigned cannot be used together in the same dec-
laration, as they have opposite meaning, e.g.:

signed unsigned int confused; /* which is it? */

(274) type can’t be unsigned (Parser)
A floating point type cannot be made unsigned , e.g.:

unsigned float uf; /* what? */

(275) "..." illegal in non-prototype argument list (Parser)
The ellipsis symbol may only appear as the last item in a prototyped argument list. It
may not appear on its own, nor may it appear after argument names that do not have
types, i.e. K&R-style non-prototype function definitions. For example:

/* K&R-style non-prototyped function definition */
int kandr(a, b, ...)
 int a, b;
{

(276) type specifier required for prototyped argument (Parser)
A type specifier is required for a prototyped argument. It is not acceptable to just have
an identifier.

(277) can’t mix prototyped and non-prototyped arguments (Parser)
A function declaration can only have all prototyped arguments (i.e. with types inside the
parentheses) or all K&R style args (i.e. only names inside the parentheses and the
argument types in a declaration list before the start of the function body), e.g.:

int plus(int a, b) /* oops -- a is prototyped, b is not */
int b;
{
 return a + b;
}

(278) argument "*" redeclared (Parser)
The specified argument is declared more than once in the same argument list, e.g.

/* can’t have two parameters called “a” */
int calc(int a, int a)

(279) initialization of function arguments is illegal (Parser)
A function argument can’t have an initializer in a declaration. The initialization of the
argument happens when the function is called and a value is provided for the argument
by the calling function, e.g.:

/* oops -- a is initialized when proc is called */
extern int proc(int a = 9);
DS51865B-page 262  2010 Microchip Technology Inc.

(280) arrays of functions are illegal (Parser)
You can’t define an array of functions. You can however define an array of pointers to
functions, e.g.:

int * farray[](); /* oops -- should be: int (* farray[])(); */

(281) functions can’t return functions (Parser)
A function cannot return a function. It can return a function pointer. A function returning
a pointer to a function could be declared like this: int (* (name()))(). Note the many
parentheses that are necessary to make the parts of the declaration bind correctly.

(282) functions can’t return arrays (Parser)
A function can return only a scalar (simple) type or a structure. It cannot return an array.

(283) dimension required (Parser)
Only the most significant (i.e. the first) dimension in a multi-dimension array may not be
assigned a value. All succeeding dimensions must be present as a constant expres-
sion, e.g.:

/* This should be, e.g.: int arr[][7] */
int get_element(int arr[2][])
{
 return array[1][6];
}

(284) invalid dimension (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(285) no identifier in declaration (Parser)
The identifier is missing in this declaration. This error can also occur where the compiler
has been confused by such things as missing closing braces, e.g.:

void interrupt(void) /* what is the name of this function? */
{
}

(286) declarator too complex (Parser)
This declarator is too complex for the compiler to handle. Examine the declaration and
find a way to simplify it. If the compiler finds it too complex, so will anybody maintaining
the code.

(287) arrays of bits or pointers to bit are illegal (Parser)
It is not legal to have an array of bits, or a pointer to bit variable, e.g.:

bit barray[10]; /* wrong -- no bit arrays */
bit * bp; /* wrong -- no pointers to bit variables */

(288) only functions may be void (Parser)
A variable may not be void. Only a function can be void , e.g.:

int a;
void b; /* this makes no sense */

(289) only functions may be qualified "interrupt" (Parser)
The qualifier interrupt may not be applied to anything except a function, e.g.:
 2010 Microchip Technology Inc. DS51865B-page 263

HI-TECH C® for PIC10/12/16 User’s Guide
/* variables cannot be qualified interrupt */
interrupt int input;

(290) illegal function qualifier(s) (Parser)
A qualifier has been applied to a function which makes no sense in this context. Some
qualifier only make sense when used with an lvalue, e.g. const or volatile. This may
indicate that you have forgotten out a star * indicating that the function should return a
pointer to a qualified object, e.g.

const char ccrv(void) /* const * char ccrv(void) perhaps? */
{ /* error flagged here */
 return ccip;
}

(291) K&R identifier "*" not an argument (Parser)
This identifier that has appeared in a K&R style argument declarator is not listed inside
the parentheses after the function name, e.g.:

int process(input)
int unput; /* oops -- that should be int input; */
{
}

(292) function parameter may not be a function (Parser)
A function parameter may not be a function. It may be a pointer to a function, so per-
haps a "*" has been omitted from the declaration.

(293) bad size in index_type() (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(294) can’t allocate * bytes of memory (Code Generator, Hexmate)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(295) expression too complex (Parser)
This expression has caused overflow of the compiler’s internal stack and should be
re-arranged or split into two expressions.

(296) out of memory (Objtohex)
This could be an internal compiler error. Contact HI-TECH Software technical support
with details.

(297) bad argument (*) to tysize() (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(298) end of file in #asm (Preprocessor)
An end of file has been encountered inside a #asm block. This probably means the
#endasm is missing or misspelt, e.g.:

#asm
 MOV r0, #55
 MOV [r1], r0
} /* oops -- where is the #endasm */
DS51865B-page 264  2010 Microchip Technology Inc.

(300) unexpected end of file (Parser)
An end-of-file in a C module was encountered unexpectedly, e.g.:

void main(void)
{
 init();
 run(); /* is that it? What about the close brace */

(301) end of file on string file (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(302) can’t reopen "*": * (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(303) can’t allocate * bytes of memory (line *) (Parser)
The parser was unable to allocate memory for the longest string encountered, as it
attempts to sort and merge strings. Try reducing the number or length of strings in this
module.

(306) can’t allocate * bytes of memory for * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(307) too many qualifier names (Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(308) too many case labels in switch (Code Generator)
There are too many case labels in this switch statement. The maximum allowable
number of case labels in any one switch statement is 511.

(309) too many symbols (Assembler)
There are too many symbols for the assembler’s symbol table. Reduce the number of
symbols in your program.

(310) "]" expected (Parser)
A closing square bracket was expected in an array declaration or an expression using
an array index, e.g.

process(carray[idx); /* oops --
 should be: process(carray[idx]); */

(311) closing quote expected (Parser)
A closing quote was expected for the indicated string.

(312) "*" expected (Parser)
The indicated token was expected by the parser.

(313) function body expected (Parser)
Where a function declaration is encountered with K&R style arguments (i.e. argument
names but no types inside the parentheses) a function body is expected to follow, e.g.:
 2010 Microchip Technology Inc. DS51865B-page 265

HI-TECH C® for PIC10/12/16 User’s Guide
/* the function block must follow, not a semicolon */
int get_value(a, b);

(314) ";" expected (Parser)
A semicolon is missing from a statement. A close brace or keyword was found following
a statement with no terminating semicolon , e.g.:

while(a) {
 b = a-- /* oops -- where is the semicolon? */
} /* error is flagged here */

Note: Omitting a semicolon from statements not preceding a close brace or keyword
typically results in some other error being issued for the following code which the parser
assumes to be part of the original statement.

(315) "{" expected (Parser)
An opening brace was expected here. This error may be the result of a function defini-
tion missing the opening brace , e.g.:

/* oops! no opening brace after the prototype */
void process(char c)
 return max(c, 10) * 2; /* error flagged here */
}

(316) "}" expected (Parser)
A closing brace was expected here. This error may be the result of a initialized array
missing the closing brace , e.g.:

char carray[4] = { 1, 2, 3, 4; /* oops -- no closing brace */

(317) "(" expected (Parser)
An opening parenthesis , (, was expected here. This must be the first token after a
while , for , if , do or asm keyword, e.g.:

if a == b /* should be: if(a == b) */
 b = 0;

(318) string expected (Parser)
The operand to an asm statement must be a string enclosed in parentheses, e.g.:

asm(nop); /* that should be asm(“nop”);

(319) while expected (Parser)
The keyword while is expected at the end of a do statement, e.g.:

do {
 func(i++);
} /* do the block while what condition is true? */
if(i > 5) /* error flagged here */
 end();

(320) ":" expected (Parser)
A colon is missing after a case label, or after the keyword default. This often occurs
when a semicolon is accidentally typed instead of a colon , e.g.:

switch(input) {
 case 0; /* oops -- that should have been: case 0: */
 state = NEW;
DS51865B-page 266  2010 Microchip Technology Inc.

(321) label identifier expected (Parser)
An identifier denoting a label must appear after goto , e.g.:

if(a)
 goto 20;
/* this is not BASIC -- a valid C label must follow a goto */

(322) enum tag or "{" expected (Parser)
After the keyword enum must come either an identifier that is or will be defined as an
enum tag, or an opening brace, e.g.:

enum 1, 2; /* should be, e.g.: enum {one=1, two }; */

(323) struct/union tag or "{" expected (Parser)
An identifier denoting a structure or union or an opening brace must follow a struct
or union keyword, e.g.:

struct int a; /* this is not how you define a structure */

You might mean something like:

struct {
 int a;
} my_struct;

(324) too many arguments for printf-style format string (Parser)
There are too many arguments for this format string. This is harmless, but may repre-
sent an incorrect format string, e.g.:

/* oops -- missed a placeholder? */
printf(“%d - %d”, low, high, median);

(325) error in printf-style format string (Parser)
There is an error in the format string here. The string has been interpreted as a
printf() style format string, and it is not syntactically correct. If not corrected, this will
cause unexpected behavior at run time, e.g.:

printf(“%l”, lll); /* oops -- maybe: printf(“%ld”, lll); */

(326) long int argument required in printf-style format string (Parser)
A long argument is required for this format specifier. Check the number and order of
format specifiers and corresponding arguments, e.g.:

printf(“%lx”, 2); // maybe you meant: printf(“%lx”, 2L);

(327) long long int argument required in printf-style format string
(Parser)

A long long argument is required for this format specifier. Check the number and order
of format specifiers and corresponding arguments, e.g.:

printf(“%llx”, 2); // maybe you meant: printf(“%llx”, 2LL);

Note that not all HI-TECH C compilers provide support for a long long integer type.

(328) int argument required in printf-style format string (Parser)
An integral argument is required for this printf-style format specifier. Check the number
and order of format specifiers and corresponding arguments, e.g.:

printf(“%d”, 1.23); /* wrong number or wrong placeholder */
 2010 Microchip Technology Inc. DS51865B-page 267

HI-TECH C® for PIC10/12/16 User’s Guide
(329) double argument required in printf-style format string (Parser)
The printf format specifier corresponding to this argument is %f or similar, and requires
a floating point expression. Check for missing or extra format specifiers or arguments
to printf.

printf(“%f”, 44); /* should be: printf(“%f”, 44.0); */

(330) pointer to * argument required in printf-style format string (Parser)
A pointer argument is required for this format specifier. Check the number and order of
format specifiers and corresponding arguments.

(331) too few arguments for printf-style format string (Parser)
There are too few arguments for this format string. This would result in a garbage value
being printed or converted at run time, e.g.:

printf(“%d - %d”, low);
 /* oops! where is the other value to print? */

(332) "interrupt_level" should be 0 to 7 (Parser)
The pragma interrupt_level must have an argument from 0 to 7, e.g.:

#pragma interrupt_level /* oops -- what is the level */
void interrupt isr(void)
{
 /* isr code goes here */
}

(333) unrecognized qualifier name after "strings" (Parser)
The pragma strings was passed a qualifier that was not identified, e.g.:

/* oops -- should that be #pragma strings const ? */
#pragma strings cinst

(334) unrecognized qualifier name after "printf_check" (Parser)
The #pragma printf_check was passed a qualifier that could not be identified, e.g.:

/* oops -- should that be const not cinst? */
#pragma printf_check(printf) cinst

(335) unknown pragma "*" (Parser)
An unknown pragma directive was encountered, e.g.:

#pragma rugsused w /* I think you meant regsused */

(336) string concatenation across lines (Parser)
Strings on two lines will be concatenated. Check that this is the desired result, e.g.:

char * cp = “hi”
 “there”; /* this is okay,
 but is it what you had intended? */

(337) line does not have a newline on the end (Parser)
The last line in the file is missing the newline (operating system dependent character)
from the end. Some editors will create such files, which can cause problems for include
files. The ANSI C standard requires all source files to consist of complete lines only.
DS51865B-page 268  2010 Microchip Technology Inc.

(338) can’t create * file "*" (Any)
The application tried to create or open the named file, but it could not be created. Check
that all file path names are correct.

(339) initializer in extern declaration (Parser)
A declaration containing the keyword extern has an initializer. This overrides the
extern storage class, since to initialise an object it is necessary to define (i.e. allocate
storage for) it, e.g.:

extern int other = 99; /* if it’s extern and not allocated
 storage, how can it be initialized? */

(340) string not terminated by null character. (Parser)
A char array is being initialized with a string literal larger than the array. Hence there is
insufficient space in the array to safely append a null terminating character, e.g.:

char foo[5] = “12345”; /* the string stored in foo won’t have
 a null terminating, i.e.
 foo = [’1’, ’2’, ’3’, ’4’, ’5’] */

(343) implicit return at end of non-void function (Parser)
A function which has been declared to return a value has an execution path that will
allow it to reach the end of the function body, thus returning without a value. Either
insert a return statement with a value, or if the function is not to return a value,
declare it void , e.g.:

int mydiv(double a, int b)
{
 if(b != 0)
 return a/b; /* what about when b is 0? */
} /* warning flagged here */

(344) non-void function returns no value (Parser)
A function that is declared as returning a value has a return statement that does not
specify a return value, e.g.:

int get_value(void)
{
 if(flag)
 return val++;
 return;
 /* what is the return value in this instance? */
}

(345) unreachable code (Parser)
This section of code will never be executed, because there is no execution path by
which it could be reached, e.g.:

while(1) /* how does this loop finish? */
 process();
flag = FINISHED; /* how do we get here? */

(346) declaration of "*" hides outer declaration (Parser)
An object has been declared that has the same name as an outer declaration (i.e. one
outside and preceding the current function or block). This is legal, but can lead to acci-
dental use of one variable when the outer one was intended, e.g.:

int input; /* input has filescope */
 2010 Microchip Technology Inc. DS51865B-page 269

HI-TECH C® for PIC10/12/16 User’s Guide
void process(int a)
{
 int input; /* local blockscope input */
 a = input; /* this will use the local variable.
 Is this right? */

(347) external declaration inside function (Parser)
A function contains an extern declaration. This is legal but is invariably not desirable
as it restricts the scope of the function declaration to the function body. This means that
if the compiler encounters another declaration, use or definition of the extern object
later in the same file, it will no longer have the earlier declaration and thus will be unable
to check that the declarations are consistent. This can lead to strange behavior of your
program or signature errors at link time. It will also hide any previous declarations of
the same thing, again subverting the compiler’s type checking. As a general rule,
always declare extern variables and functions outside any other functions. For exam-
ple:

int process(int a)
{
 /* this would be better outside the function */
 extern int away;
 return away + a;
}

(348) auto variable "*" should not be qualified (Parser)
An auto variable should not have qualifiers such as near or far associated with it. Its
storage class is implicitly defined by the stack organization. An auto variable may be
qualified with static , but it is then no longer auto.

(349) non-prototyped function declaration for "*" (Parser)
A function has been declared using old-style (K&R) arguments. It is preferable to use
prototype declarations for all functions, e.g.:

int process(input)
int input; /* warning flagged here */
{
}

This would be better written:

int process(int input)
{
}

(350) unused * "*" (from line *) (Parser)
The indicated object was never used in the function or module being compiled. Either
this object is redundant, or the code that was meant to use it was excluded from com-
pilation or misspelt the name of the object. Note that the symbols rcsid and sccsid
are never reported as being unused.

(352) float parameter coerced to double (Parser)
Where a non-prototyped function has a parameter declared as float , the compiler
converts this into a double float. This is because the default C type conversion con-
ventions provide that when a floating point number is passed to a non-prototyped func-
tion, it will be converted to double. It is important that the function declaration be
consistent with this convention, e.g.:

double inc_flt(f) /* f will be converted to double */
float f; /* warning flagged here */
DS51865B-page 270  2010 Microchip Technology Inc.

{
 return f * 2;
}

(353) sizeof external array "*" is zero (Parser)
The size of an external array evaluates to zero. This is probably due to the array not
having an explicit dimension in the extern declaration.

(354) possible pointer truncation (Parser)
A pointer qualified far has been assigned to a default pointer or a pointer qualified near,
or a default pointer has been assigned to a pointer qualified near. This may result in
truncation of the pointer and loss of information, depending on the memory model in
use.

(355) implicit signed to unsigned conversion (Parser)
A signed number is being assigned or otherwise converted to a larger unsigned
type. Under the ANSI C “value preserving” rules, this will result in the signed value
being first sign-extended to a signed number the size of the target type, then con-
verted to unsigned (which involves no change in bit pattern). Thus an unexpected
sign extension can occur. To ensure this does not happen, first convert the signed value
to an unsigned equivalent, e.g.:

signed char sc;
unsigned int ui;
ui = sc; /* if sc contains 0xff,
 ui will contain 0xffff for example */

will perform a sign extension of the char variable to the longer type. If you do not want
this to take place, use a cast, e.g.:

ui = (unsigned char)sc;

(356) implicit conversion of float to integer (Parser)
A floating point value has been assigned or otherwise converted to an integral type.
This could result in truncation of the floating point value. A typecast will make this warn-
ing go away.

double dd;
int i;
i = dd; /* is this really what you meant? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)dd;

(357) illegal conversion of integer to pointer (Parser)
An integer has been assigned to or otherwise converted to a pointer type. This will usu-
ally mean you have used the wrong variable, but if this is genuinely what you want to
do, use a typecast to inform the compiler that you want the conversion and the warning
will be suppressed. This may also mean you have forgotten the & address operator,
e.g.:

int * ip;
int i;
ip = i; /* oops -- did you mean ip = &i ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

ip = (int *)i;
 2010 Microchip Technology Inc. DS51865B-page 271

HI-TECH C® for PIC10/12/16 User’s Guide
(358) illegal conversion of pointer to integer (Parser)
A pointer has been assigned to or otherwise converted to a integral type. This will usu-
ally mean you have used the wrong variable, but if this is genuinely what you want to
do, use a typecast to inform the compiler that you want the conversion and the warning
will be suppressed. This may also mean you have forgotten the * dereference operator,
e.g.:

int * ip;
int i;
i = ip; /* oops -- did you mean i = *ip ? */

If you do intend to use an expression like this, then indicate that this is so by a cast:

i = (int)ip;

(359) illegal conversion between pointer types (Parser)
A pointer of one type (i.e. pointing to a particular kind of object) has been converted into
a pointer of a different type. This will usually mean you have used the wrong variable,
but if this is genuinely what you want to do, use a typecast to inform the compiler that
you want the conversion and the warning will be suppressed, e.g.:

long input;
char * cp;
cp = &input; /* is this correct? */

This is common way of accessing bytes within a multi-byte variable. To indicate that this
is the intended operation of the program, use a cast:

cp = (char *)&input; /* that’s better */

This warning may also occur when converting between pointers to objects which have
the same type, but which have different qualifiers, e.g.:

char * cp;
/* yes, but what sort of characters? */
cp = “I am a string of characters”;

If the default type for string literals is const char * , then this warning is quite valid.
This should be written:

const char * cp;
cp = “I am a string of characters”; /* that’s better */

Omitting a qualifier from a pointer type is often disastrous, but almost certainly not what
you intend.

(360) array index out of bounds (Parser)
An array is being indexed with a constant value that is less than zero, or greater than
or equal to the number of elements in the array. This warning will not be issued when
accessing an array element via a pointer variable, e.g.:

int i, * ip, input[10];
i = input[-2]; /* oops -- this element doesn’t exist */
ip = &input[5];
i = ip[-2]; /* this is okay */

(361) function declared implicit int (Parser)
Where the compiler encounters a function call of a function whose name is presently
undefined, the compiler will automatically declare the function to be of type int , with
unspecified (K&R style) parameters. If a definition of the function is subsequently
encountered, it is possible that its type and arguments will be different from the earlier
implicit declaration, causing a compiler error. The solution is to ensure that all functions
DS51865B-page 272  2010 Microchip Technology Inc.

are defined or at least declared before use, preferably with prototyped parameters. If it
is necessary to make a forward declaration of a function, it should be preceded with the
keywords extern or static as appropriate. For example:

/* I may prevent an error arising from calls below */
void set(long a, int b);
void main(void)
{
 /* by here a prototype for set should have seen */
 set(10L, 6);
}

(362) redundant "&" applied to array (Parser)
The address operator & has been applied to an array. Since using the name of an array
gives its address anyway, this is unnecessary and has been ignored, e.g.:

int array[5];
int * ip;
/* array is a constant, not a variable; the & is redundant. */
ip = &array;

(363) redundant "&" or "*" applied to function address (Parser)
The address operator "&" has been applied to a function. Since using the name of a
function gives its address anyway, this is unnecessary and has been ignored, e.g.:

extern void foo(void);
void main(void)
{
 void(*bar)(void);
 /* both assignments are equivalent */
 bar = &foo;
 bar = foo; /* the & is redundant */
}

(364) attempt to modify object qualified * (Parser)
Objects declared const or code may not be assigned to or modified in any other way
by your program. The effect of attempting to modify such an object is compiler-specific.

const int out = 1234; /* “out” is read only */
out = 0; /* oops --
 writing to a read-only object */

(365) pointer to non-static object returned (Parser)
This function returns a pointer to a non-static (e.g. auto) variable. This is likely to
be an error, since the storage associated with automatic variables becomes invalid
when the function returns, e.g.:

char * get_addr(void)
{
 char c;
 /* returning this is dangerous;
 the pointer could be dereferenced */
 return &c;
}

(366) operands of "*" not same pointer type (Parser)
The operands of this operator are of different pointer types. This probably means you
have used the wrong pointer, but if the code is actually what you intended, use a type-
cast to suppress the error message.
 2010 Microchip Technology Inc. DS51865B-page 273

HI-TECH C® for PIC10/12/16 User’s Guide
(367) identifier is already extern; can’t be static (Parser)
This function was already declared extern, possibly through an implicit declaration. It
has now been redeclared static, but this redeclaration is invalid.

void main(void)
{
 /* at this point the compiler assumes set is extern... */
 set(10L, 6);
}
/* now it finds out otherwise */
static void set(long a, int b)
{
 PORTA = a + b;
}

(368) array dimension on "*[]" ignored (Preprocessor)
An array dimension on a function parameter has been ignored because the argument
is actually converted to a pointer when passed. Thus arrays of any size may be passed.
Either remove the dimension from the parameter, or define the parameter using pointer
syntax, e.g.:

/* param should be: “int array[]” or “int *” */
int get_first(int array[10])
{ /* warning flagged here */
 return array[0];
}

(369) signed bitfields not supported (Parser)
Only unsigned bitfields are supported. If a bitfield is declared to be type int , the com-
piler still treats it as unsigned , e.g.:

struct {
 signed int sign: 1; /* this must be unsigned */
 signed int value: 15;
} ;

(370) illegal basic type; int assumed (Parser)
The basic type of a cast to a qualified basic type couldn’t not be recognized and the
basic type was assumed to be int , e.g.:

/* here ling is assumed to be int */
unsigned char bar = (unsigned ling) ’a’;

(371) missing basic type; int assumed (Parser)
This declaration does not include a basic type, so int has been assumed. This decla-
ration is not illegal, but it is preferable to include a basic type to make it clear what is
intended, e.g.:

char c;
i; /* don’t let the compiler make assumptions, use : int i */
func(); /* ditto, use: extern int func(int); */

(372) "," expected (Parser)
A comma was expected here. This could mean you have left out the comma between
two identifiers in a declaration list. It may also mean that the immediately preceding
type name is misspelled, and has thus been interpreted as an identifier, e.g.:

unsigned char a;
/* thinks: chat & b are unsigned, but where is the comma? */
DS51865B-page 274  2010 Microchip Technology Inc.

unsigned chat b;

(373) implicit signed to unsigned conversion (Parser)
An unsigned type was expected where a signed type was given and was implicitly
cast to unsigned , e.g.:

unsigned int foo = -1;
/* the above initialization is implicitly treated as:
 unsigned int foo = (unsigned) -1; */

(374) missing basic type; int assumed (Parser)
The basic type of a cast to a qualified basic type was missing and assumed to be int.,
e.g.:

int i = (signed) 2; /* (signed) assumed to be (signed int) */

(375) unknown FNREC type "*" (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(376) bad non-zero node in call graph (Linker)
The linker has encountered a top level node in the call graph that is referenced from
lower down in the call graph. This probably means the program has indirect recursion,
which is not allowed when using a compiled stack.

(378) can’t create * file "*" (Hexmate)
This type of file could not be created. Is the file or a file by this name already in use?

(379) bad record type "*" (Linker)
This is an internal compiler error. Ensure the object file is a valid HI-TECH object file.
Contact HI-TECH Software technical support with details.

(380) unknown record type (*) (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(381) record "*" too long (*) (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(382) incomplete record: type = *, length = * (Dump, Xstrip)
This message is produced by the DUMP or XSTRIP utilities and indicates that the
object file is not a valid HI-TECH object file, or that it has been truncated. Contact
HI-TECH Support with details.

(383) text record has length (*) too small (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(384) assertion failed: file *, line *, expression * (Linker, Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
 2010 Microchip Technology Inc. DS51865B-page 275

HI-TECH C® for PIC10/12/16 User’s Guide
(387) illegal or too many -G options (Linker)
There has been more than one linker -g option, or the -g option did not have any argu-
ments following. The arguments specify how the segment addresses are calculated.

(388) duplicate -M option (Linker)
The map file name has been specified to the linker for a second time. This should not
occur if you are using a compiler driver. If invoking the linker manually, ensure that only
one instance of this option is present on the command line. See Section 2.7.8 “-M:
Generate Map File” for information on the correct syntax for this option.

(389) illegal or too many -O options (Linker)
This linker -o flag is illegal, or another -o option has been encountered. A -o option
to the linker must be immediately followed by a filename with no intervening space.

(390) missing argument to -P (Linker)
There have been too many -p options passed to the linker, or a -p option was not fol-
lowed by any arguments. The arguments of separate -p options may be combined and
separated by commas.

(391) missing argument to -Q (Linker)
The -Q linker option requires the machine type for an argument.

(392) missing argument to -U (Linker)
The -U (undefine) option needs an argument.

(393) missing argument to -W (Linker)
The -W option (listing width) needs a numeric argument.

(394) duplicate -D or -H option (Linker)
The symbol file name has been specified to the linker for a second time. This should
not occur if you are using a compiler driver. If invoking the linker manually, ensure that
only one instance of either of these options is present on the command line.

(395) missing argument to -J (Linker)
The maximum number of errors before aborting must be specified following the -j
linker option.

(397) usage: hlink [-options] files.obj files.lib (Linker)
Improper usage of the command-line linker. If you are invoking the linker directly then
please refer to Section Section 5.2 “Operation” for more details. Otherwise this may
be an internal compiler error and you should contact HI-TECH Software technical sup-
port with details.

(398) output file can’t be also an input file (Linker)
The linker has detected an attempt to write its output file over one of its input files. This
cannot be done, because it needs to simultaneously read and write input and output
files.
DS51865B-page 276  2010 Microchip Technology Inc.

(400) bad object code format (Linker)
This is an internal compiler error. The object code format of an object file is invalid.
Ensure it is a valid HI-TECH object file. Contact HI-TECH Software technical support
with details.

(402) bad argument to -F (Objtohex)
The -F option for objtohex has been supplied an invalid argument. If you are invok-
ing this command-line tool directly then please refer to Section 6.3 “Objtohex” for
more details. Otherwise this may be an internal compiler error and you should contact
HI-TECH Software technical support with details.

(403) bad -E option: "*" (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(404) bad maximum length value to -<digits> (Objtohex)
The first value to the OBJTOHEX -n,m HEX length/rounding option is invalid.

(405) bad record size rounding value to -<digits> (Objtohex)
The second value to the OBJTOHEX -n,m HEX length/rounding option is invalid.

(406) bad argument to -A (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(407) bad argument to -U (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(408) bad argument to -B (Objtohex)
This option requires an integer argument in either base 8, 10 or 16. If you are invoking
objtohex directly then see Section 6.3 “Objtohex” for more details. Otherwise this
may be an internal compiler error and you should contact HI-TECH Software technical
support with details.

(409) bad argument to -P (Objtohex)
This option requires an integer argument in either base 8, 10 or 16. If you are invoking
objtohex directly then see Section 6.3 “Objtohex” for more details. Otherwise this
may be an internal compiler error and you should contact HI-TECH Software technical
support with details.

(410) bad combination of options (Objtohex)
The combination of options supplied to OBJTOHEX is invalid.

(412) text does not start at 0 (Objtohex)
Code in some things must start at zero. Here it doesn’t.

(413) write error on "*" (Assembler, Linker, Cromwell)
A write error occurred on the named file. This probably means you have run out of disk
space.
 2010 Microchip Technology Inc. DS51865B-page 277

HI-TECH C® for PIC10/12/16 User’s Guide
(414) read error on "*" (Linker)
The linker encountered an error trying to read this file.

(415) text offset too low in COFF file (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(416) bad character (*) in extended TEKHEX line (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(417) seek error in "*" (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(418) image too big (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(419) object file is not absolute (Objtohex)
The object file passed to OBJTOHEX has relocation items in it. This may indicate it is
the wrong object file, or that the linker or OBJTOHEX have been given invalid options.
The object output files from the assembler are relocatable, not absolute. The object file
output of the linker is absolute.

(420) too many relocation items (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(421) too many segments (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(422) no end record (Linker)
This object file has no end record. This probably means it is not an object file. Contact
HI-TECH Support if the object file was generated by the compiler.

(423) illegal record type (Linker)
There is an error in an object file. This is either an invalid object file, or an internal error
in the linker. Contact HI-TECH Support with details if the object file was created by the
compiler.

(424) record too long (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(425) incomplete record (Objtohex, Libr)
The object file passed to OBJTOHEX or the librarian is corrupted. Contact HI-TECH
Support with details.
DS51865B-page 278  2010 Microchip Technology Inc.

(427) syntax error in checksum list (Objtohex)
There is a syntax error in a checksum list read by OBJTOHEX. The checksum list is
read from standard input in response to an option.

(428) too many segment fixups (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(429) bad segment fixups (Objtohex)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(430) bad checksum specification (Objtohex)
A checksum list supplied to OBJTOHEX is syntactically incorrect.

(431) bad argument to -E (Objtoexe)
This option requires an integer argument in either base 8, 10 or 16. If you are invoking
objtoexe directly then check this argument. Otherwise this may be an internal com-
piler error and you should contact HI-TECH Software technical support with details.

(432) usage: objtohex [-ssymfile] [object-file [exe-file]] (Objtohex)
Improper usage of the command-line tool objtohex. If you are invoking objtohex
directly then please refer to Section 6.3 “Objtohex” for more details. Otherwise this
may be an internal compiler error and you should contact HI-TECH Software technical
support with details.

(434) too many symbols (*) (Linker)
There are too many symbols in the symbol table, which has a limit of * symbols.
Change some global symbols to local symbols to reduce the number of symbols.

(435) bad segment selector "*" (Linker)
The segment specification option (-G) to the linker is invalid, e.g.:

-GA/f0+10

Did you forget the radix?

-GA/f0h+10

(436) psect "*" re-orged (Linker)
This psect has had its start address specified more than once.

(437) missing "=" in class spec (Linker)
A class spec needs an = sign, e.g. -Ctext=ROM See Section “-Cpsect=class” for
more information.

(438) bad size in -S option (Linker)
The address given in a -S specification is invalid: it should be a valid number, in deci-
mal, octal or hexadecimal radix. The radix is specified by a trailing O , for octal, or H for
HEX. A leading 0x may also be used for hexadecimal. Case in not important for any
number or radix. Decimal is the default, e.g.:

-SCODE=f000

Did you forget the radix?
 2010 Microchip Technology Inc. DS51865B-page 279

HI-TECH C® for PIC10/12/16 User’s Guide
-SCODE=f000h

(439) bad -D spec: "*" (Linker)
The format of a -D specification, giving a delta value to a class, is invalid, e.g.:

-DCODE

What is the delta value for this class? Maybe you meant something like:

-DCODE=2

(440) bad delta value in -D spec (Linker)
The delta value supplied to a -D specification is invalid. This value should an integer of
base 8, 10 or 16.

(441) bad -A spec: "*" (Linker)
The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(442) missing address in -A spec (Linker)
The format of a -A specification, giving address ranges to the linker, is invalid, e.g.:

-ACODE=

What is the range for this class? Maybe you meant:

-ACODE=0h-1fffh

(443) bad low address "*" in -A spec (Linker)
The low address given in a -A specification is invalid: it should be a valid number, in
decimal, octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or
H for HEX. A leading 0x may also be used for hexadecimal. Case in not important for
any number or radix. Decimal is default, e.g.:

-ACODE=1fff-3fffh

Did you forget the radix?

-ACODE=1fffh-3fffh

(444) expected "-" in -A spec (Linker)
There should be a minus sign, - , between the high and low addresses in a -A linker
option, e.g.

-AROM=1000h

maybe you meant:

-AROM=1000h-1fffh

(445) bad high address "*" in -A spec (Linker)
The high address given in a -A specification is invalid: it should be a valid number, in
decimal, octal or hexadecimal radix. The radix is specified by a trailing O , for octal, or
H for HEX. A leading 0x may also be used for hexadecimal. Case in not important for
any number or radix. Decimal is the default, e.g.:

-ACODE=0h-ffff

Did you forget the radix?

-ACODE=0h-ffffh
DS51865B-page 280  2010 Microchip Technology Inc.

See Section 5.2.1 “-Aclass =low-high,...” for more information.

(446) bad overrun address "*" in -A spec (Linker)
The overrun address given in a -A specification is invalid: it should be a valid number,
in decimal, octal or hexadecimal radix. The radix is specified by a trailing O (for octal)
or H for HEX. A leading 0x may also be used for hexadecimal. Case in not important
for any number or radix. Decimal is default, e.g.:

-AENTRY=0-0FFh-1FF

Did you forget the radix?

-AENTRY=0-0FFh-1FFh

(447) bad load address "*" in -A spec (Linker)
The load address given in a -A specification is invalid: it should be a valid number, in
decimal, octal or hexadecimal radix. The radix is specified by a trailing O (for octal) or
H for HEX. A leading 0x may also be used for hexadecimal. Case in not important for
any number or radix. Decimal is default, e.g.:

-ACODE=0h-3fffh/a000

Did you forget the radix?

-ACODE=0h-3fffh/a000h

(448) bad repeat count "*" in -A spec (Linker)
The repeat count given in a -A specification is invalid, e.g.:

-AENTRY=0-0FFhxf

Did you forget the radix?

-AENTRY=0-0FFhxfh

(449) syntax error in -A spec: * (Linker)
The -A spec is invalid. A valid -A spec should be something like:

-AROM=1000h-1FFFh

(450) psect "*" was never defined (Linker)
This psect has been listed in a -P option, but is not defined in any module within the
program.

(451) bad psect origin format in -P option (Linker)
The origin format in a -p option is not a validly formed decimal, octal or HEX number,
nor is it the name of an existing psect. A HEX number must have a trailing H, e.g.:

-pbss=f000

Did you forget the radix?

-pbss=f000h

(452) bad "+" (minimum address) format in -P option (Linker)
The minimum address specification in the linker’s -p option is badly formatted, e.g.:

-pbss=data+f000

Did you forget the radix?

-pbss=data+f000h
 2010 Microchip Technology Inc. DS51865B-page 281

HI-TECH C® for PIC10/12/16 User’s Guide
(453) missing number after "%" in -P option (Linker)
The % operator in a -p option (for rounding boundaries) must have a number after it.

(454) link and load address can’t both be set to "." in -P option (Linker)
The link and load address of a psect have both been specified with a dot character.
Only one of these addresses may be specified in this manner, e.g.:

-Pmypsect=1000h/.
-Pmypsect=./1000h

Both of these options are valid and equivalent, however the following usage is ambig-
uous:

-Pmypsect=./.

What is the link or load address of this psect?

(455) psect "*" not relocated on 0x* byte boundary (Linker)
This psect is not relocated on the required boundary. Check the relocatability of the
psect and correct the -p option. if necessary.

(456) psect "*" not loaded on 0x* boundary (Linker)
This psect has a relocatability requirement that is not met by the load address given in
a -p option. For example if a psect must be on a 4K byte boundary, you could not start
it at 100H.

(459) remove failed, error: *, * (xstrip)
The creation of the output file failed when removing an intermediate file.

(460) rename failed, error: *, * (xstrip)
The creation of the output file failed when renaming an intermediate file.

(461) can’t create * file "*" (Assembler, Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(464) missing key in avmap file (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(465) undefined symbol "*" in FNBREAK record (Linker)
The linker has found an undefined symbol in the FNBREAK record for a non-reentrant
function. Contact HI-TECH Support if this is not handwritten assembler code.

(466) undefined symbol "*" in FNINDIR record (Linker)
The linker has found an undefined symbol in the FNINDIR record for a non-reentrant
function. Contact HI-TECH Support if this is not handwritten assembler code.

(467) undefined symbol "*" in FNADDR record (Linker)
The linker has found an undefined symbol in the FNADDR record for a non-reentrant
function. Contact HI-TECH Support if this is not handwritten assembler code.
DS51865B-page 282  2010 Microchip Technology Inc.

(468) undefined symbol "*" in FNCALL record (Linker)
The linker has found an undefined symbol in the FNCALL record for a non-reentrant
function. Contact HI-TECH Support if this is not handwritten assembler code.

(469) undefined symbol "*" in FNROOT record (Linker)
The linker has found an undefined symbol in the FNROOT record for a non-reentrant
function. Contact HI-TECH Support if this is not handwritten assembler code.

(470) undefined symbol "*" in FNSIZE record (Linker)
The linker has found an undefined symbol in the FNSIZE record for a non-reentrant
function. Contact HI-TECH Support if this is not handwritten assembler code.

(471) recursive function calls: (Linker)
These functions (or function) call each other recursively. One or more of these functions
has statically allocated local variables (compiled stack). Either use the reentrant
keyword (if supported with this compiler) or recode to avoid recursion, e.g.:

int test(int a)
{
 if(a == 5) {
 /* recursion may not be supported by some compilers */
 return test(a++);
 }
 return 0;
}

(472) non-reentrant function "*" appears in multiple call graphs: rooted
at "*" and "*" (Linker)

This function can be called from both main-line code and interrupt code. Use the reen-
trant keyword, if this compiler supports it, or recode to avoid using local variables or
parameters, or duplicate the function, e.g.:

void interrupt my_isr(void)
{
 scan(6); /* scan is called from an interrupt function */
}
void process(int a)
{
 scan(a); /* scan is also called from main-line code */
}

(473) function "*" is not called from specified interrupt_level (Linker)
The indicated function is never called from an interrupt function of the same interrupt
level, e.g.:

#pragma interrupt_level 1
void foo(void)
{
 ...
}
#pragma interrupt_level 1
void interrupt bar(void)
{
 // this function never calls foo()
}

 2010 Microchip Technology Inc. DS51865B-page 283

HI-TECH C® for PIC10/12/16 User’s Guide
(474) no psect specified for function variable/argument allocation
(Linker)

The FNCONF assembler directive which specifies to the linker information regarding the
auto/parameter block was never seen. This is supplied in the standard runtime files if
necessary. This error may imply that the correct run-time startup module was not
linked. Ensure you have used the FNCONF directive if the runtime startup module is
hand-written.

(475) conflicting FNCONF records (Linker)
The linker has seen two conflicting FNCONF directives. This directive should only be
specified once and is included in the standard runtime startup code which is normally
linked into every program.

(476) fixup overflow referencing * * (location 0x* (0x*+*), size *, value 0x*)
(Linker)

The linker was asked to relocate (fixup) an item that would not fit back into the space
after relocation. See the following error message (477) for more information.

(477) fixup overflow in expression (location 0x* (0x*+*), size *, value 0x*)
(Linker)

Fixup is the process conducted by the linker of replacing symbolic references to vari-
ables etc, in an assembler instruction with an absolute value. This takes place after
positioning the psects (program sections or blocks) into the available memory on the
target device. Fixup overflow is when the value determined for a symbol is too large to
fit within the allocated space within the assembler instruction. For example, if an
assembler instruction has an 8-bit field to hold an address and the linker determines
that the symbol that has been used to represent this address has the value 0x110, then
clearly this value cannot be inserted into the instruction.

The causes for this can be many, but hand-written assembler code is always the first
suspect. Badly written C code can also generate assembler that ultimately generates
fixup overflow errors. Consider the following error message.

main.obj: 8: Fixup overflow in expression (loc 0x1FD (0x1FC+1),
 size 1, value 0x7FC)

This indicates that the file causing the problem was main.obj. This would be typically
be the output of compiling main.c or main.as. This tells you the file in which you
should be looking. The next number (8 in this example) is the record number in the
object file that was causing the problem. If you use the DUMP utility to examine the
object file, you can identify the record, however you do not normally need to do this.

The location (loc) of the instruction (0x1FD), the size (in bytes) of the field in the
instruction for the value (1) , and the value which is the actual value the symbol rep-
resents, is typically the only information needed to track down the cause of this error.
Note that a size which is not a multiple of 8 bits will be rounded up to the nearest byte
size, i.e. a 7 bit space in an instruction will be shown as 1 byte.

Generate an assembler list file for the appropriate module. Look for the address spec-
ified in the error message.

7 07FC 0E21 MOVLW 33
8 07FD 6FFC MOVWF _foo
9 07FE 0012 RETURN

and to confirm, look for the symbol referenced in the assembler instruction at this
address in the symbol table at the bottom of the same file.

Symbol Table Fri Aug 12 13:17:37 2004
DS51865B-page 284  2010 Microchip Technology Inc.

_foo 01FC _main 07FF

In this example, the instruction causing the problem takes an 8-bit offset into a bank of
memory, but clearly the address 0x1FC exceeds this size. Maybe the instruction should
have been written as:

MOVWF (_foo&0ffh)

which masks out the top bits of the address containing the bank information.

If the assembler instruction that caused this error was generated by the compiler, in the
assembler list file look back up the file from the instruction at fault to determine which
C statement has generated this instruction. You will then need to examine the C code
for possible errors. incorrectly qualified pointers are an common trigger.

(478) * range check failed (location 0x* (0x*+*), value 0x* > limit 0x*)
(Linker)

This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(479) circular indirect definition of symbol "*" (Linker)
The specified symbol has been equated to an external symbol which, in turn, has been
equated to the first symbol.

(480) function signatures do not match: * (*): 0x*/0x* (Linker)
The specified function has different signatures in different modules. This means it has
been declared differently, e.g. it may have been prototyped in one module and not
another. Check what declarations for the function are visible in the two modules spec-
ified and make sure they are compatible, e.g.:

extern int get_value(int in);
/* and in another module: */
/* this is different to the declaration */
int get_value(int in, char type)
{

(481) common symbol "*" psect conflict (Linker)
A common symbol has been defined to be in more than one psect.

(482) symbol "*" is defined more than once in "*" (Assembler)
This symbol has been defined in more than one place. The assembler will issue this
error if a symbol is defined more than once in the same module, e.g.:

_next:
 MOVE r0, #55
 MOVE [r1], r0
_next: ; oops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple
times in different modules. The names of the modules are given in the error message.
Note that C identifiers often have an underscore prepended to their name after compi-
lation.

(483) symbol "*" can’t be global (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
 2010 Microchip Technology Inc. DS51865B-page 285

HI-TECH C® for PIC10/12/16 User’s Guide
(484) psect "*" can’t be in classes "*" and "*" (Linker)
A psect cannot be in more than one class. This is either due to assembler modules with
conflicting class= options to the PSECT directive, or use of the -C option to the linker,
e.g.:

psect final,class=CODE
finish:
/* elsewhere: */
psect final,class=ENTRY

(485) unknown "with" psect referenced by psect "*" (Linker)
The specified psect has been placed with a psect using the psect with flag. The psect
it has been placed with does not exist, e.g.:

psect starttext,class=CODE,with=rext
 ; was that meant to be with text?

(486) psect "*" selector value redefined (Linker)
The selector value for this psect has been defined more than once.

(487) psect "*" type redefined: */* (Linker)
This psect has had its type defined differently by different modules. This probably
means you are trying to link incompatible object modules, e.g. linking 386 flat model
code with 8086 real mode code.

(488) psect "*" memory space redefined: */* (Linker)
A global psect has been defined in two different memory spaces. Either rename one of
the psects or, if they are the same psect, place them in the same memory space using
the space psect flag, e.g.:

psect spdata,class=RAM,space=0
 ds 6
; elsewhere:
psect spdata,class=RAM,space=1

(489) psect "*" memory delta redefined: */* (Linker)
A global psect has been defined with two different delta values, e.g.:

psect final,class=CODE,delta=2
finish:
; elsewhere:
psect final,class=CODE,delta=1

(490) class "*" memory space redefined: */* (Linker)
A class has been defined in two different memory spaces. Either rename one of the
classes or, if they are the same class, place them in the same memory space.

(491) can’t find 0x* words for psect "*" in segment "*" (Linker)
One of the main tasks the linker performs is positioning the blocks (or psects) of code
and data that is generated from the program into the memory available for the target
device. This error indicates that the linker was unable to find an area of free memory
large enough to accommodate one of the psects. The error message indicates the
name of the psect that the linker was attempting to position and the segment name
which is typically the name of a class which is defined with a linker -A option.
Section 3.10.1 “Compiler-generated Psects” lists each compiler-generated psect
DS51865B-page 286  2010 Microchip Technology Inc.

and what it contains. Typically psect names which are, or include, text relate to pro-
gram code. Names such as bss or data refer to variable blocks. This error can be due
to two reasons.

First, the size of the program or the program’s data has exceeded the total amount of
space on the selected device. In other words, some part of your device’s memory has
completely filled. If this is the case, then the size of the specified psect must be
reduced.

The second cause of this message is when the total amount of memory needed by the
psect being positioned is sufficient, but that this memory is fragmented in such a way
that the largest contiguous block is too small to accommodate the psect. The linker is
unable to split psects in this situation. That is, the linker cannot place part of a psect at
one location and part somewhere else. Thus, the linker must be able to find a contigu-
ous block of memory large enough for every psect. If this is the cause of the error, then
the psect must be split into smaller psects if possible.

To find out what memory is still available, generate and look in the map file, see
Section 2.7.8 “-M: Generate Map File” for information on how to generate a map file.
Search for the string UNUSED ADDRESS RANGES. Under this heading, look for the
name of the segment specified in the error message. If the name is not present, then
all the memory available for this psect has been allocated. If it is present, there will be
one address range specified under this segment for each free block of memory. Deter-
mine the size of each block and compare this with the number of words specified in the
error message.

Psects containing code can be reduced by using all the compiler’s optimizations, or
restructuring the program. If a code psect must be split into two or more small psects,
this requires splitting a function into two or more smaller functions (which may call each
other). These functions may need to be placed in new modules.

Psects containing data may be reduced when invoking the compiler optimizations, but
the effect is less dramatic. The program may need to be rewritten so that it needs less
variables. If the default linker options must be changed, this can be done indirectly
through the driver using the driver -L- option, see Section 2.7.7 “-L-: Adjust Linker
Options Directly”. Section 2.7.8 “-M: Generate Map File” has information on inter-
preting the map file’s call graph if the compiler you are using uses a compiled stack. (If
the string Call graph: is not present in the map file, then the compiled code uses a
hardware stack.) If a data psect needs to be split into smaller psects, the definitions for
variables will need to be moved to new modules or more evenly spread in the existing
modules. Memory allocation for auto variables is entirely handled by the compiler.
Other than reducing the number of these variables used, the programmer has little con-
trol over their operation. This applies whether the compiled code uses a hardware or
compiled stack.

For example, after receiving the message:

Can’t find 0x34 words (0x34 withtotal) for psect text
 in segment CODE (error)

look in the map file for the ranges of unused memory.

UNUSED ADDRESS RANGES
 CODE 00000244-0000025F
 00001000-0000102f
 RAM 00300014-00301FFB

In the CODE segment, there is 0x1c (0x25f-0x244+1) bytes of space available in one
block and 0x30 available in another block. Neither of these are large enough to accom-
modate the psect text which is 0x34 bytes long. Notice, however, that the total amount
of memory available is larger than 0x34 bytes.
 2010 Microchip Technology Inc. DS51865B-page 287

HI-TECH C® for PIC10/12/16 User’s Guide
(492) attempt to position absolute psect "*" is illegal (Linker)
This psect is absolute and should not have an address specified in a -P option. Either
remove the abs psect flag, or remove the -P linker option.

(493) origin of psect "*" is defined more than once (Linker)
The origin of this psect is defined more than once. There is most likely more than one
-p linker option specifying this psect.

(494) bad -P format "*/*" (Linker)
The -P option given to the linker is malformed. This option specifies placement of a
psect, e.g.:

-Ptext=10g0h

Maybe you meant:

-Ptext=10f0h

(495) use of both "with=" and "INCLASS/INCLASS" allocation is illegal
(Linker)

It is not legal to specify both the link and location of a psect as within a class, when that
psect was also defined using a with psect flag.

(497) psect "*" exceeds max size: *h > *h (Linker)
The psect has more bytes in it than the maximum allowed as specified using the size
psect flag.

(498) psect "*" exceeds address limit: *h > *h (Linker)
The maximum address of the psect exceeds the limit placed on it using the limit
psect flag. Either the psect needs to be linked at a different location or there is too much
code/data in the psect.

(499) undefined symbol: (Assembler, Linker)
The symbol following is undefined at link time. This could be due to spelling error, or
failure to link an appropriate module.

(500) undefined symbols: (Linker)
A list of symbols follows that were undefined at link time. These errors could be due to
spelling error, or failure to link an appropriate module.

(501) program entry point is defined more than once (Linker)
There is more than one entry point defined in the object files given the linker. End entry
point is specified after the END directive. The runtime startup code defines the entry
point, e.g.:

powerup:
 goto start
 END powerup ; end of file and define entry point
; other files that use END should not define another entry point

(502) incomplete * record body: length = * (Linker)
An object file contained a record with an illegal size. This probably means the file is
truncated or not an object file. Contact HI-TECH Support with details.
DS51865B-page 288  2010 Microchip Technology Inc.

(503) ident records do not match (Linker)
The object files passed to the linker do not have matching ident records. This means
they are for different processor types.

(504) object code version is greater than *.* (Linker)
The object code version of an object module is higher than the highest version the
linker is known to work with. Check that you are using the correct linker. Contact
HI-TECH Support if the object file if you have not patched the linker.

(505) no end record found inobject file (Linker)
An object file did not contain an end record. This probably means the file is corrupted
or not an object file. Contact HI-TECH Support if the object file was generated by the
compiler.

(506) object file record too long: *+* (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(507) unexpected end of file in object file (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(508) relocation offset (*) out of range 0..*-*-1 (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(509) illegal relocation size: * (Linker)
There is an error in the object code format read by the linker. This either means you are
using a linker that is out of date, or that there is an internal error in the assembler or
linker. Contact HI-TECH Support with details if the object file was created by the com-
piler.

(510) complex relocation not supported for -R or -L options (Linker)
The linker was given a -R or -L option with file that contain complex relocation.

(511) bad complex range check (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(512) unknown complex operator 0x* (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(513) bad complex relocation (Linker)
The linker has been asked to perform complex relocation that is not syntactically cor-
rect. Probably means an object file is corrupted.

(514) illegal relocation type: * (Linker)
An object file contained a relocation record with an illegal relocation type. This probably
means the file is corrupted or not an object file. Contact HI-TECH Support with details
if the object file was created by the compiler.
 2010 Microchip Technology Inc. DS51865B-page 289

HI-TECH C® for PIC10/12/16 User’s Guide
(515) unknown symbol type * (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(516) text record has bad length: *-*-(*+1) < 0 (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(520) function "*" is never called (Linker)
This function is never called. This may not represent a problem, but space could be
saved by removing it. If you believe this function should be called, check your source
code. Some assembler library routines are never called, although they are actually exe-
cute. In this case, the routines are linked in a special sequence so that program exe-
cution falls through from one routine to the next.

(521) call depth exceeded by function "*" (Linker)
The call graph shows that functions are nested to a depth greater than specified.

(522) library "*" is badly ordered (Linker)
This library is badly ordered. It will still link correctly, but it will link faster if better
ordered.

(523) argument to -W option (*) illegal and ignored (Linker)
The argument to the linker option -w is out of range. This option controls two features.
For warning levels, the range is -9 to 9. For the map file width, the range is greater than
or equal to 10.

(524) unable to open list file "*": * (Linker)
The named list file could not be opened. The linker would be trying to fixup the list file
so that it will contain absolute addresses. Ensure that an assembler list file was gener-
ated during the compilation stage. Alternatively, remove the assembler list file genera-
tion option from the link step.

(525) too many address (memory) spaces; space (*) ignored (Linker)
The limit to the number of address spaces (specified with the PSECT assembler direc-
tive) is currently 16.

(526) psect "*" not specified in -P option (first appears in "*") (Linker)
This psect was not specified in a -P or -A option to the linker. It has been linked at the
end of the program, which is probably not where you wanted it.

(528) no start record; entry point defaults to zero (Linker)
None of the object files passed to the linker contained a start record. The start address
of the program has been set to zero. This may be harmless, but it is recommended that
you define a start address in your startup module by using the END directive.

(529) usage: objtohex [-Ssymfile] [object-file [HEX-file]] (Objtohex)
Improper usage of the command-line tool objtohex. If you are invoking objtohex
directly then please refer to Section 6.3 “Objtohex” for more details. Otherwise this
may be an internal compiler error and you should contact HI-TECH Software technical
support with details.
DS51865B-page 290  2010 Microchip Technology Inc.

(593) can’t find 0x* words (0x* withtotal) for psect "*" in segment "*"
(Linker)

See message (491).

(594) undefined symbol: (Linker)
The symbol following is undefined at link time. This could be due to spelling error, or
failure to link an appropriate module.

(595) undefined symbols: (Linker)
A list of symbols follows that were undefined at link time. These errors could be due to
spelling error, or failure to link an appropriate module.

(596) segment "*" (*-*) overlaps segment "*" (*-*) (Linker)
The named segments have overlapping code or data. Check the addresses being
assigned by the -P linker option.

(599) No psect classes given for COFF write (Cromwell)
Cromwell requires that the program memory psect classes be specified to produce a
COFF file. Ensure that you are using the -N option as per Section 6.5.2 “-N”.

(600) No chip arch given for COFF write (Cromwell)
Cromwell requires that the chip architecture be specified to produce a COFF file.
Ensure that you are using the -P option as per Table 6-7.

(601) Unknown chip arch "*" for COFF write (Cromwell)
The chip architecture specified for producing a COFF file isn’t recognized by Cromwell.
Ensure that you are using the -P option as per Section 6.5.1 “-Pname[,architecture]”
and that the architecture specified matches one of those in Table 6-7.

(602) null file format name (Cromwell)
The -I or -O option to Cromwell must specify a file format.

(603) ambiguous file format name "*" (Cromwell)
The input or output format specified to Cromwell is ambiguous. These formats are
specified with the -i key and -o key options respectively.

(604) unknown file format name "*" (Cromwell)
The output format specified to CROMWELL is unknown, e.g.:

cromwell -m -P16F877 main.HEX main.sym -ocot

and output file type of cot , did you mean cof ?

(605) did not recognize format of input file (Cromwell)
The input file to Cromwell is required to be COD, Intel HEX, Motorola HEX, COFF,
OMF51, P&E or HI-TECH.

(606) inconsistent symbol tables (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
 2010 Microchip Technology Inc. DS51865B-page 291

HI-TECH C® for PIC10/12/16 User’s Guide
(607) inconsistent line number tables (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(608) bad path specification (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(609) missing processor spec after -P (Cromwell)
The -p option to cromwell must specify a processor name.

(610) missing psect classes after -N (Cromwell)
Cromwell requires that the -N option be given a list of the names of psect classes.

(611) too many input files (Cromwell)
To many input files have been specified to be converted by CROMWELL.

(612) too many output files (Cromwell)
To many output file formats have been specified to CROMWELL.

(613) no output file format specified (Cromwell)
The output format must be specified to CROMWELL.

(614) no input files specified (Cromwell)
CROMWELL must have an input file to convert.

(616) option -Cbaseaddr is illegal with options -R or -L (Linker)
The linker option -Cbaseaddr cannot be used in conjunction with either the -R or -L
linker options.

(618) error reading COD file data (Cromwell)
An error occurred reading the input COD file. Confirm the spelling and path of the file
specified on the command line.

(619) I/O error reading symbol table (Cromwell)
The COD file has an invalid format in the specified record.

(620) filename index out of range in line number record (Cromwell)
The COD file has an invalid value in the specified record.

(621) error writing ELF/DWARF section "*" on "*" (Cromwell)
An error occurred writing the indicated section to the given file. Confirm the spelling and
path of the file specified on the command line.

(622) too many type entries (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
DS51865B-page 292  2010 Microchip Technology Inc.

(623) bad class in type hashing (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(624) bad class in type compare (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(625) too many files in COFF file (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(626) string lookup failed in COFF: get_string() (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(627) missing "*" in SDB file "*" line * column * (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(629) bad storage class "*" in SDB file "*" line * column * (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(630) invalid syntax for prefix list in SDB file "*" (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(631) syntax error at token "*" in SDB file "*" line * column * (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(632) can’t handle address size (*) (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(633) unknown symbol class (*) (Cromwell)
Cromwell has encountered a symbol class in the symbol table of a COFF, Microchip
COFF, or ICOFF file which it can’t identify.

(634) error dumping "*" (Cromwell)
Either the input file to CROMWELL is of an unsupported type or that file cannot be
dumped to the screen.

(635) invalid HEX file "*" on line * (Cromwell)
The specified HEX file contains an invalid line. Contact HI-TECH Support if the HEX file
was generated by the compiler.

(636) checksum error in Intel HEX file "*" on line * (Cromwell, HEXMATE)
A checksum error was found at the specified line in the specified Intel HEX file. The
HEX file may be corrupt.
 2010 Microchip Technology Inc. DS51865B-page 293

HI-TECH C® for PIC10/12/16 User’s Guide
(637) unknown prefix "*" in SDB file "*" (Cromwell)
This is an internal compiler warning. Contact HI-TECH Software technical support with
details.

(638) version mismatch: 0x* expected (Cromwell)
The input Microchip COFF file wasn’t produced using Cromwell.

(639) zero bit width in Microchip optional header (Cromwell)
The optional header in the input Microchip COFF file indicates that the program or data
memory spaces are zero bits wide.

(668) prefix list did not match any SDB types (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(669) prefix list matched more than one SDB type (Cromwell)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(670) bad argument to -T (Clist)
The argument to the -T option to specify tab size was not present or correctly formed.
The option expects a decimal integer argument.

(671) argument to -T should be in range 1 to 64 (Clist)
The argument to the -T option to specify tab size was not in the expected range. The
option expects a decimal integer argument ranging from 1 to 64 inclusive.

(673) missing filename after * option (Objtohex)
The indicated option requires a valid file name. Ensure that the filename argument sup-
plied to this option exists and is spelt correctly.

(674) too many references to "*" (Cref)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(677) set_fact_bit on pic17! (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(678) case 55 on pic17! (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(679) unknown extraspecial: * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(680) bad format for -P option (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
DS51865B-page 294  2010 Microchip Technology Inc.

(681) bad common spec in -P option (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(682) this architecture is not supported by the PICC Lite compiler (Code
Generator)

A target device other than baseline, Mid-range or Highend was specified. This compiler
only supports devices from these architecture families.

(683) bank 1 variables are not supported by the PICC Lite compiler
(Code Generator)

A variable with an absolute address located in bank 1 was detected. This compiler does
not support code generation of variables in this bank.

(684) bank 2 and 3 variables are not supported by the PICC Lite compiler
(Code Generator)

A variable with an absolute address located in bank 2 or 3 was detected. This compiler
does not support code generation of variables in these banks.

(685) bad putwsize() (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(686) bad switch size (*) (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(687) bad pushreg "*" (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(688) bad popreg "*" (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(689) unknown predicate "*" (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(690) interrupt function requires address (Code Generator)
The high end PIC devices support multiple interrupts. An @ address is required with the
interrupt definition to indicate with which vector this routine is associated, e.g.:

void interrupt isr(void) @ 0x10
{
 /* isr code goes here */
}

This construct is not required for midrange PIC devices.

(691) interrupt functions not implemented for 12 bit PIC MCU (Code
Generator)

The 12-bit range of PIC MCU processors do not support interrupts.
 2010 Microchip Technology Inc. DS51865B-page 295

HI-TECH C® for PIC10/12/16 User’s Guide
(692) interrupt function "*" may only have one interrupt level (Code
Generator)

Only one interrupt level may be associated with an interrupt function. Check to
ensure that only one interrupt_level pragma has been used with the function
specified. This pragma may be used more than once on main-line functions that are
called from interrupt functions. For example:

#pragma interrupt_level 0
#pragma interrupt_level 1 /* which is it to be: 0 or 1? */
void interrupt isr(void)
{

(693) interrupt level may only be 0 (default) or 1 (Code Generator)
The only possible interrupt levels are 0 or 1. Check to ensure that all
interrupt_level pragmas use these levels.

#pragma interrupt_level 2 /* oops -- only 0 or 1 */
void interrupt isr(void)
{
 /* isr code goes here */
}

(694) no interrupt strategy available (Code Generator)
The processor does not support saving and subsequent restoring of registers during
an interrupt service routine.

(695) duplicate case label (*) (Code Generator)
There are two case labels with the same value in this switch statement, e.g.:

switch(in) {
case ’0’: /* if this is case ’0’... */
 b++;
 break;
case ’0’: /* then what is this case? */
 b--;
 break;
}

(696) out-of-range case label (*) (Code Generator)
This case label is not a value that the controlling expression can yield, and thus this
label will never be selected.

(697) non-constant case label (Code Generator)
A case label in this switch statement has a value which is not a constant.

(698) bit variables must be global or static (Code Generator)
A bit variable cannot be of type auto. If you require a bit variable with scope local
to a block of code or function, qualify it static , e.g.:

bit proc(int a)
{
 bit bb; /* oops -- this should be: static bit bb; */
 bb = (a > 66);
 return bb;
}

DS51865B-page 296  2010 Microchip Technology Inc.

(699) no case labels in switch (Code Generator)
There are no case labels in this switch statement, e.g.:

switch(input) {
} /* there is nothing to match the value of input */

(700) truncation of enumerated value (Code Generator)
An enumerated value larger than the maximum value supported by this compiler was
detected and has been truncated, e.g.:

enum { ZERO, ONE, BIG=0x99999999 } test_case;

(701) unreasonable matching depth (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(702) regused(): bad arg to G (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(703) bad GN (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(704) bad RET_MASK (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(705) bad which (*) after I (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(706) bad which in expand() (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(707) bad SX (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(708) bad mod "+" for how = "*" (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(709) metaregister "*" can’t be used directly (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(710) bad U usage (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
 2010 Microchip Technology Inc. DS51865B-page 297

HI-TECH C® for PIC10/12/16 User’s Guide
(711) bad how in expand() (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(712) can’t generate code for this expression (Code Generator)
This error indicates that a C expression is too difficult for the code generator to actually
compile. For successful code generation, the code generator must know how to com-
pile an expression and there must be enough resources (e.g. registers or temporary
memory locations) available. Simplifying the expression, e.g. using a temporary vari-
able to hold an intermediate result, may get around this message. Contact HI-TECH
Support with details of this message.

This error may also be issued if the code being compiled is in some way unusual. For
example code which writes to a const-qualified object is illegal and will result in warning
messages, but the code generator may unsuccessfully try to produce code to perform
the write.

(713) bad initialization list (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(714) bad intermediate code (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(715) bad pragma "*" (Code Generator)
The code generator has been passed a pragma directive that it does not understand.
This implies that the pragma you have used is a HI-TECH specific pragma, but the spe-
cific compiler you are using has not implemented this pragma.

(716) bad argument to -M option "*" (Code Generator)
The code generator has been passed a -M option that it does not understand. This
should not happen if it is being invoked by a standard compiler driver.

(718) incompatible intermediate code version; should be *.*
(Code Generator)

The intermediate code file produced by P1 is not the correct version for use with this
code generator. This is either that incompatible versions of one or more compilers have
been installed in the same directory, or a temporary file error has occurred leading to
corruption of a temporary file. Check the setting of the TEMP environment variable. If
it refers to a long path name, change it to something shorter. Contact HI-TECH Support
with details if required.

(720) multiple free: * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(721) element count must be constant expression (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
DS51865B-page 298  2010 Microchip Technology Inc.

(722) bad variable syntax in intermediate code (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(723) function definitions nested too deep (Code Generator)
This error is unlikely to happen with C code, since C cannot have nested functions!
Contact HI-TECH Support with details.

(724) bad op (*) in revlog() (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(726) bad op "*" in uconval() (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(727) bad op "*" in bconfloat() (Code Generator)
This is an internal code generator error. Contact HI-TECH technical support with
details.

(728) bad op "*" in confloat() (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(729) bad op "*" in conval() (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(730) bad op "*" (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(731) expression error with reserved word (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(732) initialization of bit types is illegal (Code Generator)
Variables of type bit cannot be initialized, e.g.:

bit b1 = 1; /* oops!
 b1 must be assigned after its definition */

(733) bad string "*" in pragma "psect" (Code Generator)
The code generator has been passed a pragma psect directive that has a badly
formed string, e.g.:

#pragma psect text /* redirect text psect into what? */

Maybe you meant something like:

#pragma psect text=special_text

(734) too many "psect" pragmas (Code Generator)
Too many #pragma psect directives have been used.
 2010 Microchip Technology Inc. DS51865B-page 299

HI-TECH C® for PIC10/12/16 User’s Guide
(735) bad string "*" in pragma "stack_size" (Code Generator)
The argument to the stack_size pragma is malformed. This pragma must be followed
by a number representing the maximum allowed stack size.

(737) unknown argument "*" to pragma "switch" (Code Generator)
The #pragma switch directive has been used with an invalid switch code generation
method. Possible arguments are: auto , simple and direct.

(739) error closing output file (Code Generator)
The compiler detected an error when closing a file. Contact HI-TECH Support with
details.

(740) zero dimension array is illegal (Code Generator)
The code generator has been passed a declaration that results in an array having a
zero dimension.

(741) bitfield too large (* bits) (Code Generator)
The maximum number of bits in a bit field is the same as the number of bits in an int
, e.g. assuming an int is 16 bits wide:

struct {
 unsigned flag : 1;
 unsigned value : 12;
 unsigned cont : 6; /* oops -- that’s a total of 19 bits */
} object;

(742) function "*" argument evaluation overlapped (Linker)
A function call involves arguments which overlap between two functions. This could
occur with a call like:

void fn1(void)
{
 fn3(7, fn2(3), fn2(9)); /* Offending call */
}
char fn2(char fred)
{
 return fred + fn3(5,1,0);
}
char fn3(char one, char two, char three)
{
 return one+two+three;
}

where fn1 is calling fn3 , and two arguments are evaluated by calling fn2 , which in
turn calls fn3. The program structure should be modified to prevent this type of call
sequence.

(743) divide by zero (Code Generator)
An expression involving a division by zero has been detected in your code.

(744) static object "*" has zero size (Code Generator)
A static object has been declared, but has a size of zero.
DS51865B-page 300  2010 Microchip Technology Inc.

(745) nodecount = * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(746) object "*" qualified const, but not initialized (Code Generator)
An object has been qualified as const, but there is no initial value supplied at the def-
inition. As this object cannot be written by the C program, this may imply the initial value
was accidently omitted.

(747) unrecognized option "*" to -Z (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(748) variable "*" may be used before set (Code Generator)
This variable may be used before it has been assigned a value. Since it is an auto vari-
able, this will result in it having a random value, e.g.:

void main(void)
{
 int a;
 if(a) /* oops -- a has never been assigned a value */
 process();
}

(749) unknown register name "*" used with pragma (Linker)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(750) constant operand to || or && (Code Generator)
One operand to the logical operators || or && is a constant. Check the expression for
missing or badly placed parentheses. This message may also occur if the global opti-
mizer is enabled and one of the operands is an auto or static local variable whose
value has been tracked by the code generator, e.g.:

{
int a;
a = 6;
if(a || b) /* a is 6, therefore this is always true */
 b++;

(751) arithmetic overflow in constant expression (Code Generator)
A constant expression has been evaluated by the code generator that has resulted in
a value that is too big for the type of the expression. The most common code to trigger
this warning is assignments to signed data types. For example:

signed char c;
c = 0xFF;

As a signed 8-bit quantity, c can only be assigned values -128 to 127. The constant
is equal to 255 and is outside this range. If you mean to set all bits in this variable, then
use either of:

c = ~0x0;
c = -1;

which will set all the bits in the variable regardless of the size of the variable and without
warning.

This warning can also be triggered by intermediate values overflowing. For example:
 2010 Microchip Technology Inc. DS51865B-page 301

HI-TECH C® for PIC10/12/16 User’s Guide
unsigned int i; /* assume ints are 16 bits wide */
i = 240 * 137; /* this should be okay, right? */

A quick check with your calculator reveals that 240 * 137 is 32880 which can easily be
stored in an unsigned int, but a warning is produced. Why? Because 240 and 137
and both signed int values. Therefore the result of the multiplication must also be
a signed int value, but a signed int cannot hold the value 32880. (Both operands
are constant values so the code generator can evaluate this expression at compile
time, but it must do so following all the ANSI C rules.) The following code forces the
multiplication to be performed with an unsigned result:

i = 240u * 137; /* force at least one operand
 to be unsigned */

(752) conversion to shorter data type (Code Generator)
Truncation may occur in this expression as the lvalue is of shorter type than the rvalue,
e.g.:

char a;
int b, c;
a = b + c; /* int to char conversion
 may result in truncation */

(753) undefined shift (* bits) (Code Generator)
An attempt has been made to shift a value by a number of bits equal to or greater than
the number of bits in the data type. This will produce an undefined result on many pro-
cessors. This is non-portable code and is flagged as having undefined results by the C
Standard, e.g.:

int input;
input <<= 33; /* oops -- that shifts the entire value out */

(754) bitfield comparison out of range (Code Generator)
This is the result of comparing a bitfield with a value when the value is out of range of
the bitfield. For example, comparing a 2-bit bitfield to the value 5 will never be true as
a 2-bit bitfield has a range from 0 to 3, e.g.:

struct {
 unsigned mask : 2; /* mask can hold values 0 to 3 */
} value;
int compare(void)
{
 return (value.mask == 6); /* test can
}

(755) divide by zero (Code Generator)
A constant expression that was being evaluated involved a division by zero, e.g.:

a /= 0; /* divide by 0: was this what you were intending */

(757) constant conditional branch (Code Generator)
A conditional branch (generated by an if , for , while statement etc.) always follows
the same path. This will be some sort of comparison involving a variable and a constant
expression. For the code generator to issue this message, the variable must have local
scope (either auto or static local) and the global optimizer must be enabled, possi-
bly at higher level than 1, and the warning level threshold may need to be lower than
the default level of 0.
DS51865B-page 302  2010 Microchip Technology Inc.

The global optimizer keeps track of the contents of local variables for as long as is pos-
sible during a function. For C code that compares these variables to constants, the
result of the comparison can be deduced at compile time and the output code hard
coded to avoid the comparison, e.g.:

{
 int a, b;
 a = 5;
 /* this can never be false;
 always perform the true statement */
 if(a == 4)
 b = 6;

will produce code that sets a to 5, then immediately sets b to 6. No code will be pro-
duced for the comparison if(a == 4). If a was a global variable, it may be that other
functions (particularly interrupt functions) may modify it and so tracking the variable
cannot be performed.

This warning may indicate more than an optimization made by the compiler. It may indi-
cate an expression with missing or badly placed parentheses, causing the evaluation
to yield a value different to what you expected.

This warning may also be issued because you have written something like while(1).
To produce an infinite loop, use for(;;).

A similar situation arises with for loops, e.g.:

{
 int a, b;
 /* this loop must iterate at least once */
 for(a=0; a!=10; a++)
 b = func(a);

In this case the code generator can again pick up that a is assigned the value 0, then
immediately checked to see if it is equal to 10. Because a is modified during the for
loop, the comparison code cannot be removed, but the code generator will adjust the
code so that the comparison is not performed on the first pass of the loop; only on the
subsequent passes. This may not reduce code size, but it will speed program execu-
tion.

(758) constant conditional branch: possible use of "=" instead of "=="
(Code Generator)

There is an expression inside an if or other conditional construct, where a constant is
being assigned to a variable. This may mean you have inadvertently used an assign-
ment = instead of a compare == , e.g.:

 int a, b;
 /* this can never be false;
 always perform the true statement */
 if(a = 4)
 b = 6;

will assign the value 4 to a, then , as the value of the assignment is always true, the
comparison can be omitted and the assignment to b always made. Did you mean:

/* this can never be false;
 always perform the true statement */
if(a == 4)
 b = 6;

which checks to see if a is equal to 4.
 2010 Microchip Technology Inc. DS51865B-page 303

HI-TECH C® for PIC10/12/16 User’s Guide
(759) expression generates no code (Code Generator)
This expression generates no output code. Check for things like leaving off the paren-
theses in a function call, e.g.:

int fred;
fred; /* this is valid, but has no effect at all */

Some devices require that special function register need to be read to clear hardware
flags. To accommodate this, in some instances the code generator does produce code
for a statement which only consists of a variable ID. This may happen for variables
which are qualified as volatile. Typically the output code will read the variable, but
not do anything with the value read.

(760) portion of expression has no effect (Code Generator)
Part of this expression has no side effects, and no effect on the value of the expression,
e.g.:

int a, b, c;
a = b,c; /* “b” has no effect,
 was that meant to be a comma? */

(761) sizeof yields 0 (Code Generator)
The code generator has taken the size of an object and found it to be zero. This almost
certainly indicates an error in your declaration of a pointer, e.g. you may have declared
a pointer to a zero length array. In general, pointers to arrays are of little use. If you
require a pointer to an array of objects of unknown length, you only need a pointer to a
single object that can then be indexed or incremented.

(762) constant truncated when assigned to bitfield (Code Generator)
A constant value is too large for a bitfield structure member to which it is being
assigned, e.g.

struct INPUT {
 unsigned a : 3;
 unsigned b : 5;
} input_grp;
input_grp.a = 0x12;
/* 12h cannot fit into a 3-bit wide object */

(763) constant left operand to "? :" operator (Code Generator)
The left operand to a conditional operator ? is constant, thus the result of the tertiary
operator ?: will always be the same, e.g.:

a = 8 ? b : c; /* this is the same as saying a = b; */

(764) mismatched comparison (Code Generator)
A comparison is being made between a variable or expression and a constant value
which is not in the range of possible values for that expression, e.g.:

unsigned char c;
if(c > 300) /* oops -- how can this be true? */
 close();

(765) degenerate unsigned comparison (Code Generator)
There is a comparison of an unsigned value with zero, which will always be true or
false, e.g.:

unsigned char c;
if(c >= 0)
DS51865B-page 304  2010 Microchip Technology Inc.

will always be true, because an unsigned value can never be less than zero.

(766) degenerate signed comparison (Code Generator)
There is a comparison of a signed value with the most negative value possible for this
type, such that the comparison will always be true or false, e.g.:

char c;
if(c >= -128)

will always be true, because an 8 bit signed char has a maximum negative value of
-128.

(767) constant truncated to bitfield width (Code Generator)
A constant value is too large for a bitfield structure member on which it is operating, e.g.

struct INPUT {
 unsigned a : 3;
 unsigned b : 5;
} input_grp;
input_grp.a |= 0x13;
/* 13h to large for 3-bit wide object */

(768) constant relational expression (Code Generator)
There is a relational expression that will always be true or false. This may be because
e.g. you are comparing an unsigned number with a negative value, or comparing a
variable with a value greater than the largest number it can represent, e.g.:

unsigned int a;
if(a == -10) /* if a is unsigned, how can it be -10? */
 b = 9;

(769) no space for macro definition (Assembler)
The assembler has run out of memory.

(772) include files nested too deep (Assembler)
Macro expansions and include file handling have filled up the assembler’s internal
stack. The maximum number of open macros and include files is 30.

(773) macro expansions nested too deep (Assembler)
Macro expansions in the assembler are nested too deep. The limit is 30 macros and
include files nested at one time.

(774) too many macro parameters (Assembler)
There are too many macro parameters on this macro definition.

(776) can’t allocate space for object "*" (offs: *) (Assembler)
The assembler has run out of memory.

(777) can’t allocate space for opnd structure within object "*", (offs: *)
(Assembler)

The assembler has run out of memory.

(780) too many psects defined (Assembler)
There are too many psects defined! Boy, what a program!
 2010 Microchip Technology Inc. DS51865B-page 305

HI-TECH C® for PIC10/12/16 User’s Guide
(781) can’t enter abs psect (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(782) REMSYM error (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(783) "with" psects are cyclic (Assembler)
If Psect A is to be placed “with” Psect B, and Psect B is to be placed “with” Psect A,
there is no hierarchy. The with flag is an attribute of a psect and indicates that this
psect must be placed in the same memory page as the specified psect.

Remove a with flag from one of the psect declarations. Such an assembler declara-
tion may look like:

psect my_text,local,class=CODE,with=basecode

which will define a psect called my_text and place this in the same page as the psect
basecode.

(784) overfreed (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(785) too many temporary labels (Assembler)
There are too many temporary labels in this assembler file. The assembler allows a
maximum of 2000 temporary labels.

(787) can’t handle "v_rtype" of * in copyexpr (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(788) invalid character "*" in number (Assembler)
A number contained a character that was not part of the range 0-9 or 0-F.

(790) end of file inside conditional (Assembler)
END-of-FILE was encountered while scanning for an "endif" to match a previous "if".

(793) unterminated macro argument (Assembler)
An argument to a macro is not terminated. Note that angle brackets ("< >") are used to
quote macro arguments.

(794) invalid number syntax (Assembler)
The syntax of a number is invalid. This can be, e.g. use of 8 or 9 in an octal number, or
other malformed numbers.

(796) use of LOCAL outside macros is illegal (Assembler)
The LOCAL directive is only legal inside macros. It defines local labels that will be
unique for each invocation of the macro.
DS51865B-page 306  2010 Microchip Technology Inc.

(797) syntax error in LOCAL argument (Assembler)
A symbol defined using the LOCAL assembler directive in an assembler macro is syn-
tactically incorrect. Ensure that all symbols and all other assembler identifiers conform
with the assembly language of the target device.

(798) macro argument may not appear after LOCAL (Assembler)
The list of labels after the directive LOCAL may not include any of the formal parameters
to the macro, e.g.:

mmm MACRO a1
MOVE r0, #a1
LOCAL a1 ; oops --

; the macro parameter cannot be used with local
ENDM

(799) REPT argument must be >= 0 (Assembler)
The argument to a REPT directive must be greater than zero, e.g.:

REPT -2 ; -2 copies of this code? */
 MOVE r0, [r1]++
ENDM

(800) undefined symbol "*" (Assembler)
The named symbol is not defined in this module, and has not been specified GLOBAL.

(801) range check too complex (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(802) invalid address after END directive (Assembler)
The start address of the program which is specified after the assembler END directive
must be a label in the current file.

(803) undefined temporary label (Assembler)
A temporary label has been referenced that is not defined. Note that a temporary label
must have a number >= 0.

(804) write error on object file (Assembler)
The assembler failed to write to an object file. This may be an internal compiler error.
Contact HI-TECH Software technical support with details.

(806) attempted to get an undefined object (*) (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(807) attempted to set an undefined object (*) (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(808) bad size in add_reloc() (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
 2010 Microchip Technology Inc. DS51865B-page 307

HI-TECH C® for PIC10/12/16 User’s Guide
(809) unknown addressing mode (*) (Assembler)
An unknown addressing mode was used in the assembly file.

(811) "cnt" too large (*) in display() (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(814) processor type not defined (Assembler)
The processor must be defined either from the command line (eg. -16c84), via the
PROCESSOR assembler directive, or via the LIST assembler directive.

(815) syntax error in chipinfo file at line * (Assembler)
The chipinfo file contains non-standard syntax at the specified line.

(816) duplicate ARCH specification in chipinfo file "*" at line *
(Assembler, Driver)

The chipinfo file has a processor section with multiple ARCH values. Only one ARCH
value is allowed. If you have not manually edited the chip info file, contact HI-TECH
Support with details.

(817) unknown architecture in chipinfo file at line * (Assembler, Driver)
An chip architecture (family) that is unknown was encountered when reading the chip
INI file.

(818) duplicate BANKS for "*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple BANKS values. Only one BANKS
value is allowed. If you have not manually edited the chip info file, contact HI-TECH
Support with details.

(819) duplicate ZEROREG for "*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple ZEROREG values. Only one
ZEROREG value is allowed. If you have not manually edited the chip info file, contact
HI-TECH Support with details.

(820) duplicate SPAREBIT for "*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple SPAREBIT values. Only one
SPAREBIT value is allowed. If you have not manually edited the chip info file, contact
HI-TECH Support with details.

(821) duplicate INTSAVE for "*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple INTSAVE values. Only one INT-
SAVE value is allowed. If you have not manually edited the chip info file, contact
HI-TECH Support with details.

(822) duplicate ROMSIZE for "*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple ROMSIZE values. Only one
ROMSIZE value is allowed. If you have not manually edited the chip info file, contact
HI-TECH Support with details.
DS51865B-page 308  2010 Microchip Technology Inc.

(823) duplicate START for "*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple START values. Only one START
value is allowed. If you have not manually edited the chip info file, contact HI-TECH
Support with details.

(824) duplicate LIB for "*" in chipinfo file at line * (Assembler)
The chipinfo file has a processor section with multiple LIB values. Only one LIB value
is allowed. If you have not manually edited the chip info file, contact HI-TECH Support
with details.

(825) too many RAMBANK lines in chipinfo file for "*" (Assembler)
The chipinfo file contains a processor section with too many RAMBANK fields. Reduce
the number of values.

(826) inverted ram bank in chipinfo file at line * (Assembler, Driver)
The second HEX number specified in the RAM field in the chipinfo file must be greater
in value than the first.

(827) too many COMMON lines in chipinfo file for "*" (Assembler)
There are too many lines specifying common (access bank) memory in the chip con-
figuration file.

(828) inverted common bank in chipinfo file at line * (Assembler, Driver)
The second HEX number specified in the COMMON field in the chipinfo file must be
greater in value than the first. Contact HI-TECH Support if you have not modified the
chipinfo INI file.

(829) unrecognized line in chipinfo file at line * (Assembler)
The chipinfo file contains a processor section with an unrecognized line. Contact
HI-TECH Support if the INI has not been edited.

(830) missing ARCH specification for "*" in chipinfo file (Assembler)
The chipinfo file has a processor section without an ARCH values. The architecture of
the processor must be specified. Contact HI-TECH Support if the chipinfo file has not
been modified.

(832) empty chip info file "*" (Assembler)
The chipinfo file contains no data. If you have not manually edited the chip info file, con-
tact HI-TECH Support with details.

(833) no valid entries in chipinfo file (Assembler)
The chipinfo file contains no valid processor descriptions.

(834) page width must be >= 60 (Assembler)
The listing page width must be at least 60 characters. Any less will not allow a properly
formatted listing to be produced, e.g.:

LIST C=10 ; the page width will need to be wider than this
 2010 Microchip Technology Inc. DS51865B-page 309

HI-TECH C® for PIC10/12/16 User’s Guide
(835) form length must be >= 15 (Assembler)
The form length specified using the -F length option must be at least 15 lines. Setting
this length to zero is allowed and turns off paging altogether. The default value is zero
(pageless).

(836) no file arguments (Assembler)
The assembler has been invoked without any file arguments. It cannot assemble any-
thing.

(839) relocation too complex (Assembler)
The complex relocation in this expression is too big to be inserted into the object file.

(840) phase error (Assembler)
The assembler has calculated a different value for a symbol on two different passes.
This is probably due to bizarre use of macros or conditional assembly.

(841) bad source/destination for movfp/movpf instruction (Assembler)
The absolute address specified with the MOVFP/MOVPF instruction is too large.

(842) bad bit number (Assembler)
A bit number must be an absolute expression in the range 0-7.

(843) a macro name can’t also be an EQU/SET symbol (Assembler)
An EQU or SET symbol has been found with the same name as a macro. This is not
allowed. For example:

getval MACRO
 MOV r0, r1
ENDM
getval EQU 55h ; oops -- choose a different name to the macro

(844) lexical error (Assembler)
An unrecognized character or token has been seen in the input.

(845) symbol "*" defined more than once (Assembler)
This symbol has been defined in more than one place. The assembler will issue this
error if a symbol is defined more than once in the same module, e.g.:

_next:
MOVE r0, #55
MOVE [r1], r0

_next: ; oops -- choose a different name

The linker will issue this warning if the symbol (C or assembler) was defined multiple
times in different modules. The names of the modules are given in the error message.
Note that C identifiers often have an underscore prepended to their name after compi-
lation.

(846) relocation error (Assembler)
It is not possible to add together two relocatable quantities. A constant may be added
to a relocatable value, and two relocatable addresses in the same psect may be sub-
tracted. An absolute value must be used in various places where the assembler must
know a value at assembly time.
DS51865B-page 310  2010 Microchip Technology Inc.

(847) operand error (Assembler)
The operand to this opcode is invalid. Check your assembler reference manual for the
proper form of operands for this instruction.

(848) symbol has been declared EXTERN (Assembler)
An assembly label uses the same name as a symbol that has already been declared
as EXTERN.

(849) illegal instruction for this processor (Assembler)
The instruction is not supported by this processor.

(850) PAGESEL not usable with this processor (Assembler)
The PAGESEL pseudo-instruction is not usable with the device selected.

(851) illegal destination (Assembler)
The destination (either ,f or ,w) is not correct for this instruction.

(852) radix must be from 2 - 16 (Assembler)
The radix specified using the RADIX assembler directive must be in the range from 2
(binary) to 16 (hexadecimal).

(853) invalid size for FNSIZE directive (Assembler)
The assembler FNSIZE assembler directive arguments must be positive constants.

(855) ORG argument must be a positive constant (Assembler)
An argument to the ORG assembler directive must be a positive constant or a symbol
which has been equated to a positive constant, e.g.:

ORG -10 /* this must a positive offset to the current psect */

(856) ALIGN argument must be a positive constant (Assembler)
The align assembler directive requires a non-zero positive integer argument.

(857) psect may not be local and global (Linker)
A local psect may not have the same name as a global psect, e.g.:

psect text,class=CODE ; text is implicitly global
MOVE r0, r1

; elsewhere:
psect text,local,class=CODE

MOVE r2, r4

The global flag is the default for a psect if its scope is not explicitly stated.

(859) argument to C option must specify a positive constant
(Assembler)

The parameter to the LIST assembler control’s C= option (which sets the column width
of the listing output) must be a positive decimal constant number, e.g.:

LIST C=a0h ; constant must be decimal and positive,
 try: LIST C=80
 2010 Microchip Technology Inc. DS51865B-page 311

HI-TECH C® for PIC10/12/16 User’s Guide
(860) page width must be >= 49 (Assembler)
The page width suboption to the LIST assembler directive must specify a with of at
least 49.

(861) argument to N option must specify a positive constant
(Assembler)

The parameter to the LIST assembler control’s N option (which sets the page length
for the listing output) must be a positive constant number, e.g.:

LIST N=-3 ; page length must be positive

(862) symbol is not external (Assembler)
A symbol has been declared as EXTRN but is also defined in the current module.

(863) symbol can’t be both extern and public (Assembler)
If the symbol is declared as extern, it is to be imported. If it is declared as public, it is to
be exported from the current module. It is not possible for a symbol to be both.

(864) argument to "size" psect flag must specify a positive constant
(Assembler)

The parameter to the PSECT assembler directive’s size option must be a positive con-
stant number, e.g.:

PSECT text,class=CODE,size=-200 ; a negative size?

(865) psect flag "size" redefined (Assembler)
The size flag to the PSECT assembler directive is different from a previous PSECT
directive, e.g.:

psect spdata,class=RAM,size=400
; elsewhere:
psect spdata,class=RAM,size=500

(866) argument to "reloc" psect flag must specify a positive constant
(Assembler)

The parameter to the PSECT assembler directive’s reloc option must be a positive
constant number, e.g.:

psect test,class=CODE,reloc=-4 ; the reloc must be positive

(867) psect flag "reloc" redefined (Assembler)
The reloc flag to the PSECT assembler directive is different from a previous PSECT
directive, e.g.:

psect spdata,class=RAM,reloc=4
; elsewhere:
psect spdata,class=RAM,reloc=8

(868) argument to "delta" psect flag must specify a positive constant
(Assembler)

The parameter to the PSECT assembler directive’s DELTA option must be a positive
constant number, e.g.:

PSECT text,class=CODE,delta=-2 ; negative delta value doesn’t make
sense
DS51865B-page 312  2010 Microchip Technology Inc.

(869) psect flag "delta" redefined (Assembler)
The ’DELTA’ option of a psect has been redefined more than once in the same module.

(870) argument to "pad" psect flag must specify a positive constant
(Assembler)

The parameter to the PSECT assembler directive’s ’PAD’ option must be a non-zero
positive integer.

(871) argument to "space" psect flag must specify a positive constant
(Assembler)

The parameter to the PSECT assembler directive’s space option must be a positive
constant number, e.g.:

PSECT text,class=CODE,space=-1 ; space values start at zero

(872) psect flag "space" redefined (Assembler)
The space flag to the PSECT assembler directive is different from a previous PSECT
directive, e.g.:

psect spdata,class=RAM,space=0
; elsewhere:
psect spdata,class=RAM,space=1

(873) a psect may only be in one class (Assembler)
You cannot assign a psect to more than one class. The psect was defined differently at
this point than when it was defined elsewhere. A psect’s class is specified via a flag as
in the following:

psect text,class=CODE

Look for other psect definitions that specify a different class name.

(874) a psect may only have one "with" option (Assembler)
A psect can only be placed with one other psect. A psect’s with option is specified via
a flag as in the following:

psect bss,with=data

Look for other psect definitions that specify a different with psect name.

(875) bad character constant in expression (Assembler)
The character constant was expected to consist of only one character, but was found
to be greater than one character or none at all. An assembler specific example:

MOV r0, #’12’ ; ’12’ specifies two characters

(876) syntax error (Assembler)
A syntax error has been detected. This could be caused a number of things.

(877) yacc stack overflow (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(878) -S option used: "*" ignored (Driver)
The indicated assembly file has been supplied to the driver in conjunction with the -S
option. The driver really has nothing to do since the file is already an assembly file.
 2010 Microchip Technology Inc. DS51865B-page 313

HI-TECH C® for PIC10/12/16 User’s Guide
(880) invalid number of parameters. Use "* –HELP" for help (Driver)
Improper command-line usage of the of the compiler’s driver.

(881) setup succeeded (Driver)
The compiler has been successfully setup using the --setup driver option.

(883) setup failed (Driver)
The compiler was not successfully setup using the --setup driver option. Ensure that
the directory argument to this option is spelt correctly, is syntactically correct for your
host operating system and it exists.

(884) please ensure you have write permissions to the configuration file
(Driver)

The compiler was not successfully setup using the --setup driver option because the
driver was unable to access the XML configuration file. Ensure that you have write per-
mission to this file. The driver will search the following configuration files in order:

• the file specified by the environment variable HTC_XML
• the file /etc/htsoft.xml if the directory ’/etc ’ is writable and there is no
.htsoft.xml file in your home directory

• the file .htsoft.xml file in your home directory

If none of the files can be located then the above error will occur.

(889) this * compiler has expired (Driver)
The demo period for this compiler has concluded.

(890) contact HI-TECH Software to purchase and re-activate this
compiler (Driver)

The evaluation period of this demo installation of the compiler has expired. You will
need to purchase the compiler to re-activate it. If however you sincerely believe the
evaluation period has ended prematurely please contact HI-TECH technical support.

(891) can’t open psect usage map file "*": * (Driver)
The driver was unable to open the indicated file. The psect usage map file is generated
by the driver when the driver option --summary=file is used. Ensure that the file is
not open in another application.

(892) can’t open memory usage map file "*": * (Driver)
The driver was unable to open the indicated file. The memory usage map file is gener-
ated by the driver when the driver option --summary=file is used. Ensure that the
file is not open in another application.

(893) can’t open HEX usage map file "*": * (Driver)
The driver was unable to open the indicated file. The HEX usage map file is generated
by the driver when the driver option --summary=file is used. Ensure that the file is
not open in another application.

(894) unknown source file type "*" (Driver)
The extension of the indicated input file could not be determined. Only files with the
extensions as , c , obj , usb , p1 , lib or HEX are identified by the driver.
DS51865B-page 314  2010 Microchip Technology Inc.

(895) can’t request and specify options in the one command (Driver)
The usage of the driver options --getoption and --setoption is mutually exclu-
sive.

(896) no memory ranges specified for data space (Driver)
No on-chip or external memory ranges have been specified for the data space memory
for the device specified.

(897) no memory ranges specified for program space (Driver)
No on-chip or external memory ranges have been specified for the program space
memory for the device specified.

(899) can’t open option file "*" for application "*": * (Driver)
An option file specified by a --getoption or --setoption driver option could not
be opened. If you are using the --setoption option ensure that the name of the file
is spelt correctly and that it exists. If you are using the --getoption option ensure
that this file can be created at the given location or that it is not in use by any other appli-
cation.

(900) exec failed: * (Driver)
The subcomponent listed failed to execute. Does the file exist? Try re-installing the
compiler.

(902) no chip name specified; use "* –CHIPINFO" to see available chip
names (Driver)

The driver was invoked without selecting what chip to build for. Running the driver with
the –CHIPINFO option will display a list of all chips that could be selected to build for.

(904) illegal format specified in "*" option (Driver)
The usage of this option was incorrect. Confirm correct usage with –HELP or refer to
the part of the manual that discusses this option.

(905) illegal application specified in "*" option (Driver)
The application given to this option is not understood or does not belong to the com-
piler.

(907) unknown memory space tag "*" in "*" option specification (Driver)
A parameter to this memory option was a string but did not match any valid tags. Refer
to the section of this manual that describes this option to see what tags (if any) are valid
for this device.

(908) exit status = * (Driver)
One of the subcomponents being executed encountered a problem and returned an
error code. Other messages should have been reported by the subcomponent to
explain the problem that was encountered.

(913) "*" option may cause compiler errors in some standard header files
(Driver)

Using this option will invalidate some of the qualifiers used in the standard header files
resulting in errors. This issue and its solution are detailed in the section of this manual
that specifically discusses this option.
 2010 Microchip Technology Inc. DS51865B-page 315

HI-TECH C® for PIC10/12/16 User’s Guide
(915) no room for arguments (Preprocessor, Parser, Code Generator,
Linker, Objtohex)

The code generator could not allocate any more memory.

(917) argument too long (Preprocessor, Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(918) *: no match (Preprocessor, Parser)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(919) * in chipinfo file "*" at line * (Driver)
The specified parameter in the chip configuration file is illegal.

(920) empty chipinfo file (Driver, Assembler)
The chip configuration file was able to be opened but it was empty. Try re-installing the
compiler.

(922) chip "*" not present in chipinfo file "*" (Driver)
The chip selected does not appear in the compiler’s chip configuration file. You may
need to contact HI-TECH Software to see if support for this device is available or
upgrade the version of your compiler.

(923) unknown suboption "*" (Driver)
This option can take suboptions, but this suboption is not understood. This may just be
a simple spelling error. If not, –HELP to look up what suboptions are permitted here.

(924) missing argument to "*" option (Driver)
This option expects more data but none was given. Check the usage of this option.

(925) extraneous argument to "*" option (Driver)
This option does not accept additional data, yet additional data was given. Check the
usage of this option.

(926) duplicate "*" option (Driver)
This option can only appear once, but appeared more than once.

(928) bad "*" option value (Driver, Assembler)
The indicated option was expecting a valid hexadecimal integer argument.

(929) bad "*" option ranges (Driver)
This option was expecting a parameter in a range format
(start_of_range-end_of_range), but the parameter did not conform to this syntax.

(930) bad "*" option specification (Driver)
The parameters to this option were not specified correctly. Run the driver with –HELP
or refer to the driver’s chapter in this manual to verify the correct usage of this option.
DS51865B-page 316  2010 Microchip Technology Inc.

(931) command file not specified (Driver)
Command file to this application, expected to be found after ’@’ or ’<’ on the command
line was not found.

(939) no file arguments (Driver)
The driver has been invoked with no input files listed on its command line. If you are
getting this message while building through a third party IDE, perhaps the IDE could
not verify the source files to compile or object files to link and withheld them from the
command line.

(940) *-bit checksum * placed at * (Objtohex)
Presenting the result of the requested checksum calculation.

(941) bad "*" assignment; USAGE: ** (Hexmate)
An option to HEXMATE was incorrectly used or incomplete. Follow the usage supplied
by the message and ensure that the option has been formed correctly and completely.

(942) unexpected character on line * of file "*" (Hexmate)
File contains a character that was not valid for this type of file, the file may be corrupt.
For example, an Intel HEX file is expected to contain only ASCII representations of
hexadecimal digits, colons (:) and line formatting. The presence of any other characters
will result in this error.

(944) data conflict at address *h between * and * (Hexmate)
Sources to Hexmate request differing data to be stored to the same address. To force
one data source to override the other, use the ’+’ specifier. If the two named sources of
conflict are the same source, then the source may contain an error.

(945) checksum range (*h to *h) contained an indeterminate value
(Hexmate)

The range for this checksum calculation contained a value that could not be resolved.
This can happen if the checksum result was to be stored within the address range of
the checksum calculation.

(948) checksum result width must be between 1 and 4 bytes (Hexmate)
The requested checksum byte size is illegal. Checksum results must be within 1 to 4
bytes wide. Check the parameters to the -CKSUM option.

(949) start of checksum range must be less than end of range (Hexmate)
The -CKSUM option has been given a range where the start is greater than the end.
The parameters may be incomplete or entered in the wrong order.

(951) start of fill range must be less than end of range (Hexmate)
The -FILL option has been given a range where the start is greater than the end. The
parameters may be incomplete or entered in the wrong order.

(953) unknown -HELP sub-option: * (Hexmate)
Invalid sub-option passed to -HELP. Check the spelling of the sub-option or use -HELP
with no sub-option to list all options.
 2010 Microchip Technology Inc. DS51865B-page 317

HI-TECH C® for PIC10/12/16 User’s Guide
(956) -SERIAL value must be between 1 and * bytes long (Hexmate)
The serial number being stored was out of range. Ensure that the serial number can be
stored in the number of bytes permissible by this option.

(958) too many input files specified; * file maximum (Hexmate)
Too many file arguments have been used. Try merging these files in several stages
rather than in one command.

(960) unexpected record type (*) on line * of "*" (Hexmate)
Intel HEX file contained an invalid record type. Consult the Intel HEX format specifica-
tion for valid record types.

(962) forced data conflict at address *h between * and * (Hexmate)
Sources to HEXMATE force differing data to be stored to the same address. More than
one source using the ’+’ specifier store data at the same address. The actual data
stored there may not be what you expect.

(963) checksum range includes voids or unspecified memory locations
(Hexmate)

Checksum range had gaps in data content. The runtime calculated checksum is likely
to differ from the compile-time checksum due to gaps/unused byes within the address
range that the checksum is calculated over. Filling unused locations with a known value
will correct this.

(964) unpaired nibble in -FILL value will be truncated (Hexmate)
The hexadecimal code given to the FILL option contained an incomplete byte. The
incomplete byte (nibble) will be disregarded.

(965) -STRPACK option not yet implemented, option will be ignored
(Hexmate)

This option currently is not available and will be ignored.

(966) no END record for HEX file "*" (Hexmate)
Intel HEX file did not contain a record of type END. The HEX file may be incomplete.

(967) unused function definition "*" (from line *) (Parser)
The indicated static function was never called in the module being compiled. Being
static, the function cannot be called from other modules so this warning implies the
function is never used. Either the function is redundant, or the code that was meant to
call it was excluded from compilation or misspelt the name of the function.

(968) unterminated string (Assembler)
A string constant appears not to have a closing quote missing.

(969) end of string in format specifier (Parser)
The format specifier for the printf() style function is malformed.

(970) character not valid at this point in format specifier (Parser)
The printf() style format specifier has an illegal character.
DS51865B-page 318  2010 Microchip Technology Inc.

(971) type modifiers not valid with this format (Parser)
Type modifiers may not be used with this format.

(972) only modifiers "h" and "l" valid with this format (Parser)
Only modifiers h (short) and l (long) are legal with this printf format specifier.

(973) only modifier "l" valid with this format (Parser)
The only modifier that is legal with this format is l (for long).

(974) type modifier already specified (Parser)
This type modifier has already be specified in this type.

(975) invalid format specifier or type modifier (Parser)
The format specifier or modifier in the printf-style string is illegal for this particular for-
mat.

(976) field width not valid at this point (Parser)
A field width may not appear at this point in a printf() type format specifier.

(978) this identifier is already an enum tag (Parser)
This identifier following a struct or union keyword is already the tag for an enumer-
ated type, and thus should only follow the keyword enum , e.g.:

enum IN {ONE=1, TWO};
struct IN { /* oops -- IN is already defined */
 int a, b;
};

(979) this identifier is already a struct tag (Parser)
This identifier following a union or enum keyword is already the tag for a structure, and
thus should only follow the keyword struct , e.g.:

struct IN {
 int a, b;
};
enum IN {ONE=1, TWO}; /* oops -- IN is already defined */

(980) this identifier is already a union tag (Parser)
This identifier following a struct or enum keyword is already the tag for a union , and
thus should only follow the keyword union , e.g.:

union IN {
 int a, b;
};
enum IN {ONE=1, TWO}; /* oops -- IN is already defined */

(981) pointer required (Parser)
A pointer is required here, e.g.:

struct DATA data;
data->a = 9; /* data is a structure,
 not a pointer to a structure */
 2010 Microchip Technology Inc. DS51865B-page 319

HI-TECH C® for PIC10/12/16 User’s Guide
(982) unknown op "*" in nxtuse() (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(983) storage class redeclared (Parser)
A variable previously declared as being static , has now be redeclared as extern.

(984) type redeclared (Parser)
The type of this function or object has been redeclared. This can occur because of two
incompatible declarations, or because an implicit declaration is followed by an incom-
patible declaration, e.g.:

int a;
char a; /* oops -- what is the correct type? */

(985) qualifiers redeclared (Parser)
This function or variable has different qualifiers in different declarations.

(986) enum member redeclared (Parser)
A member of an enumeration is defined twice or more with differing values. Does the
member appear twice in the same list or does the name of the member appear in more
than one enum list?

(987) arguments redeclared (Parser)
The data types of the parameters passed to this function do not match its prototype.

(988) number of arguments redeclared (Parser)
The number of arguments in this function declaration does not agree with a previous
declaration of the same function.

(989) module has code below file base of *h (Linker)
This module has code below the address given, but the -C option has been used to
specify that a binary output file is to be created that is mapped to this address. This
would mean code from this module would have to be placed before the beginning of
the file! Check for missing psect directives in assembler files.

(990) modulus by zero in #if; zero result assumed (Preprocessor)
A modulus operation in a #if expression has a zero divisor. The result has been
assumed to be zero, e.g.:

#define ZERO 0
#if FOO%ZERO /* this will have an assumed result of 0 */
 #define INTERESTING
#endif

(991) integer expression required (Parser)
In an enum declaration, values may be assigned to the members, but the expression
must evaluate to a constant of type int , e.g.:

enum {one = 1, two, about_three = 3.12};
 /* no non-int values allowed */
DS51865B-page 320  2010 Microchip Technology Inc.

(992) can’t find op (Assembler)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(993) some command-line options are disabled (Driver)
The compiler is operating in demo mode. Some command-line options are disabled.

(994) some command-line options are disabled and compilation is
delayed (Driver)

The compiler is operating in demo mode. Some command-line options are disabled,
the compilation speed will be slower.

(995) some command-line options are disabled, code size is limited to
16kB, compilation is delayed (Driver)

The compiler is operating in demo mode. Some command-line options are disabled,
the compilation speed will be slower, and the maximum allowed code size is limited to
16kB.

(1015) missing "*" specification in chipinfo file "*" at line * (Driver)
This attribute was expected to appear at least once but was not defined for this chip.

(1016) missing argument* to "*" specification in chipinfo file "*" at line *
(Driver)

This value of this attribute is blank in the chip configuration file.

(1017) extraneous argument* to "*" specification in chipinfo file "*" at
line * (Driver)

There are too many attributes for the listed specification in the chip configuration file.

(1018) illegal number of "*" specification* (* found; * expected) in
chipinfo file "*" at line * (Driver)

This attribute was expected to appear a certain number of times but it did not for this
chip.

(1019) duplicate "*" specification in chipinfo file "*" at line * (Driver)
This attribute can only be defined once but has been defined more than once for this
chip.

(1020) unknown attribute "*" in chipinfo file "*" at line * (Driver)
The chip configuration file contains an attribute that is not understood by this version of
the compiler. Has the chip configuration file or the driver been replaced with an equiv-
alent component from another version of this compiler?

(1021) syntax error reading "*" value in chipinfo file "*" at line * (Driver)
The chip configuration file incorrectly defines the specified value for this device. If you
are modifying this file yourself, take care and refer to the comments at the beginning of
this file for a description on what type of values are expected here.
 2010 Microchip Technology Inc. DS51865B-page 321

HI-TECH C® for PIC10/12/16 User’s Guide
(1022) syntax error reading "*" range in chipinfo file "*" at line * (Driver)
The chip configuration file incorrectly defines the specified range for this device. If you
are modifying this file yourself, take care and refer to the comments at the beginning of
this file for a description on what type of values are expected here.

(1024) syntax error in chipinfo file "*" at line * (Driver)
The chip configuration file contains a syntax error at the line specified.

(1025) unknown architecture in chipinfo file "*" at line * (Driver)
The attribute at the line indicated defines an architecture that is unknown to this com-
piler.

(1026) missing architecture in chipinfo file "*" at line * (Assembler)
The chipinfo file has a processor section without an ARCH values. The architecture of
the processor must be specified. Contact HI-TECH Support if the chipinfo file has not
been modified.

(1027) activation was successful (Driver)
The compiler was successfully activated.

(1028) activation was not successful - error code (*) (Driver)
The compiler did not activated successfully.

(1029) compiler not installed correctly - error code (*) (Driver)
This compiler has failed to find any activation information and cannot proceed to exe-
cute. The compiler may have been installed incorrectly or incompletely. The error code
quoted can help diagnose the reason for this failure. You may be asked for this failure
code if contacting HI-TECH Software for assistance with this problem.

(1030) Hexmate - Intel HEX editing utility (Build 1.%i) (Hexmate)
Indicating the version number of the HEXMATE being executed.

(1031) USAGE: * [input1.HEX] [input2.HEX]... [inputN.HEX] [options]
(Hexmate)

The suggested usage of HEXMATE.

(1032) use –HELP=<option> for usage of these command line options
(Hexmate)

More detailed information is available for a specific option by passing that option to the
HELP option.

(1033) available command-line options: (Hexmate)
This is a simple heading that appears before the list of available options for this appli-
cation.

(1034) type "*" for available options (Hexmate)
It looks like you need help. This advisory suggests how to get more information about
the options available to this application or the usage of these options.
DS51865B-page 322  2010 Microchip Technology Inc.

(1035) bad argument count (*) (Parser)
The number of arguments to a function is unreasonable. This is an internal compiler
error. Contact HI-TECH Software technical support with details.

(1036) bad "*" optional header length (0x* expected) (Cromwell)
The length of the optional header in this COFF file was of an incorrect length.

(1037) short read on * (Cromwell)
When reading the type of data indicated in this message, it terminated before reaching
its specified length.

(1038) string table length too short (Cromwell)
The specified length of the COFF string table is less than the minimum.

(1039) inconsistent symbol count (Cromwell)
The number of symbols in the symbol table has exceeded the number indicated in the
COFF header.

(1040) bad checksum: record 0x*, checksum 0x* (Cromwell)
A record of the type specified failed to match its own checksum value.

(1041) short record (Cromwell)
While reading a file, one of the file’s records ended short of its specified length.

(1042) unknown * record type 0x* (Cromwell)
The type indicator of this record did not match any valid types for this file format.

(1043) unknown optional header (Cromwell)
When reading this Microchip COFF file, the optional header within the file header was
of an incorrect length.

(1044) end of file encountered (Cromwell, Linker)
The end of the file was found while more data was expected. Has this input file been
truncated?

(1045) short read on block of * bytes (Cromwell)
A while reading a block of byte data from a UBROF record, the block ended before the
expected length.

(1046) short string read (Cromwell)
A while reading a string from a UBROF record, the string ended before the specified
length.

(1047) bad type byte for UBROF file (Cromwell)
This UBROF file did not begin with the correct record.

(1048) bad time/date stamp (Cromwell)
This UBROF file has a bad time/date stamp.
 2010 Microchip Technology Inc. DS51865B-page 323

HI-TECH C® for PIC10/12/16 User’s Guide
(1049) wrong CRC on 0x* bytes; should be * (Cromwell)
An end record has a mismatching CRC value in this UBROF file.

(1050) bad date in 0x52 record (Cromwell)
A debug record has a bad date component in this UBROF file.

(1051) bad date in 0x01 record (Cromwell)
A start of program record or segment record has a bad date component in this UBROF
file.

(1052) unknown record type (Cromwell)
A record type could not be determined when reading this UBROF file.

(1053) additional RAM ranges larger than bank size (Driver)
A block of additional RAM being requested exceeds the size of a bank. Try breaking
the block into multiple ranges that do not cross bank boundaries.

(1054) additional RAM range out of bounds (Driver)
The RAM memory range as defined through custom RAM configuration is out of range.

(1055) RAM range out of bounds (*) (Driver)
The RAM memory range as defined in the chip configuration file or through custom
configuration is out of range.

(1056) unknown chip architecture (Driver)
The compiler is attempting to compile for a device of an architecture that is either
unsupported or disabled.

(1057) fast double option only available on 17 series processors (Driver)
The fast double library cannot be selected for this device. These routines are only avail-
able for PIC17 devices.

(1058) assertion (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1059) rewrite loop (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1081) static initialization of persistent variable "*" (Parser, Code
Generator)

A persistent variable has been assigned an initial value. This is somewhat contradictory
as the initial value will be assigned to the variable during execution of the compiler’s
startup code, however the persistent qualifier requests that this variable shall be
unchanged by the compiler’s startup code.

(1082) size of initialized array element is zero (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
DS51865B-page 324  2010 Microchip Technology Inc.

(1088) function pointer "*" is used but never assigned a value (Code
Generator)

A function call involving a function pointer was made, but the pointer was never
assigned a target address, e.g.:

void (*fp)(int);
fp(23); /* oops -- what function does fp point to? */

(1089) recursive function call to "*" (Code Generator)
A recursive call to the specified function has been found. The call may be direct or indi-
rect (using function pointers) and may be either a function calling itself, or calling
another function whose call graph includes the function under consideration.

(1090) variable "*" is not used (Code Generator)
This variable is declared but has not been used by the program. Consider removing it
from the program.

(1091) main function "*" not defined (Code Generator)
The main function has not been defined. Every C program must have a function called
main .

(1094) bad derived type (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1095) bad call to typeSub() (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1096) type should be unqualified (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1097) unknown type string "*" (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1098) conflicting declarations for variable "*" (*:*) (Parser, Code
Generator)

Differing type information has been detected in the declarations for a variable, or
between a declaration and the definition of a variable, e.g.:

extern long int test;
int test; /* oops -- which is right? int or long int ? */

(1104) unqualified error (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1118) bad string "*" in getexpr(J) (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.
 2010 Microchip Technology Inc. DS51865B-page 325

HI-TECH C® for PIC10/12/16 User’s Guide
(1119) bad string "*" in getexpr(LRN) (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1121) expression error (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1137) match() error: * (Code Generator)
This is an internal compiler error. Contact HI-TECH Software technical support with
details.

(1157) W register must be W9 (Assembler)
The working register required here has to be W9, but an other working register was
selected.

(1159) W register must be W11 (Assembler)
The working register required here has to be W11, but an other working register was
selected.

(1178) the "*" option has been removed and has no effect (Driver)
This option no longer exists in this version of the compiler and has been ignored. Use
the compiler’s –help option or refer to the manual to find a replacement option.

(1179) interrupt level for function "*" may not exceed * (Code Generator)
The interrupt level for the function specified is too high. Each interrupt function is
assigned a unique interrupt level. This level is considered when analyzing the call
graph and reentrantly called functions. If using the interrupt_level pragma, check
the value specified.

(1180) directory "*" does not exist (Driver)
The directory specified in the setup option does not exist. Create the directory and try
again.

(1182) near variables must be global or static (Code Generator)
A variable qualified as near must also be qualified with static or made global. An auto
variable cannot be qualified as near.

(1183) invalid version number (Activation)
During activation, no matching version number was found on the HI-TECH activation
server database for the serial number specified.

(1184) activation limit reached (Activation)
The number of activations of the serial number specified has exceeded the maximum
number allowed for the license.

(1185) invalid serial number (Activation)
During activation, no matching serial number was found on the HI-TECH activation
server database.
DS51865B-page 326  2010 Microchip Technology Inc.

(1186) licence has expired (Driver)
The time-limited license for this compiler has expired.

(1187) invalid activation request (Driver)
The compiler has not been correctly activated.

(1188) network error * (Activation)
The compiler activation software was unable to connect to the HI-TECH activation
server via the network.

(1190) FAE license only - not for use in commercial applications (Driver)
Indicates that this compiler has been activated with an FAE licence. This licence does
not permit the product to be used for the development of commercial applications.

(1191) licensed for educational use only (Driver)
Indicates that this compiler has been activated with an education licence. The educa-
tional licence is only available to educational facilities and does not permit the product
to be used for the development of commercial applications.

(1192) licensed for evaluation purposes only (Driver)
Indicates that this compiler has been activated with an evaluation licence.

(1193) this licence will expire on * (Driver)
The compiler has been installed as a time-limited trial. This trial will end on the date
specified.

(1195) invalid syntax for "*" option (Driver)
A command line option that accepts additional parameters was given inappropriate
data or insufficient data. For example an option may expect two parameters with both
being integers. Passing a string as one of these parameters or supplying only one
parameter could result in this error.

(1198) too many "*" specifications; * maximum (Hexmate)
This option has been specified too many times. If possible, try performing these oper-
ations over several command lines.

(1199) compiler has not been activated (Driver)
The trial period for this compiler has expired. The compiler is now inoperable until acti-
vated with a valid serial number. Contact HI-TECH Software to purchase this software
and obtain a serial number.

(1200) Found %0*lXh at address *h (Hexmate)
The code sequence specified in a -FIND option has been found at this address.

(1201) all FIND/REPLACE code specifications must be of equal width
(Hexmate)

All find, replace and mask attributes in this option must be of the same byte width.
Check the parameters supplied to this option. For example finding 1234h (2 bytes)
masked with FFh (1 byte) will result in an error, but masking with 00FFh (2 bytes) will
be Ok.
 2010 Microchip Technology Inc. DS51865B-page 327

HI-TECH C® for PIC10/12/16 User’s Guide
(1202) unknown format requested in -FORMAT: * (Hexmate)
An unknown or unsupported INHX format has been requested. Refer to documentation
for supported INHX formats.

(1203) unpaired nibble in * value will be truncated (Hexmate)
Data to this option was not entered as whole bytes. Perhaps the data was incomplete
or a leading zero was omitted. For example the value Fh contains only four bits of sig-
nificant data and is not a whole byte. The value 0Fh contains eight bits of significant
data and is a whole byte.

(1204) * value must be between 1 and * bytes long (Hexmate)
An illegal length of data was given to this option. The value provided to this option
exceeds the maximum or minimum bounds required by this option.

(1205) using the configuration file *; you may override this with the
environment variable HTC_XML (Driver)

This is the compiler configuration file selected during compiler setup. This can be
changed via the HTC_XML environment variable. This file is used to determine where
the compiler has been installed.

(1207) some of the command line options you are using are now
obsolete (Driver)

Some of the command line options passed to the driver have now been discontinued
in this version of the compiler, however during a grace period these old options will still
be processed by the driver.

(1208) use –help option or refer to the user manual for option details
(Driver)

An obsolete option was detected. Use –help or refer to the manual to find a replace-
ment option that will not result in this advisory message.

(1209) An old MPLAB tool suite plug-in was detected. (Driver)
The options passed to the driver resemble those that the Microchip MPLAB IDE would
pass to a previous version of this compiler. Some of these options are now obsolete,
however they were still interpreted. It is recommended that you install an updated
HI-TECH options plug-in for the MPLAB IDE.

(1210) Visit the HI-TECH Software website (www.htsoft.com) for a
possible update (Driver)

Visit our website to see if an update is available to address the issue(s) listed in the
previous compiler message. Please refer to the on-line self-help facilities such as the
Frequently asked Questions or search the On-line forums. In the event of no details
being found here, contact HI-TECH Software for further information.

(1212) Found * (%0*lXh) at address *h (Hexmate)
The code sequence specified in a -FIND option has been found at this address.

(1213) duplicate ARCH for * in chipinfo file at line * (Assembler, Driver)
The chipinfo file has a processor section with multiple ARCH values. Only one ARCH
value is allowed. If you have not manually edited the chip info file, contact HI-TECH
Support with details.
DS51865B-page 328  2010 Microchip Technology Inc.

(1218) can’t create cross reference file * (Assembler)
The assembler attempted to create a cross reference file, but it could not be created.
Check that the file’s path name is correct.

(1228) unable to locate installation directory (Driver)
The compiler cannot determine the directory where it has been installed.

(1230) dereferencing uninitialized pointer "*" (Code Generator)
A pointer that has not yet been assigned a value has been dereferenced. This can
result in erroneous behavior at runtime.

(1235) unknown keyword * (Driver)
The token contained in the USB descriptor file was not recognized.

(1236) invalid argument to *: * (Driver)
An option that can take additional parameters was given an invalid parameter value.
Check the usage of the option or the syntax or range of the expected parameter.

(1237) endpoint 0 is pre-defined (Driver)
An attempt has been made to define endpoint 0 in a USB file. This channel c

(1238) FNALIGN failure on * (Linker)
Two functions have their auto/parameter blocks aligned using the FNALIGN directive,
but one function calls the other, which implies that must not be aligned. This will occur
if a function pointer is assigned the address of each function, but one function calls the
other. For example:

int one(int a) { return a; }
int two(int a) { return two(a)+2; } /* ! */
int (*ip)(int);
ip = one;
ip(23);
ip = two; /* ip references one and two; two calls one */
ip(67);

(1239) pointer * has no valid targets (Code Generator)
A function call involving a function pointer was made, but the pointer was never
assigned a target address, e.g.:

void (*fp)(int);
fp(23); /* oops -- what function does fp point to? */

(1240) unknown checksum algorithm type (%i) (Driver)
The error file specified after the -Efile or -E+file options could not be opened.
Check to ensure that the file or directory is valid and that has read only access.

(1241) bad start address in * (Driver)
The start of range address for the --CHECKSUM option could not be read. This value
must be a hexadecimal number.

(1242) bad end address in * (Driver)
The end of range address for the --CHECKSUM option could not be read. This value
must be a hexadecimal number.
 2010 Microchip Technology Inc. DS51865B-page 329

HI-TECH C® for PIC10/12/16 User’s Guide
(1243) bad destination address in * (Driver)
The destination address for the --CHECKSUM option could not be read. This value must
be a hexadecimal number.

(1245) value greater than zero required for * (Hexmate)
The align operand to the HEXMATE -FIND option must be positive.

(1246) no RAM defined for variable placement (Code Generator)
No memory has been specified to cover the banked RAM memory.

(1247) no access RAM defined for variable placement (Code Generator)
No memory has been specified to cover the access bank memory.

(1248) symbol (*) encountered with undefined type size (Code
Generator)

The code generator was asked to position a variable, but the size of the variable is not
known. This is an internal compiler error. Contact HI-TECH Software technical support
with details.

(1250) could not find space (* byte*) for variable * (Code Generator)
The code generator could not find space in the banked RAM for the variable specified.

(1253) could not find space (* byte*) for auto/param block (Code
Generator)

The code generator could not find space in RAM for the psect that holds auto and
parameter variables.

(1254) could not find space (* byte*) for data block (Code Generator)
The code generator could not find space in RAM for the data psect that holds initialized
variables.

(1255) conflicting paths for output directory (Driver)
The compiler has been given contradictory paths for the output directory via any of the
-O or --OUTDIR options, e.g.

--outdir=../../ -o../main.HEX

(1256) undefined symbol "*" treated as HEX constant (Assembler)
A token which could either be interpreted as a symbol or a hexadecimal value does not
match any previously defined symbol and so will be interpreted as the latter. Use a
leading zero to avoid the ambiguity, or use an alternate radix specifier such as 0x. For
example:

MOV a, F7h ; is this the symbol F7h, or the HEX number 0xF7?

(1257) local variable "*" is used but never given a value (Code
Generator)

An auto variable has been defined and used in an expression, but it has not been
assigned a value in the C code before its first use. Auto variables are not cleared on
startup and their initial value is undefined. For example:

void main(void) {
 double src, out;
DS51865B-page 330  2010 Microchip Technology Inc.

 out = sin(src); /* oops -- what value was in src? */

(1258) possible stack overflow when calling function "*"
(Code Generator)

The call tree analysis by the code generator indicates that the hardware stack may
overflow. This should be treated as a guide only. Interrupts, the assembler optimizer
and the program structure may affect the stack usage. The stack usage is based on the
C program and does not include any call tree derived from assembly code.

(1259) can’t optimize for both speed and space (Driver)
The driver has been given contradictory options of compile for speed and compile for
space, e.g.

--opt=speed,space

(1260) macro "*" redefined (Assembler)
More than one definition for a macro with the same name has been encountered, e.g.

MACRO fin
 ret
ENDM
MACRO fin ; oops -- was this meant to be a different macro?
 reti
ENDM

(1261) string constant required (Assembler)
A string argument is required with the DS or DSU directive, e.g.

DS ONE ; oops -- did you mean DS “ONE”?

(1262) object "*" lies outside available * space (Code Generator)
An absolute variable was positioned at a memory location which is not within the mem-
ory defined for the target device, e.g.

int data @ 0x800 /* oops -- is this the correct address? */

(1264) unsafe pointer conversion (Code Generator)
A pointer to one kind of structure has been converted to another kind of structure and
the structures do not have a similar definition, e.g.

struct ONE {
 unsigned a;
 long b; /* ! */
} one;
struct TWO {
 unsigned a;
 unsigned b; /* ! */
} two;
struct ONE * oneptr;
oneptr = & two; /* oops --
 was ONE meant to be same struct as TWO? */

(1267) fixup overflow referencing * into * bytes at 0x* (Linker)
See the following error message (477) for more information.
 2010 Microchip Technology Inc. DS51865B-page 331

HI-TECH C® for PIC10/12/16 User’s Guide
(1268) fixup overflow storing 0x* in * bytes at * (Linker)

See the following error message (477) for more information.(1273) Omniscient
Code Generation not available in Lite mode (Driver)

This message advises that advanced features of the compiler are not be enabled in this
Lite mode compiler.

(1275) only functions may be qualified "*" (Parser)
A qualifier which only makes sense when used in a function definition has been used
with a variable definition.

interrupt int dacResult; /* oops --
 the interrupt qualifier can only be used with functions */

(1276) buffer overflow in DWARF location list (Cromwell)
A buffer associated with the ELF/DWARF debug file has overflowed. Contact HI-TECH
Support with details.

(1278) omitting "*" which does not have a location (Cromwell)
A variable has no storage location listed and will be omitted from the debug output.
Contact HI-TECH Support with details.

(1284) malformed mapfile while generating summary: CLASS expected
but not found (Driver)

The map file being read to produce a memory summary is malformed. Either the file
has been edited or corrupted, or this is a compiler error — contact HI-TECH Support
with details.

(1285) malformed mapfile while generating summary: no name at
position * (Driver)

The map file being read to produce a memory summary is malformed. Either the file
has been edited or corrupted, or this is a compiler error — contact HI-TECH Support
with details.

(1286) malformed mapfile while generating summary: no link address at
position *(Driver)

The map file being read to produce a memory summary is malformed. Either the file
has been edited or corrupted, or this is a compiler error — contact HI-TECH Support
with details.

(1287) malformed mapfile while generating summary: no load address at
position * (Driver)

The map file being read to produce a memory summary is malformed. Either the file
has been edited or corrupted, or this is a compiler error — contact HI-TECH Support
with details.

(1288) malformed mapfile while generating summary: no length at
position * (Driver)

The map file being read to produce a memory summary is malformed. Either the file
has been edited or corrupted, or this is a compiler error — contact HI-TECH Support
with details.
DS51865B-page 332  2010 Microchip Technology Inc.

(1289) line range limit exceeded, debugging may be affected
(Cromwell)

A C statement has produced assembly code output whose length exceeds a preset
limit. This means that debug information produced by cromwell may not be accurate.
This warning does not indicate any potential code failure.

(1290) buffer overflow in DWARF debugging information entry
(Cromwell)

A buffer associated with the ELF/DWARF debug file has overflowed. Contact HI-TECH
Support with details.

(1291) bad ELF string table index (Cromwell)
An ELF file passed to Cromwell is malformed and cannot be used.

(1292) malformed define in .SDB file * (Cromwell)
The named SDB file passed to Cromwell is malformed and cannot be used.

(1293) couldn't find type for "*" in DWARF debugging information entry
(Cromwell)

The tye of symbol could not be determined from the SDB file passed to Cromwell.
Either the file has been edited or corrupted, or this is a compiler error — contact
HI-TECH Support with details.

(1294) there is only one day left until this licence expires (Driver)
The compiler is running as a demo and will be unable to run in PRO mode after the
evaluation license has expired in less than one day’s time. After expiration, the compiler
can be operated in Lite mode indefinitely, but will produce a larger output binary.

(1295) there are * days left until this licence will expire (Driver)
The compiler is running as a demo and will be unable to run in PRO mode after the
evaluation license has expired in the indicated time. After expiration, the compiler can
be operated in Lite mode indefinitely, but will produce a larger output binary.

(1296) source file "*" conflicts with "*" (Driver)
The compiler has encountered more than one source file with the same basename.
This can only be the case if the files are contained in different directories. As the com-
piler and IDEs based the names of intermediate files on the basenames of source files,
and intermediate files are always stored in the same location, this situation is illegal.
Ensure the bsaename of all source files are unique.

(1297) option * not available in Lite mode (Driver)
Some options are not available when the compiler operates in Lite mode. The options
disabled are typically related to how the compiler is executed, e.g. --GETOPTION and
--SETOPTION, and do not control compiler features related to code generation.

(1298) use of * outside macros is illegal (Assembler)
Some assembler directives, e.g. EXITM, can only be used inside macro definitions.
 2010 Microchip Technology Inc. DS51865B-page 333

HI-TECH C® for PIC10/12/16 User’s Guide
(1299) non-standard modifier "*" - use "*" instead (Parser)
A printf placeholder modifier has been used which is non-standard. Use the indicated
modifier instead. For example, the standard hh modifier should be used in preference
to b to indicate that the value should be printed as a char type.

(1300) maximum number of program classes reached. List may be
truncated (Cromwell)

Cromwell is passed a list of class names on the command line. If the number of number
of class names passed in is too large, not all will be used and debugging information
may be affected.

(1301) invalid ELF section header. Skipping (Cromwell)
Cromwell found an invalid section in an ELF section header. This section will be
skipped.

(1302) could not find valid ELF output extension for this device
(Cromwell)

The extension could not be for the target device family.

(1303) invalid variable location detected: * - * (Cromwell)
A symbol location could not be determined from the SDB file.

(1304) unknown register name: "*" (Cromwell)
The location for the indicated symbol in the SDB file was a register, but the register
name was not recognized.

(1305) inconsistent storage class for variable: "*" (Cromwell)
The storage class for the indicated symbol in the SDB file was not recognized.

(1306) inconsistent size (* vs *) for variable: "*" (Cromwell)
The size of the symbol indicated in the SDB file does not match the size of its type.

(1307) psect * truncated to * bytes (Driver)
The psect representing either the stack or heap could not be made as large as
requested and will be truncated to fit the available memory space.

(1308) missing/conflicting interrupts sub-option, defaulting to "*"
(Driver)

The suboptions to the --INTERRUPT option are missing or malformed, e.g.

--INTERRUPTS=single,multi

Oops, did you mean single-vector or multi-vector interrupts?

(1309) ignoring invalid runtime * sub-option (*) using default (Driver)
The indicated suboption to the --RUNTIME option is malformed, e.g.

--RUNTIME=default,speed:0y1234

Oops, that should be 0x1234.
DS51865B-page 334  2010 Microchip Technology Inc.

(1310) specified speed (*Hz) exceeds max operating frequency (*Hz),
defaulting to *Hz (Driver)

The frequency specified to the perform suboption to --RUNTIME option is too large
for the selected device.

--RUNTIME=default,speed:0xffffffff

Oops, that value is too large.

(1311) missing configuration setting for config word *, using default
(Driver)

The configuration settings for the indicated word have not be supplied in the source
code and a default value will be used.

(1312) conflicting runtime perform sub-option and configuration word
settings, assuming *Hz (Driver)

The configuration settings and the value specified with the perform suboption of the
--RUNTIME options conflict and a default frequency has been selected.

(1313) * sub-options ("*") ignored (Driver)
The argument to a suboption is not required and will be ignored.

--OUTPUT=intel:8

Oops, the :8 is not required

(1314) illegal action in memory allocation (Code Generator)
This is an internal error. Contact HI-TECH Support with details.

(1315) undefined or empty class used to link psect * (Linker)
The linker was asked to place a psect within the range of addresses specified by a
class, but the class was either never defined, or contains no memory ranges.

(1316) attribute "*" ignored (Parser)
An attribute has been encountered that is valid, but which is not implemented by the
parser. It will be ignored by the parser and the attribute will have no effect. Contact
HI-TECH Support with details.

(1317) missing argument to attribute "*" (Parser)
An attribute has been encountered that requires an argument, but this is not present.
Contact HI-TECH Support with details.

(1318) invalid argument to attribute "*" (Parser)
An argument to an attribute has been encountered, but it is malformed. Contact
HI-TECH Support with details.

(1319) invalid type "*" for attribute "*" (Parser)
This indicated a bad option passed to the parser. Contact HI-TECH Support with
details.

(1320) attribute "*" already exists (Parser)
This indicated the same attribute option being passed to the parser more than once.
Contact HI-TECH Support with details.
 2010 Microchip Technology Inc. DS51865B-page 335

HI-TECH C® for PIC10/12/16 User’s Guide
(1321) bad attribute -T option "%s" (Parser)
The attribute option passed to the parser is malformed. Contact HI-TECH Support with
details.

(1322) unknown qualifier "%s" given to -T (Parser)
The qualifier specified in an attribute option is not known. Contact HI-TECH Support
with details.

(1323) attribute expected (Parser)
The __attribute__ directive was used but did not specify an attribute type.

int rv (int a) __attribute__(()) /* oops -- what is the attribute? */

(1324) qualifier "*" ignored (Parser)
Some qualifiers are valid, but may not be implemented on some compilers or target
devices. This warning indicates that the qualifier will be ignored.

(1325) no such CP* register: ($*), select (*) (Code Generator)
A variable has been qualifier as cp0, but no corresponding co-processor register exists
at the address specified with the variable.

cp0 volatile unsigned int mycpvar @ 0x7000; /* oops --
 did you mean 0x700, try... */
cp0 volatile unsigned int mycpvar @ __REGADDR(7, 0);

(1326) "*" qualified variable (*) missing address (Code Generator)
A variable has been qualifier as cp0, but the co-processor register address was not
specified.

cp0 volatile unsigned int mycpvar; /* oops -- what address ? */

(1327) interrupt function "*" redefined by "*" (Code Generator)
An interrupt function has been written that is linked to a vector location that already has
an interrupt function lined to it.

void interrupt timer1_isr(void) @ TIMER_1_VCTR { ... }
void interrupt timer2_isr(void) @ TIMER_1_VCTR { ... } /* oops --
 did you mean that to be TIMER_2_VCTR */

(1328) coproccessor * registers cannot be accessed from * code
(Code Generator)

Code in the indicated instruction set has illegally attempted to access the coprocessor
registers. Ensure the correct instruction set is used to encode the enclosing function.

(1329) can only modify RAM type interrupt vectors (Code Generator)
The SETVECTOR() macro has been used to attempt to change the interrupt vector
table, but this table is in ROM and cannot be changed at runtime.

(1330) only functions or function pointers may have an instruction set
architecture qualifier (Code Generator)

An instruction set qualifier has been used with something that does not represent exe-
cutable code.

mips16e int input; /* oops -- you cannot qualify a variable with an
instruction set type */
DS51865B-page 336  2010 Microchip Technology Inc.

(1331) interrupt functions may not be qualified "*" (Code Generator)
A illegal function qualifier has been used with an interrupt function.

mips16e void interrupt tisr(void) @ CORE_TIMER_VCTR; /* oops --
 you cannot use mips16e with interrupt functions */

(1332) invalid qualifier (*) and type combination on "*" (Code Generator)
Some qualified variables must have a specific type or size. A combination has been
detected that is not allowed.

volatile cp0 int mycpvar @ __REGADDR(7,0); /* oops --
 you must use unsigned types with the cp0 qualifier */

(1333) cannot extend instruction (Assembler)
An attempt was made to extend a MIPS16E instruction where the instruction is nonex-
tensible. This is an internal error. Contact HI-TECH Support with details.

(1334) invalid * register operand (Assembler)
An illegal register was used with an assembly instruction. Either this is an internal error
or caused by hand-written assembly code.

 psect my_text,isa=mips16e,reloc=4
 move t0,t1 /* oops -- these registers cannot be used in the
16-bit instruction set */

(1335) instruction "*" is deprecated (Assembler)
An assembly instruction was used that is deprecated.

beql t0,t1,12 /* oops -- this instruction is no longer supported */

(1336) a psect may belong to only one ISA (Assembler)
Psects that have a flag that defines the allowed instruction set architecture. A psect has
been defined whose ISA flag conflicts with that of another definition for the same psect.

mytext,global,isa=mips32r2,reloc=4,delta=1
mytext,global,isa=mips16e,reloc=4,delta=1 /* oops --
 is this the right psect name or the wrong ISA value */

(1337) instruction/macro "*" is not part of psect ISA (Assembler)
An instruction from one instruction set architecture has been found in a psect whose
ISA flag specifies a different architecture type.

psect my_text,isa=mips16e,reloc=4
mtc0 t0,t1 /* oops -- this is a 32-bit instruction */

(1338) operand must be a * bit value (Assembler)
The constant operand to an instruction is too large to fit in the instruction field width.

psect my_text,isa=mips32r2,reloc=4
li t0,0x123456789 /* oops -- this constant is too large */

(1339) operand must be a * bit * value (Assembler)
The constant operand to an instruction is too large to fit in the instruction field width and
must have the indicated type.

addiu a3, a3, 0x123456 /* oops --
 the constant operand to this MIPS16E instruction is too large */
 2010 Microchip Technology Inc. DS51865B-page 337

HI-TECH C® for PIC10/12/16 User’s Guide
(1340) operand must be >= * and <= * (Assembler)
The operand must be within the specified range.

ext t0,t1,50,3 /* oops -- third operand is too large */

(1341) pos+size must be > 0 and <= 32 (Assembler)
The size and position operands to bitfield instruction must total a value within the spec-
ified range.

ext t0,t1,50,3 /* oops -- 50 + 3 is too large */

(1342) whitespace after "\" (Preprocessor)
Whitespace characters have been found between a backslash and newline characters
and will be ignored.

(1343) hexfile data at address 0x* (0x*) overwritten with 0x* (Objtohex)
The indicated address is about to be overwritten by additional data. This would indicate
more than one section of code contributing to the same address.

(1346) can't find 0x* words for psect "*" in segment "*" (largest unused
contiguous range 0x%lX) (Linker)

See also message (491). The new form of message also indicates the largest free
block that the linker could find. Unless there is a single space large enough to accom-
modate the psect, the linker will issue this message. Often when there is banking or
paging involved the largest free space is much smaller than the total amount of space
remaining,

(1347) can't find 0x* words (0x* withtotal) for psect "*" in segment "*"
(largest unused contiguous range 0x%lX) (Linker)

See also message (593). The new form of message also indicates the largest free
block that the linker could find. Unless there is a single space large enough to accom-
modate the psect, the linker will issue this message. Often when there is banking or
paging involved the largest free space is much smaller than the total amount of space
remaining,

(1348) enum tag "*" redefined (from *:*) (Parser)
More than one enum tag with the same name has been defined, The previous definition
is indicated in the message.

enum VALS { ONE=1, TWO, THREE };
enum VALS { NINE=9, TEN }; /* oops -- is INPUT the right tag name? */

(1350) pointer operands to "-" must reference the same array (Code
Generator)

If two addresses are subtracted, the addresses must be of the same object to be ANSI
compliant.

int * ip;
int fred, buf[20];
ip = &buf[0] - &fred; /* oops --
 second operand must be an address of a "buf" element */

(1352) truncation of operand value (0x*) to * bits (Assembler)
The operand to an assembler instruction was too large and was truncated.

movlw 0x321 ; oops -- is this the right value?
DS51865B-page 338  2010 Microchip Technology Inc.

(1354) ignoring configuration setting for unimplemented word * (Driver)
A configuration word setting was specified for a word that does not exist on the target
device.

__CONFIG(3, 0x1234); /* config word 3 does not exist on an 18C801 */

(1355) inline delay argument too large (Code Generator)
The inline delay sequence _delay has been used, but the number of instruction cycles
requested is too large. Use this routine multiple times to achieve the desired delay
length.

#include <htc.h>
void main(void) {
 delay(0x400000); /* oops -- cannot delay by this number of cycles */
}

(1356) fixup overflow referencing * * (0x*) into * byte* at 0x*/0x* -> 0x* (***
/0x) (Linker)

See also message (477). This form of the message precalculates the address of the
offending instruction taking into account the delta value of the psect which contains the
instruction.

(1357) fixup overflow storing 0x* in * byte* at 0x*/0x* -> 0x* (*** */0x*)
(Linker)

See also message (477). This form of the message precalculates the address of the
offending instruction taking into account the delta value of the psect which contains the
instruction.

(1358) no space for * temps (*) (Code Generator)
The code generator was unable to find a space large enough to hold the temporary
variables (scratch variables) for this program.

(1359) no space for * parameters (Code Generator)
The code generator was unable to find a space large enough to hold the parameter
variables for a particular function.

(1360) no space for auto/param * (Code Generator)
The code generator was unable to find a space large enough to hold the auto variables
for a particular function. Some parameters passed in registers may need to be allo-
cated space in this auto area as well.

(1361) syntax error in configuration argument (Parser)
The argument to #pragma config was malformed.

#pragma config WDT /* oops -- is WDT on or off? */

(1362) configuration setting *=* redefined (Code Generator)
The same config pragma setting have been issued more than once with different val-
ues.

#pragma config WDT=OFF
#pragma config WDT=ON /* oops -- is WDT on or off? */

(1363) unknown configuration setting (* = *) used (Driver)
The configuration value and setting is not known for the target device.
 2010 Microchip Technology Inc. DS51865B-page 339

HI-TECH C® for PIC10/12/16 User’s Guide
#pragma config WDR=ON /* oops -- did you mean WDT? */

(1364) can't open configuration registers data file * (Driver)
The file containing value configuration settings could not be found.

(1365) missing argument to pragma "varlocate" (Parser)
The argument to #pragma varlocate was malformed.

#pragma varlocate /* oops -- what do you want to locate & where? */

(1366) syntax error in pragma "varlocate" (Parser)
The argument to #pragma varlocate was malformed.

#pragma varlocate fred /* oops -- which bank for fred? */

(1367) end of file in _asm (Parser)
An end-of-file marker was encountered inside a _asm _endasm block.

(1368) assembler message: * (Assembler)
Displayed is an assembler advisory message produced by the MESSG directive con-
tained in the assembler source.

(1369) can't open proc file * (Driver)
The proc file for the selected device could not be opened.

(1371) float type can't be bigger then double type; double has been
changed to * bits (Driver)

Use of the --float and --double options has result in the size of the double type
being smaller than that of the float type. This is not permitted by the C Standard. The
double type size has been increased to be that indicated.

(1375) multiple interrupt functions (* and *) defined for device with only
one interrupt vector (Code Generator)

The named functions have both been qualified interrupt, but the target device only sup-
ports one interrupt vector and hence one interrupt function.

interrupt void isr_lo(void) {
 // ...
}
interrupt void isr_hi(void) { // oops, cannot define two ISRs
 // ...
}

(1376) initial value (*) too large for bitfield width (*) (Code Generator)
A structure with bit-fields has been defined an initialized with values. The value indi-
cated it too large to fit in the corresponding bit-filed width.

struct {
 unsigned flag :1;
 unsigned mode :3;
} foobar = { 1, 100 }; // oops, 100 is too large for a 3 bit object
DS51865B-page 340  2010 Microchip Technology Inc.

(1377) no suitable strategy for this switch (Code Generator)
The compiler was unable to determine the switch strategy to use to encode a C switch
statement based on the code and your selection using the #pragma switch directive.
You may need to choose a different strategy.

(1387) inline delay argument must be constant (Code Generator)
The __delay inline function can only take a constant expression as its argument.

int delay_val = 99;
__delay(delay_val); // oops, argument must be a constant expression

(1390) identifier specifies insignificant characters beyond maximum
identifier length (Parser)

An identifier has been used that is so long that it exceeds the set identifier length. This
may mean that long identifiers may not be correctly identified and the coe will fail. The
maximum identifier length can be adjusted using the -N option.

int theValueOfThePortAfterTheModeBitsHaveBeenSet;
 // oops, make your symbol shorter or increase the maximum
 // identifier length

(1393) possible hardware stack overflow detected, estimated stack
depth: * (Code Generator)

The compiler has detected that the call graph for a program may be using more stack
space that allocated on the target device. If this is the case, the code may fail. The com-
piler can only make assumption regarding the stack usage when interrupts are involved
and these lead to a worst-case estimate of stack usage. Confirm the function call nex-
ting if this warning is issued.

(1394) attempting to create memory range (* - *) larger than page size,
* (Driver)

The compiler driver has detected that the memory settings include a program memory
“page” that is larger than the page size for the device. This would mostly likely be the
case if the --ROM option is used to change the default memory settings. Consult you
device data sheet to determine the page size of the device you are using and ensure
that any contiguous memory range you specify using the --ROM option has a boundary
that corresponds to the device page boundaries.

--ROM=100-1fff

The above may need to be paged. If the page size is 800h, the above could specified as

--ROM=100-7ff,800-fff,1000-17ff,1800-1fff

(1395) notable code sequence candidate suitable for compiler validation
suite detected (*)(Code Generator)

The compiler has in-built checks that can determine if combinations of internal code
templates have been encountered. Where unique combinations are uncovered when
compiling code, this message is issued. This message is not an error or warning, and
its presence does not indicate possible code failure, but if you are willing to participate,
the code you are compiling can be sent to Support to assist with the compiler testing
process.
 2010 Microchip Technology Inc. DS51865B-page 341

HI-TECH C® for PIC10/12/16 User’s Guide
(1396) "*" positioned in the * memory region (0x* - 0x*) reserved by the
compiler (Code Generator)

Some memory regions are reserved for use by the compiler. These regions are not nor-
mally used to allocate variables defined in your code. However, by making variables
absolute, it is possible to place variables in these regions and avoid errors that would
normally be issued by the linker. (Absolute variables can be placed at any location,
even on top of other objects.) This warning from the code generator indicates that an
absolute has been detected that will be located at memory that the compiler will be
reserving. You must locate the absolute variable at a different location. This message
will commonly be issued when placing variables in the common memory space.

char shared @ 0x7; // oops, this memory is required by the compiler

(0) delete what ? (Libr)
The librarian requires one or more modules to be listed for deletion when using the d
key, e.g.:

libr d c:\ht-pic\lib\pic704-c.lib

does not indicate which modules to delete. try something like:

libr d c:\ht-pic\lib\pic704-c.lib wdiv.obj

(0) incomplete ident record (Libr)
The IDENT record in the object file was incomplete. Contact HI-TECH Support with
details.

(0) incomplete symbol record (Libr)
The SYM record in the object file was incomplete. Contact HI-TECH Support with
details.

(0) library file names should have.lib extension: * (Libr)
Use the .lib extension when specifying a library filename.

(0) module * defines no symbols (Libr)
No symbols were found in the module’s object file. This may be what was intended, or
it may mean that part of the code was inadvertently removed or commented.

(0) replace what ? (Libr)
The librarian requires one or more modules to be listed for replacement when using the
r key, e.g.:

libr r lcd.lib

This command needs the name of a module (.obj file) after the library name.
DS51865B-page 342  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16

USER’S GUIDE

Appendix A. Implementation-Defined Behavior
This section discusses implementation-defined behavior for this implementation of the
HI-TECH C Compiler for PIC10/12/16 MCUs. The exact behavior of some C code can
vary from compiler to compiler, and the ANSI standard for C requires that vendors doc-
ument the specifics of implementation-defined features of the language.

The number in brackets after each item refers to the section number in the Standard to
which the item relates.

A.1 TRANSLATION (G.3.1)

A.1.1 How a diagnostic is identified (5.1.1.3)

The format of diagnostics is fully controllable by the user. By default, when compiling
on the command-line the following formats are used. Always indicated in the display is
a unique message ID number. The string (warning) is only displayed if the message
is a warning.

filename: function()
linenumber:source line

^ (ID) message (warning)

or

filename: linenumber: (ID) message (warning)

where filename is the name of the file that contains the code (or empty if not partic-
ular file is relevant); linenumber is the line number of the code (or 0 if no line number
is relevant); ID is a unique number that identifies the message; and message is the
diagnostic message itself.

A.2 ENVIRONMENT (G.3.2)

A.2.1 The semantics of arguments to main (5.1.2.2.1)

The function main has no arguments, nor return value. It follows the prototype:

void main(void);

A.3 IDENTIFIERS (G.3.3)

A.3.1 The number of significant initial characters (beyond 31) in an
identifier without external linkage (6.1.2)

By default, the first 31 characters are significant. This can be adjusted up to 255 by the
user.

A.3.2 The number of significant initial characters (beyond 6) in an
identifier with external linkage (6.1.2)

By default, the first 31 characters are significant. This can be adjusted up to 255 by the
user.
 2010 Microchip Technology Inc. DS51865B-page 343

HI-TECH C® for PIC10/12/16 User’s Guide
A.3.3 Whether case distinctions are significant in an identifier with
external linkage (6.1.2)

All characters in all identifiers are case sensitive.

A.4 CHARACTERS (G.3.4)

A.4.1 The members of the source and execution character sets,
except as explicitly specified in the Standard (5.2.1)

Both sets are identical to the ASCII character set.

A.4.2 The shift states used for the encoding of multibyte characters
(5.2.1.2)

There are no shift states.

A.4.3 The number of bits in a character in the execution character set
(5.2.4.2.1)

There are 8 bits in a character.

A.4.4 The mapping of members of the source character set (in
character and string literals) to members of the execution
character set (6.1.3.4)

The mapping is the identity function.

A.4.5 The value of an integer character constant that contains a
character or escape sequence not represented in the basic
execution character set or the extended character set for a wide
character constant (6.1.3.4)

It is the numerical value of the rightmost character.

A.4.6 The value of an integer character constant that contains more
than one character or a wide character constant that contains
more than one multibyte character (3.1.3.4)

Not supported.

A.4.7 Whether a plain char has the same range of values as signed
char or unsigned char (6.2.1.1)

 A plain char is treated as an unsigned char.

A.5 INTEGERS (G.3.5)

A.5.1 The representations and sets of values of the various types of
integers (6.1.2.5)

See Section 3.4.1 “Integer Data Types”.

A.5.2 The result of converting an integer to a shorter signed integer,
or the result of converting an unsigned integer to a signed
integer of equal length, if the value cannot be represented
(6.2.1.2)

The low order bits of the original value are copied to the signed integer; or, all the low
order bits of the original value are copied to the signed integer.
DS51865B-page 344  2010 Microchip Technology Inc.

Implementation-Defined Behavior
A.5.3 The results of bitwise operations on signed integers (6.3)

The bitwise operations act as if the operand was unsigned.

A.5.4 The sign of the remainder on integer division (6.3.5)

The remainder has the same sign as the dividend. Table A-1 shows the expected sign
of the result of division for all combinations of dividend and divisor signs.

In the case where the second operand is zero (division by zero), the result will always
be zero.

A.5.5 The result of a right shift of a negative-valued signed integral
type (6.3.7)

The right shift operator sign extends signed values. Thus an object with the signed
int value 0x0124 shifted right one bit will yield the value 0x0092 and the value 0x8024
shifted right one bit will yield the value 0xC012.

Right shifts of unsigned integral values always clear the most significant bit of the
result.

Left shifts (<< operator), signed or unsigned, always clear the least significant bit of
the result.

A.6 FLOATING-POINT (G.3.6)

A.6.1 The representations and sets of values of the various types of
floating-point numbers (6.1.2.5)

See Section 3.4.2 “Floating-Point Data Types”.

A.6.2 The direction of truncation when an integral number is
converted to a floating-point number that cannot exactly
represent the original value (6.2.1.3)

The integer value is rounded to the nearest floating-point value that can be repre-
sented.

A.6.3 The direction of truncation or rounding when a floating-point
number is converted to a narrower floating-point number
(6.2.1.4)

The floating-point number is truncated to the smaller floating-point number.

A.7 ARRAYS AND POINTERS (G.3.7)

A.7.1 The type of integer required to hold the maximum size of an
array; that is, the type of the sizeof operator, size_t (6.3.3.4,
7.1.1)

The type of size_t is unsigned int.

TABLE A-1: INTEGRAL DIVISION

Dividend Divisor Quotient Remainder

+ + + +

- + - -

+ - - +

- - + -
 2010 Microchip Technology Inc. DS51865B-page 345

HI-TECH C® for PIC10/12/16 User’s Guide
A.7.2 The result of casting a pointer to an integer, or vice versa (6.3.4)

When casting an integer to a pointer variable, if the pointer variable throughout the
entire program is only assigned the addresses of objects in data memory or is only
assigned the address of objects in program memory, the integer address is copied with-
out modification into the pointer variable. If a pointer variable throughout the entire pro-
gram is assigned addresses of objects in data memory and also addresses of object in
program memory, then the most significant bit (MSb) of the will be set if the address of
the integer is cast to a pointer to const type; otherwise the MSb is not set. The remain-
ing bits of the integer are assigned to the pointer variable without modification.

When casting a pointer to an integer, the value held by the pointer is assigned to the
integer without modification, provided the integer is not smaller than the size of the
pointer.

A.7.3 The type of integer required to hold the difference between two
s to members of the same array, ptrdiff_t (6.3.6, 7.1.1)

The type of ptrdiff_t is unsigned int.

A.8 REGISTERS (G.3.8)

A.8.1 The extent to which objects can actually be placed in registers
by use of the register storage-class specifier (6.5.1)

This specifier has no effect.

A.9 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT-FIELDS (G.3.9)

A.9.1 A member of a union object is accessed using a member of a
different type (6.3.2.3)

The value stored in the union member is accessed and interpreted according to the
type of the member by which it is accessed.

A.9.2 The padding and alignment of members of structures (6.5.2.1)

No padding or alignment is imposed on structure members.

A.9.3 Whether a plain int bit-field is treated as a signed int bit-field or
as an unsigned int bit-field (6.5.2.1)

It is treated as an unsigned int. Signed bit-fields are not supported.

A.9.4 The order of allocation of bit-fields within an int (6.5.2.1)

The first bit-field defined in a structure is allocated the least significant bit position in the
storage unit. Subsequent bit-fields are allocated higher-order bits.

A.9.5 Whether a bit-field can straddle a storage-unit boundary
(6.5.2.1)

A bit-field may not straddle a storage unit. Any bit-field that would straddle a storage
unit will be allocated to the least significant bit position in a new storage unit.
DS51865B-page 346  2010 Microchip Technology Inc.

Implementation-Defined Behavior
A.9.6 The integer type chosen to represent the values of an
enumeration type (6.5.2.2)

The type chosen to represent an enumerated type depend on the enumerated values.
A signed type is chosen if any value is negative; unsigned otherwise. If a char type is
sufficient to hold the range of values then this chosen; otherwise an int type is chosen.
Enumerated must fit within an int type and will be truncated if this is not the case.

A.10 QUALIFIERS (G.3.10)

A.10.1 What constitutes an access to an object that has
volatile-qualified type (6.5.5.3)

Each reference to the name of a volatile-qualified object constitutes one access to
the object.

A.11 DECLARATORS (G.3.11)

A.11.1 The maximum number of declarators that may modify an
arithmetic, structure, or union type (6.5.4)

No limit is imposed by the compiler.

A.12 STATEMENTS (G.3.12)

A.12.1 The maximum number of case values in a switch statement
(6.6.4.2)

There is no practical limit to the number of case labels inside a switch statement.

A.13 PREPROCESSING DIRECTIVES (G.3.13)

A.13.1 Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion
matches the value of the same character constant in the
execution character set (6.8.1)

The character constant evaluates to the same value in both environments.

A.13.2 Whether such a character constant may have a negative value
(6.8.1)

It may not be negative.

A.13.3 The method for locating includable source files (6.8.2)

For files specified in angle brackets, < >, the search first takes place in the directories
specified by -I options, then in the standard compiler directory (this is the directory
include found in the compiler install location.

For files specified in quotes, " ", the search the current working directory first, then
directories specified by -I options, then in the standard compiler directory.

If the first character of the filename is a /, then it is assumed that a full or relative path
to the file is specified. On Windows compilers, a path is also specified by either \ or a
DOS drive letter followed by a colon, e.g. C: appearing first in the filename.

A.13.4 The support of quoted names for includable source files (6.8.2)

Quoted names are supported.
 2010 Microchip Technology Inc. DS51865B-page 347

HI-TECH C® for PIC10/12/16 User’s Guide
A.13.5 The mapping of source file character sequences (6.8.2)

Source file characters are mapped to their corresponding ASCII values.

A.13.6 The behavior on each recognized #pragma directive (6.8.6)

See Section 3.15.3 “Pragma Directives”.

A.13.7 The definitions for __DATE__ and __TIME__ when, respectively,
the date and time of translation are not available (6.8.8)

These macros are always available from the environment.

A.14 LIBRARY FUNCTIONS (G.3.14)

A.14.1 The null constant to which the macro NULL expands (7.1.6)

The macro NULL expands to 0.

A.14.2 The diagnostic printed by and the termination behavior of the
assert function (7.2)

The function prints to stderr "Assertion failed: %s line %d: \"%s\"\n"
where the placeholders are replaced with the filename, line number and message
string, respectively. The program does not terminate.

A.14.3 The sets of characters tested for by the isalnum, isalpha,
iscntrl, islower, isprint, and isupper functions (7.3.1)

isalnum: ASCII characters a-z, A-Z, 0-9

isalpha: ASCII characters a-z, A-Z

iscntrl: ASCII values less than 32

islower: ASCII characters a-z

isprint: ASCII values between 32 and 126, inclusive

isupper: ASCII characters A-Z

A.14.4 The values returned by the mathematics functions on domain
errors (7.5.1)

acos(x) |x|>1.0 pi/2

asin(x) |x|>1.0 0.0

atan2(x,y) x=0,y=0 0.0

log(x) x<0 0.0

pow(0,0) 0.0

pow(0, y) y<0 0.0

pow(x,y) x<0 y is non-integral 0.0

sqrt(x) x<0 0.0

fmod(x, 0) x

A.14.5 Whether the mathematics functions set the integer expression
errno to the value of the macro ERANGE on underflow range
errors (7.5.1)

The exp(), frexp() and log() functions set errno to ERANGE on underflow.
DS51865B-page 348  2010 Microchip Technology Inc.

Implementation-Defined Behavior
A.14.6 Whether a domain error occurs or zero is returned when the
fmod function has a second argument of zero (7.5.6.4)

It returns the first argument and no domain error is produced.

A.14.7 The set of signals for the signal function (7.7.1.1)

The signal() function is not implemented

A.14.8 The output for %p conversion in the fprintf function (7.9.6.1)

The address is printed as an unsigned long.

A.14.9 The local time zone and Daylight Saving Time (7.12.1)

Default timezone is GMT. Can be specified by setting the variable time_zone. Day-
light saving is not implemented.
 2010 Microchip Technology Inc. DS51865B-page 349

HI-TECH C® for PIC10/12/16 User’s Guide
NOTES:
DS51865B-page 350  2010 Microchip Technology Inc.

HI-TECH C® FOR PIC10/12/16
USER’S GUIDE
Index
- suboption ... 24

Symbols
... 132
_ assembly label character100, 122
__Bool type .. 56
__Bxxxx type symbols ... 114
__CONFIG macro ...49, 173
__DATE__ macro .. 107
__DEBUG macro ... 148
__delay_ms macro... 174
__delay_us macro.. 174
__EEPROM_DATA macro51, 174
__FILE__ macro .. 107
__Hxxxx type symbols ... 114
__IDLOC macro ..50, 175
__IDLOC7 macro ..50, 175
__LINE__ macro .. 107
__Lxxxx type symbols .. 114
__MPLAB_ICD__ macro.................................106, 107
__PICC__ macro ... 106
__powerdown variable ... 95
__resetbits variable.. 95
__serial0 label .. 40
__TIME__ macro ... 107
__timeout variable.. 95
_16Fxxx type macros... 107
BANKBITS macro .. 106
COMMON macro ... 106
_delay function..108, 176
_EEPROMSIZE macro......................................52, 107
GPRBITS macro .. 106
_HTC_EDITION_ macro .. 106
_HTC_VER_MAJOR_ macro................................. 106
_HTC_VER_MINOR_ macro 106
_HTC_VER_PATCH_ macro 106
MPC macro .. 106
_PIC12 macro .. 106
_PIC14 macro .. 106
_PIC14E macro.. 106
_READ_OSCCAL_DATA macro.............................. 53
_ROMSIZE macro.. 107
;; macro comment suppress character................... 132
? assembly label character 122
??nnnn type symbols122, 133
. (dot) linker load address character....................... 146
.as files ... 97
.asm files.. 97
.cmd files.. 157
.crf files..31, 116
.dep files... 40
.h files... 96

.hex files ... 11

.lib files 11, 15, 141, 148, 155, 157

.lnk files .. 142

.lpp files ...11, 15, 141, 155

.lst files ... 29

.map files.. 149

.obj files11, 14, 113, 118, 145, 155, 157

.opt files.. 116

.p1 files..7, 11, 36, 155

.pre files...11, 36, 104

.pro files.. 37

.sym files ...17, 25, 144, 146
@ address construct .. 78
@ command file specifier................................... 8, 142
/ psect address symbol .. 146
\ command file character.. 8
& macro concatenation character 121, 132
&& bitwise AND operator 121
preprocessor operator... 104
preprocessor operator....................................... 104
#asm directive .. 99
#define directive ... 24
#endasm directive .. 99
#include directive ..9, 25, 40
#pragma

inline.. 108
interrupt_level ... 108
pack .. 108
printf_check... 108
psect ... 108
regsused ... 110
switch .. 110

#pragma directives... 107
#undef directive.. 28
% macro argument prefix 132
% message format placeholder character................ 20
%%u psect pragma placeholder 109
+ suboption... 24
<> macro argument characters 121, 132
$ assembly label character 122
$ location counter symbol 122

Numerics
0b binary radix specifier ... 65
24-bit double type... 32
24-bit float type... 33
24-bit real types.. 56
32-bit double type... 32
32-bit float type... 33
32-bit real types.. 56
 2010 Microchip Technology Inc. DS51865B-page 351

HI-TECH C® for PIC10/12/16 User’s Guide
A
abs function.. 177
abs PSECT flag.. 127
abs PSECTflag... 102
absolute functions .. 83, 109
absolute object files.. 145
absolute psects102, 127, 128
absolute variables49, 78, 131

in program memory..................................... 67, 79
linear addressing... 79
memory allocation... 79

acos function .. 177
address types

link... 145
load ... 145

addressing unit ... 128
advisory messages......................................19, 34, 241
alignment of psects .. 129
all suboption ... 23
anonymous unions ... 60
ANSI C standard40, 47, 60, 65, 81, 268, 271, 302

conformance ... 41, 47
divergence .. 47
implementation-defined behaviour 47, 343

application names .. 10
arrays ... 72

maximum size of ... 72
ASCII characters .. 55, 121
asctime function ... 178
asin function ... 179
asm() C directive .. 99
aspic.h header file .. 101
assembler

disabling messages .. 118
maximum number of errors 119
supported devices... 119

assembler application... 115
assembler controls ... 135
assembler directives... 125
assembler files

preprocessing ... 36
assembler macros.. 131

disabling in listing.. 136
expanding in listings................................ 117, 136
repeat with argument 133
repeating ... 133
suppressing comments 132
unnamed ... 133

assembler optimizations... 104
assembler optimizer

enabling .. 35, 117
stack depth.. 140

assembler option
A.. 116
C ... 116, 159
Cchipinfo ... 117
CHIP ... 118
DISL .. 118
E.. 117
EDF... 119

EMAX .. 119
F .. 117
H.. 117
I ... 117
L .. 117
O ... 117
Ooutfile.. 118
T .. 118
V.. 118
VER... 119
X.. 118

assembler options .. 116
assembler-generated symbols 122
assembly code

absolute variables ... 131
accessing C objects .. 100
accessing registers ... 101
binary constants .. 121
called by C .. 97
character constants... 122
character set ... 121
comments.. 120, 121
conditional ... 131
constants... 121
data types.. 122
default radix... 121
defining variables .. 130
delimiters... 121
destination operands....................................... 120
expressions ... 124
generating from C ... 28
global symbols .. 126
hexadecimal constants.................................... 121
identifiers... 122
include files ... 136
initializing locations ... 130
interaction with C... 102
label field ... 120
label scope .. 123, 126
labels... 123
line numbers.. 118
location counter... 122
mixing with C... 97
multi-character constants 122
operators ... 124
optimizations ... 35
preprocessing.. 104
pseudo-ops ... 125
radix specifiers .. 121
registers .. 123
relative jumps .. 122
relocatable expressions 124
repeating instructions 133
repeating macros .. 133
reserving memory 130, 131
reserving RAM memory 102
special characters ... 121
special comment strings.................................. 121
statement formats ... 120
strings.. 122
DS51865B-page 352  2010 Microchip Technology Inc.

Index
volatile objects .. 121
assembly identifiers

data typing .. 122
assembly list files 17, 29, 117, 137

blank lines... 137
content .. 137
disabling macro expansion 136
excluding conditional code.............................. 136
expanding macros117, 136
format...117, 118, 136
hexadecimal constants 117
including conditional code............................... 136
new page .. 137
subtitle .. 137
title .. 137

assembly symbols.. 100
assert function.. 179
atan function .. 180
atan2 function .. 181
atof function ... 181
atoi function.. 182
atol function.. 182
auto variables..71, 73, 139

assembly symbols .. 74
initilization ... 94

Avocet symbol file .. 147

B
banked memory ..70, 129

linear addressing ...72, 79
selection in assembly code........................99, 134

BANKMASK macro .. 99
BANKSEL directive .. 99
bankx qualifiers ...29, 69
base specifier, see radix specifier
base value.. 76
baseline PIC special instructions 52
biased exponent... 57
big endian format ... 167
bin directory ... 10
binary constants

assembly... 121
C code .. 65

bit data types...54, 55
bit instructions ...51, 56
bit PSECT flag ... 127
bitclr macro .. 51
bit-fields.. 59

initializing .. 59
unamed... 59

bitset macro ... 51
bitwise complement operator 81
bootloaders ... 38, 39, 168, 169
bsearch function... 183
bss psect ...71, 93, 94
building projects ... 13

C
C standard libraries.. 15
call depth.. 140
call graph .. 48, 74, 89, 139

caspic.h header file .. 101
ceil function .. 184
cgets function ... 185
char data types... 55
character constants.. 66

assembly... 122
checksum psect ... 91
checksums ... 29, 167

algorithms ... 30, 167
endianism.. 30, 167
specifications .. 159

chipinfo file ..37, 38, 117
cinit psect ... 91
class PSECT flag ... 128
classes ... 143

address ranges ... 142
boundary argument... 147
linker ..38, 39, 128
upper address limit.. 146

clearing variables ... 94
CLRWDT macro... 185
COD file.. 36
command files .. 8

linker ... 142
command line driver... 7
common memory ... 70
common RAM .. 69, 88
compilation

first stage .. 12
mixed files ... 12
second stage... 12
sequence .. 9
single step... 12
time ... 41
to object file... 24

compiled stack ... 73, 74
disabling overlay ... 144

compiler applications.. 9, 10
command lines.. 28
options .. 33, 34

compiler errors
format.. 19

compiler generated psects 90, 108
compiler-generated input files 15
COND control ... 136
conditional assembly.. 131
config psect .. 91
configuration bits .. 49
const objects

initialization ... 67
storage location... 77

const qualifier ... 67, 78
constants

assembly... 121
C specifiers ... 65
character ... 66
string|see {string literals 66

context switch code.. 88, 110
control qualifier... 53
conversion between types.. 80
 2010 Microchip Technology Inc. DS51865B-page 353

HI-TECH C® for PIC10/12/16 User’s Guide
copyright notice .. 28
cos function .. 186
cosh function .. 187
cputs function ... 187
CREF application116, 137, 159
CREF option

F.. 160
H ... 160
L .. 160
O ... 160
P.. 160
S.. 160
X.. 161

CREF options... 159, 160
CROMWELL application 17, 162
CROMWELL option

B.. 164
C ... 163
D ... 163
E.. 164
F.. 163
I ... 163
L .. 164
M ... 164
N ... 163
O ... 163
P.. 163
V.. 164

CROMWELL options.. 162
cross reference file ... 116
cross reference files 116, 159
cross reference listings... 31

excluding header symbols 160
excluding symbols................................... 160, 161
headers ... 160
output name .. 160
page length ... 160
page width... 160

cross referencing
application... 159
disabling.. 137
enabling .. 137

cstack psect ... 74, 93
ctime function ... 188

D
DABS directive ... 131
dat directory ... 18
data memory ...70, 128, 129
data pointers .. 61
data psect..71, 93, 109
data sizes ... 54, 58
data types... 54

assembly... 122
floating point.. 56

DB directive.. 130
debug information .. 25

assembler ... 118
optimizers and... 117

debugger file formats ... 162
debuggers .. 31, 162

default psect ... 125
default suboption .. 23
delay routine... 174
delta PSECT flag...................................... 98, 128, 143
dependencies ... 40
dependency file .. 40
destination operands .. 120
device memory spaces... 70
device selection.. 30
device support .. 47
device_id_read() function 189
DI macro... 190
diagnostic files.. 17
directives

assembler.. 125
directives, see assembler directives....................... 125
disabling interrupts ... 88
div function ... 190
divide by zero ... 345
doprnt.c source file ... 96
doprnt.pre file ... 36, 97
double data type... 32, 56
driver

command file... 8
command format ... 7
input files ... 7
long command lines .. 8
options... 7, 32
single step compilation...................................... 13

driver option
- ... 24
+ .. 24
ADDRQUAL29, 44, 69, 70
all... 23
ASMLIST................................17, 28, 29, 117, 137
C.. 24
CHECKSUM.. 29, 45
CHIP.. 30, 118, 150
CHIPINFO ... 30
CODEOFFSET.. 30, 45
CR ... 31
D.. 24, 28, 43
DEBUGGER.. 31, 45
default ... 23
DOUBLE ... 32, 46, 56
E.. 20, 24
ECHO.. 32
ERRFORMAT ... 20, 32
ERRORS......................................18, 32, 119, 149
FILL ... 30, 32, 45
FLOAT... 33
G ... 25
GETOPTION ... 33
HELP... 33
I ... 25, 43
IDE .. 33
L .. 26
L (linker options)................................ 26, 149, 151
LANG .. 19, 33
M ... 17, 27, 149
DS51865B-page 354  2010 Microchip Technology Inc.

Index
MEMMAP.. 34
MODE ..34, 44
MSGDISABLE21, 34, 118
MSGFORMAT20, 32, 34
N ..27, 44
NODEL ..13, 34
NOEXEC... 34
none.. 23
O ... 27
OBJDIR... 35
OPT ...35, 44, 117
OUTDIR ...35, 43
OUTPUT ..17, 35, 45
P .. 27, 43, 101, 104
PASS1 .. 36
PRE ...36, 104
PROTO ... 37
Q ... 28
RAM...37, 46
ROM ..38, 46
RUNTIME 16, 39, 45, 53, 86
S ... 28
SCANDEP .. 40
SERIAL ... 40
SETOPTION ... 115
SETUP...19, 33
shroud... 40
STRICT... 40
SUMMARY ..41, 45
TIME ... 41
U ..28, 43
V ..28, 35, 44
WARN..21, 41, 44
WARNFORMAT............................... 20, 21, 32, 42
X ... 29

driver options
general format... 23
help ... 33

DS directive.. 130
DW directive... 130
dynamic memory allocation...................................... 80

E
EEPROM

data... 51
EEPROM memory

initializing .. 51
reading...51, 52
writing ..51, 52

eeprom psect ... 91
eeprom_data psect .. 51
eeprom_read function51, 191
EEPROM_READ macro... 52
eeprom_write function.......................................51, 191
EEPROM_WRITE macro... 52
EI macro... 190
ELSE directive ... 131
ELSIF directive... 131
enabling interrupts ... 88
END directive ... 126
endianism..54, 57

ENDIF directive .. 131
ENDM directive .. 132
enhanced symbol files.. 144
entry point .. 126
environment variables .. 8
EQU directive ..120, 123, 130
equating assembly symbols 130
error counter... 18
error files

creating ... 143
error messages ...18, 19, 241

format.. 19
formatting .. 32
language ... 33
LIBR .. 157
maximum number of ... 32

eval_poly function .. 192
exp function.. 192
EXPAND control... 132, 136
exponent .. 57
expressions

assembly... 124
relocatable .. 124

F
F constant suffix ... 66
fabs function... 193
fatal error messages .. 19
fcall pseudo instruction... 120
file extensions .. 9
file formats

assembly listing... 29
Avocet symbol... 147
command .. 157
creating with cromwell..................................... 162
cross reference file.............................31, 116, 159
cross reference listings 31
dependency .. 40
enhanced symbol.. 144
library .. 155, 157
link... 142
object ...24, 145, 157
preprocessor ... 36
prototype ... 37
symbol... 144

files
input .. 7
intermediate9, 34, 35, 36
temporary.. 34

filling unused memory30, 32, 168
fixup.. 149
fixup overflow errors....................................... 148, 149
flash_copy function .. 193
flash_erase function ... 194
flash_read function... 194
Fletcher’s checksum algorithm............................... 168
float data type... 33, 56
floating point... 56

biased exponent.. 57
exponent ... 57
formats .. 57
 2010 Microchip Technology Inc. DS51865B-page 355

HI-TECH C® for PIC10/12/16 User’s Guide
mantissa.. 57
rounding .. 57

floating point suffixes.. 66
floor function... 196
fmod function.. 195
fpbase symbol .. 64
frexp function.. 196
FSR register ... 110
ftoa function.. 197
function

parameters .. 73, 84
return values ... 85
specifiers... 82

function duplication .. 89
disabling.. 90

function pointers ... 63
functions

absolute .. 83
argument passing ... 84
calling convention ... 86
creating prototypes ... 37
interrupt ... 87
placing at specific addresses 108
prototypes ... 113, 135
return bank.. 86
signatures ... 113, 135
size limits .. 84
stack usage... 86
static.. 83
written in assembler .. 97

G
get_cal_data function ... 198
getchar function.. 197
gets function... 198
GLOBAL directive98, 123, 126
global optimization ... 35, 104
global PSECT flag.. 128
gmtime function.. 199

H
hardware

initialization ... 95
header files... 96

device.. 48, 50
search path ... 25

hex files
address alignment..................................... 39, 168
addresses ... 128
data record.. 39, 167
embedding serial numbers.............................. 171
embedding strings... 171
extended address record 169
filling unused memory 32
format .. 169
multiple.. 143
record length39, 168, 169
renaming ... 27
statistics .. 170

hexadecimal constants
assembly... 121

HEXMATE application...................................... 11, 165
HEXMATE option

+ prefix .. 166
ADDRESSING .. 167
BREAK .. 167
CK ... 167
file specifications ... 166
FILL ... 168, 170
FIND.. 168
FIND and DELETE.. 169
FIND and REPLACE 169
FORMAT ... 169
HELP... 170
LOGFILE ... 170
MASK .. 170
O ... 170
radices of... 166
SERIAL ... 40, 171
SIZE .. 171
STRING... 171
STRPACK ... 172

HEXMATE options ... 165
HI_TECH_C macro .. 106
HI-TECH universal toolsuite 42
HI-TIDE IDE ... 33
HLINK application... 141
HTC_ERR_FORMAT environment variable............. 20
HTC_MSG_FORMAT environment variable 20
HTC_WARN_FORMAT environment variable 20
HTC_XML environment variable 8
htsoft.xml XML file .. 8

I
i1 symbol prefix .. 89
ID Locations ... 50
idata psect .. 91, 109
identifiers

assembly ... 122
length .. 27

idloc psect .. 92
IEEE floating point format... 56
IF directive.. 131
implementation-defined behaviour 47

division and modulus... 81
shifts.. 81

INCLUDE control.. 136
include files, see header files
incremental builds .. 13
INHX32 hex files... 166, 169
INHX8M hex files.. 166, 170
init psect ... 92
initialized variables ... 94
inline pragma directive ... 108
input files .. 7
int types .. 54
integer suffix

long ... 66
integer suffixes ... 65, 66
integral constants ... 65
integral promotion... 80
Intel HEX files... 166
DS51865B-page 356  2010 Microchip Technology Inc.

Index
intentry psect.. 92
intermediate files 7, 9, 11, 35, 36

assembly... 14
interrupt functions .. 87

context retrieval .. 88
context saving..88, 110
midrange processors .. 87
moving ...30, 84

interrupt qualifier .. 87
interrupt service routines.. 86
interrupt vector ..87, 88
interrupt_level pragma directive............................. 108
interrupts

disabling.. 88
enabling .. 88
sources ... 87
vectors .. 30

IRP directive... 133
IRPC directive .. 133
isalnum function ... 200
isalpha function .. 200
isatty function ... 201
isdigit function .. 200
islower function .. 200
itoa function.. 201

J
jmp_tab psect... 92

K
keyword

auto... 73
bank0 .. 69
bank1 .. 69
bank2 .. 69
bank3 .. 69
bankx .. 29
const ... 78
interrupt... 87
near... 69
persistent ...69, 95

keywords
disabling non-ANSI C 41

L
L constant suffix ... 66
l.obj file ... 145
label field.. 120
labels

assembly... 123
labs function... 202
language support ... 19
ldexp function... 202
ldiv function .. 203
length of identifiers ... 27
lib directory..15, 26, 96
LIBR application..16, 112, 155
librarian ...112, 155

command files... 157
command keys.. 156
error messages... 157

module order... 157
options .. 155
usage .. 155

libraries... 15
adding files to.. 156
creating ... 156
deleting modules from..................................... 156
excluding... 39
format of.. 155
linking.. 147
listing modules in .. 156
listing symbols... 156
module order... 157
naming convention.. 15
object .. 148
p-code ... 15
replacing modules..................................... 16, 112
scanning additional ... 26
search order.. 7
user defined .. 15

library function
__CONFIG .. 173
__EEPROM_DATA... 174
__IDLOC ... 175
__IDLOC7 ... 175
_delay ..108, 174, 176
abs .. 177
acos .. 177
asctime.. 178
asin ... 179
assert .. 179
atan ... 180
atan2 ... 181
atof .. 181
atoi .. 182
atol .. 182
bsearch ... 183
ceil... 184
cgets ... 185
cos .. 186
cosh .. 187
cputs ... 187
ctime ... 188
device_id_read() ... 189
div ... 190
eeprom_read... 191
eeprom_write .. 191
eval_poly... 192
exp .. 192
fabs ... 193
flash_copy... 193
flash_erase ... 194
flash_read ... 194
floor ... 196
fmod .. 195
frexp .. 196
ftoa .. 197
get_cal_data ... 198
getchar .. 197
gets ... 198
 2010 Microchip Technology Inc. DS51865B-page 357

HI-TECH C® for PIC10/12/16 User’s Guide
gmtime .. 199
isalnum.. 200
isalpha... 200
isatty.. 201
isdigit ... 200
islower... 200
itoa .. 201
labs ... 202
ldexp ... 202
ldiv... 203
localtime.. 204
log ... 205
log10 ... 205
longjmp ... 205
ltoa .. 206
memchr ... 207
memcmp ... 208
memcpy .. 209
memmove ... 209
memset ... 210
mktime .. 210
modf .. 211
pow ... 212
printf ...15, 96, 212
putchar .. 215
puts ... 215
qsort .. 216
rand... 217
round... 217
setjmp ... 218
sin ... 219
sinh ... 187
sprintf .. 220
sqrt .. 220
srand ... 221
sscanf.. 222
strcat ... 222
strchr ... 223
strcmp ... 224
strcpy .. 224
strcspn .. 225
strichr .. 223
stricmp .. 224
stristr ... 231
strlen ... 226
strncat ... 226
strncmp ... 227
strncpy .. 228
strnicmp .. 227
strpbrk ... 229
strrchr .. 229
strrichr ... 229
strspn .. 230
strstr .. 231
strtod ... 231
strtok ... 232
strtol .. 232
tan ... 233
tanh ... 187
time ... 234

toascii .. 235
tolower... 235
toupper .. 235
trunc .. 235
ungetc ... 236
utoa ... 237
va_arg ... 238
va_end .. 238
va_start ... 238
vprintf .. 212
vsprintf... 220
vsscanf .. 222
xtoi... 239

library function. see also library macro
library macro

__delay_ms... 174
__delay_us.. 174
CLRWDT... 185
DI... 190
EI... 190
NOP .. 211
SLEEP... 219

library modules ... 155
order.. 157

limit PSECT flag ... 128, 147
limits.h .. 54
linear data memory... 70
link addresses .. 145
linker

error messages ... 143
input files ... 148
library files ... 141
operation ... 148
passes... 155
relocation... 145
warning threshold.. 147

linker classes.......................................38, 39, 128, 146
linker errors

aborting ... 144
undefined symbols .. 144

linker option
A.. 142, 146
C.. 143
D.. 143
DISL .. 147
E.. 143
EDF ... 147
EMAX .. 148
F .. 143
G ... 144
H.. 144
H+.. 144
I ... 144
J .. 144
K.. 144
L .. 145
LM ... 145
M ... 145
N.. 145
NORLF .. 148
DS51865B-page 358  2010 Microchip Technology Inc.

Index
O ... 145
P .. 128, 129, 145, 146
Q ... 146
S ... 146
U ... 147
V ... 147
VER .. 148
W .. 147
X ... 147
Z.. 147

linker options...141, 150
adjusting ... 26
confirming ... 150
radices .. 142

linker scripts ... 112
linker-defined symbols ... 113
linking programs... 112
LIST control.. 136
little endian format.......................................54, 57, 167
ljmp pseudo instruction .. 120
load addresses... 145
LOCAL directive... 122
local PSECT flag.. 128
local symbols

removing ... 29
suppressing .. 147

localtime function ... 204
location counter...122, 129
log function... 205
log10 function... 205
long double types... 56
longjmp function... 205
ltoa function.. 206

M
MACRO directive ..120, 132
main function...16, 93
main-line code...75, 87
maintext psect ...83, 92
mantissa... 57
map files..17, 145, 149

content .. 150
generating..27, 145, 149
processor selection... 146
selector ... 144
symbol tables in .. 145
width of ... 147

MDF ... 18
memchr function .. 207
memcmp function... 208
memcpy function.. 209
memmove function... 209
memory

banks ...70, 99, 134
common .. 70
data... 70
linear data ... 70
pages ...120, 129, 134
reserving ..30, 37, 38
specifying ranges.. 142
summary ... 41

unbanked .. 70
unused .. 32

memory allocation .. 70
auto variables.. 73
data memory ... 70
dynamic... 80
function code... 83
non-auto variables .. 71
program memory... 77
static variables .. 72

memory models.. 80
memory spaces.. 70
memset function... 210
merging hex files .. 166
message description files... 18
messages... 241

advisory... 19, 34
appending to file.. 25
counting .. 18
default langauge ... 19
default warning level ... 21
disabling...18, 21, 34, 111
error .. 19
fatal error... 19
language ... 19, 33
number.. 18
placeholders.. 20
redirecting to file.. 24
supported languages .. 19
types ... 19
warning ... 19, 34
warning level ... 21

messaging system ... 18
environment variables....................................... 20

Microchip COF file.. 36
mktime function .. 210
modf function.. 211
modules.. 9

generating ... 36
MPLAB IDE .. 33

build options.. 26, 42
debug builds.. 148
plugin .. 13, 42
search path ... 25

multi-character constants
assembly... 122

multiple hex files... 143

N
near qualifier .. 29, 69
NOCOND control ... 136
NOEXPAND control ... 136
NOLIST control .. 117, 136
none suboption... 23
non-volatile RAM.. 68
NOP macro .. 211
NOXREF control .. 137
nul macro operator ... 132
NULL pointer .. 64
NULL pointers .. 65
nv psect.. 71, 93
 2010 Microchip Technology Inc. DS51865B-page 359

HI-TECH C® for PIC10/12/16 User’s Guide
O
object code version number 150
object file libraries... 148
object files ...24, 118, 155

absolute .. 145
contents .. 148
relocatable .. 148
symbol only ... 143

OBJTOHEX application.. 158
OBJTOHEX options ... 158
OPT control directive.. 135
optimizations ...34, 35, 103

assembler ... 35, 119
debugging ... 35, 119
global .. 35
speed vs space ... 35

option instruction .. 53
options, see driver compiler options
options, see driver options
ORG directive... 102, 129
oscillator calibration constants 53

preserving ... 54
output file format

American Automation HEX 36
Binary.. 36
Bytecraft COD... 36
COFF .. 36
ELF ... 36
Intel HEX... 36
library .. 36
Microchip COFF.. 36
Motorola S19 HEX .. 36
Tektronic ... 36
UBROF ... 36

output file formats
Intel Hex.. 17
specifying .. 35, 158

output files.. 27, 35
directory .. 35
names of ... 17
renaming ... 27
specifying name of .. 27

overlaid memory areas... 144
overlaid psects ... 128
ovrld PSECT flag.. 128
ovrld PSECTflag... 102

P
pack pragma directive .. 108
PAGE control ... 137
paged memory

selection in assembly code 120, 134
PAGESEL directive .. 134
parameters

passing from assembly code............................. 97
storage .. 73

PATH environment variable 8
p-code files ..7, 12, 155

obfuscating.. 40
p-code libraries... 141, 155

obfuscating.. 40
persistent qualifier .. 69, 94, 95
phase errors ... 128
picc.ini file... 37, 38
pointer

comparisons.. 65
definitions .. 60
encoding.. 63
qualifiers.. 60
targets ... 61
types.. 60

pointer reference graph 62, 138
pointers... 70

assigning dummy targets 64
assigning integers ... 64
data ... 61
function.. 63

pow function ... 212
powerup psect .. 92, 95
powerup routine.. 16, 94, 95
powerup.as... 95
pragma directives ... 107
preprocessing... 104

assembler files .. 27
preprocessor

search path ... 25
type conversions ... 105

preprocessor directive
#asm ... 99
#endasm ... 99
#include... 9
#undef ... 28

preprocessor directives .. 104
in assembly files.. 27, 120

preprocessor macros
containing strings .. 24
defining.. 24
length .. 27
predefined ... 106
undefining.. 28

printf function...14, 15, 96, 212
format checking... 108
preprocessing.. 36

printf_check pragma directive 108
PROCESSOR directive .. 118
processor selection .. 146
program counter ... 122
program entry point .. 95
program memory .. 77, 128
project name... 17
projects

assembly files.. 14
building.. 13
incremental builds ... 13
rebuilding... 13

psect
bss... 71, 93, 94
checksum .. 91
cinit .. 91
config... 91
DS51865B-page 360  2010 Microchip Technology Inc.

Index
cstack...74, 93
data..71, 93
default ... 125
eeprom.. 91
eeprom_data... 51
grouping.. 128
idata .. 91
idloc .. 92
init ... 92
intentry .. 92
jmp_tab ... 92
maintext ...83, 92
powerup ...92, 95
reset_vec .. 92
reset_wrap .. 92
strings ... 92
stringtext ... 92
textn ... 83, 92, 98, 109
xxx_text..84, 93

PSECT directive... 127
PSECT flag

abs .. 127
bit .. 127
class.. 128
delta .. 128
global .. 128
limit ... 128
local .. 128
ovrld .. 128
pure... 128
reloc .. 129
size ... 129
space .. 129
with ... 129

PSECT flags .. 127
class.. 128

psect pragma directive... 108
psects... 148

absolute ...127, 128
alignment of .. 129
class...142, 143, 146
compiler generated ... 90
delta value .. 143
differentiating ROM and RAM......................... 129
function ... 83
linking.. 148
listing... 41
maximum address .. 128
maximum size... 129
overlaid ... 128
page boundaries and 129
placing in memory....................................128, 145
placing with others .. 129
specifying address ranges 146
specifying addresses142, 145
splitting.. 83

pseudo-ops
assembler ... 125

pure PSECT flag .. 128
putchar function ... 215

puts function... 215

Q
qsort function.. 216
qualifier

auto ... 73
bank0 .. 69
bank1 .. 69
bank2 .. 69
bank3 .. 69
bankx .. 29
const ... 67, 78
control ... 53
interrupt... 87
near... 29, 69
persistent ...69, 94, 95
special ... 68
volatile..68, 103, 121

qualifiers
and auto variables... 73
and structures ... 59

quiet mode ... 28

R
radix specifiers

assembly... 121
C code... 65

RAM banks... 70
rand function .. 217
RC oscillator calibration ... 53
read-only variables... 67
rebuilding projects .. 13
reentrant functions ... 74, 89
registers

allocation to... 80
in assembly code .. 123
special ... 82
special function ... 123

registry ... 8
regsused pragma directive..................................... 110
relative jump... 122
reloc PSECT flag.. 129
relocatable object files.. 148
relocation information

preserving ... 145
replacing library modules 112
REPT directive ... 133
reserving memory ...30, 37, 38
reset ... 68

code executed after16, 94, 95
determining cause... 95
vector .. 30

reset_vec psect .. 92
reset_wrap psect.. 92
resetbits

RUNTIME suboption ... 95
RETLW instruction ... 77
return values .. 85
rotate operator.. 81
round function .. 217
runtime environment .. 39
 2010 Microchip Technology Inc. DS51865B-page 361

HI-TECH C® for PIC10/12/16 User’s Guide
runtime startup code16, 92, 93, 149
assembly listing... 29
preserving variables.. 69
variable initialization.. 94

runtime startup module... 39

S
scale value ... 127
search path

header files ... 25
segment selector .. 144
segments.. 144
serial numbers.. 40, 171

embedding .. 171
SET directive .. 120, 130
setjmp function ... 218
SFRs .. 49

accessing in assembly 101
accessing in inline assembly........................... 101

shadow registers .. 88
shifting

sign extension ... 345
short int types... 54
SIGNAT directive.......................................98, 113, 135
signatures

checking.. 113
defining ... 135
function ... 113
value ... 135

sin function ... 219
single step compilation....................................... 12, 13
sinh function ... 187
size limits

auto variables.. 77
const variables .. 78
non-auto variables .. 72

size of doubles ... 32
size of float ... 33
size PSECT flag ... 129
skipping applications .. 40
SLEEP macro... 219
source file ... 9
source-level debugging .. 162
sources directory.. 95
SPACE control ... 137
space PSECT flag.. 129
special function registers.. 49
special type qualifiers ... 68
sports cars.. 122
sprintf function.. 220
sqrt function.. 220
srand function... 221
sscanf function ... 222
stack... 48

compiled.. 73, 74
depth ... 140
hardware ... 48, 73
overflow... 48

standard library files ... 15
start label.. 95
start record ... 126

startup module.. 39
startup.as.. 16
static functions.. 83, 100
static variables.. 72, 94, 101
STATUS register

preserving ... 95
storage duration ... 71
strcat function ... 222
strchr function... 223
strcmp function ... 224
strcpy function .. 224
strcspn function .. 225
strichr function .. 223
stricmp function .. 224
string literals ... 66

concatenation.. 67
strings

assembly ... 122
packing.. 172
storage location... 67, 171
type of ... 66

strings psect ... 92
stringtext psect ... 92
stristr function ... 231
strlen function ... 226
strncat function ... 226
strncmp function ... 227
strncpy function .. 228
strnicmp function .. 227
strpbrk function... 229
strrchr function.. 229
strrichr function... 229
strspn function .. 230
strstr function.. 231
strtod function... 231
strtok function ... 232
strtol function .. 232
struct types ... 58
structure bit-fields ... 59
structure qualifiers .. 59
structures.. 58

alignment padding... 108
bit-fields... 59
maximum size of ... 72

SUBTITLE control .. 137
supported devices .. 30
switch pragma directive.. 110
switch statement type

auto ... 110
direct lookup.. 111
space... 110
speed .. 110
time ... 110

switch statements... 110
symbol files... 144, 146, 162

Avocet format .. 147
enhanced .. 144
generating ... 144
local symbols in... 147
old style ... 143
DS51865B-page 362  2010 Microchip Technology Inc.

Index
removing symbols from................................... 146
symbol tables ... 147

sorting ... 145
symbol-only object file.. 143
symbols

assembler-generated...................................... 122
linker defined .. 113
undefined .. 147

T
tan function .. 233
tanh function .. 187
target device .. 30
temporary variables ... 73
textn psect... 83, 92, 98, 109
time function... 234
time to build.. 41
TITLE control ... 137
toascii function ... 235
tolower function.. 235
toupper function ... 235
tracked objects ... 86
translation units ...9, 36
tris instruction... 53
trunc function ... 235
type

conversions... 80
double ..32, 56
float ..33, 56
int .. 54
long double ... 56
short int ... 54
struct ... 58
union ... 58

type sizes ..54, 58

U
U constant suffix .. 66
unbanked memory ... 70
undefined symbols ... 103

adding ... 147
undefining macros.. 28
ungetc function... 236
uninitilized variables... 94
union data types... 58
unions

anonymous ... 60
qualifiers ... 59

universal toolsuite plugin.....................................13, 42
unnamed psect .. 125
unnamed structure members 59
unused memory

filling...30, 168
unused variables.. 103

removing ... 68
utoa function .. 237

V
va_arg function .. 238
va_end function.. 238
va_start function... 238

variables
absolute .. 78
accessing from assembler 100
auto ... 73
in assembly ... 130
in registers .. 80
initialization ... 94
placing at specific addresses 108
sizes.. 54, 58
static.. 72
storage duration .. 71
unique length of .. 27

verbose output ... 28
version number .. 41
volatile qualifier ...68, 103, 121
vprintf function.. 212
vsprintf function .. 220
vsscanf function ... 222

W
warning level .. 21

setting ... 147
warning messages18, 19, 241

disabling.. 34, 111
format.. 42
level displayed .. 41
suppressing... 147
threshold level ... 41

windows registry... 8
with PSECT flag ... 129
withtotal .. 129
word alignment

psects.. 129
word boundaries... 129

X
XREF control.. 137, 159
xtoi function .. 239
xxx_text psect .. 84, 93
xxxx@yyyy type symbols 101
 2010 Microchip Technology Inc. DS51865B-page 363

DS51865B-page 364  2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

08/04/10

http://support.microchip.com
http://www.microchip.com

	Chapter 1. HI-TECH C Compiler for PIC10/12/16 MCUs
	1.1 Introduction
	1.2 Compiler Description and Documentation
	1.3 Device Description

	Chapter 2. PICC Command-line Driver
	2.1 Introduction
	2.2 Invoking the Compiler

	2.2.1 Driver Command-line Format
	2.2.2 Environment Variables
	2.2.3 Input File Types
	2.3 The Compilation Sequence

	2.3.1 The Compiler Applications
	2.3.2 Single-step Compilation
	2.3.3 Multi-step Compilation
	2.3.4 Compilation of Assembly Source
	2.3.5 Printf check
	2.4 Runtime Files

	2.4.1 Library Files
	2.4.2 Runtime Startup Code
	2.5 Compiler Output

	2.5.1 Output Files
	2.5.2 Diagnostic Files
	2.6 Compiler Messages

	2.6.1 Messaging Overview
	2.6.2 Message Language
	2.6.3 Message Type
	2.6.4 Message Format
	2.6.5 Changing Message Behavior
	2.7 PICC Driver Option Descriptions

	2.7.1 -C: Compile to Object File
	2.7.2 -D: Define Macro
	2.7.3 -E: Redirect Compiler Errors to a File
	2.7.4 -G: Generate Source-level Symbol File
	2.7.5 -I: Include Search Path
	2.7.6 -L: Scan Library
	2.7.7 -L-: Adjust Linker Options Directly
	2.7.8 -M: Generate Map File
	2.7.9 -N: Identifier Length
	2.7.10 -O: Specify Output File
	2.7.11 -P: Preprocess Assembly Files
	2.7.12 -Q: Quiet Mode
	2.7.13 -S: Compile to Assembler Code
	2.7.14 -U: Undefine a Macro
	2.7.15 -V: Verbose Compile
	2.7.16 -X: Strip Local Symbols
	2.7.17 --ASMLIST: Generate Assembler List Files
	2.7.18 --ADDRQUAL: Set Compiler Response to Memory Qualifiers
	2.7.19 --CHECKSUM: Calculate a checksum
	2.7.20 --CHIP: Define Processor
	2.7.21 --CHIPINFO: Display List of Supported Processors
	2.7.22 --CODEOFFSET: Offset Program Code to Address
	2.7.23 --CR: Generate Cross Reference Listing
	2.7.24 --DEBUGGER: Select Debugger Type
	2.7.25 --DOUBLE: Select kind of Double Types
	2.7.26 --ECHO: Echo command line before processing
	2.7.27 --ERRFORMAT: Define Format for Compiler Messages
	2.7.28 --ERRORS: Maximum Number of Errors
	2.7.29 --FILL: Fill Unused Program Memory
	2.7.30 --FLOAT: Select kind of Float Types
	2.7.31 --GETOPTION: Get Command-line Options
	2.7.32 --HELP: Display Help
	2.7.33 --IDE: Specify the IDE being used
	2.7.34 --LANG: Specify the Language for Messages
	2.7.35 --MEMMAP: Display Memory Map
	2.7.36 --MODE: Choose Compiler Operating Mode
	2.7.37 --MSGDISABLE: Disable Warning Messages
	2.7.38 --MSGFORMAT: Set Advisory Message Format
	2.7.39 --NODEL: Do not remove temporary files
	2.7.40 --NOEXEC: Don’t Execute Compiler
	2.7.41 --OBJDIR: Specify a directory for intermediate files
	2.7.42 --OPT: Invoke Compiler Optimizations
	2.7.43 --OUTDIR: Specify a directory for output files
	2.7.44 --OUTPUT= type: Specify Output File Type
	2.7.45 --PASS1: Compile to P-code
	2.7.46 --PRE: Produce Preprocessed Source Code
	2.7.47 --PROTO: Generate Prototypes
	2.7.48 --RAM: Adjust RAM Ranges
	2.7.49 --ROM: Adjust ROM Ranges
	2.7.50 --RUNTIME: Specify Runtime Environment
	2.7.51 --SCANDEP: Scan for Dependencies
	2.7.52 --SERIAL: Store a Value at this Program Memory Address
	2.7.53 --SETOPTION: Set The Command-line Options for Application
	2.7.54 --SHROUD: Obfuscate p-code Files
	2.7.55 --STRICT: Strict ANSI Conformance
	2.7.56 --SUMMARY: Select Memory Summary Output Type
	2.7.57 --TIME: Report Time Taken for Each Phase of Build Process
	2.7.58 --VER: Display The Compiler’s Version Information
	2.7.59 --WARN: Set Warning Level
	2.7.60 --WARNFORMAT: Set Warning Message Format
	2.8 MPLAB IDE Universal Toolsuite Equivalents

	2.8.1 Directories Tab
	2.8.2 Compiler Tab
	2.8.3 Linker Tab
	2.8.4 Global Tab
	Chapter 3. C Language Features

	3.1 Introduction
	3.2 ANSI C Standard Issues
	3.2.1 Divergence from the ANSI C Standard
	3.2.2 Implementation-defined behavior

	3.3 Processor-related Features
	3.3.1 Device Support
	3.3.2 Device Header Files
	3.3.3 Stack
	3.3.4 Configuration Bit Access
	3.3.5 Using SFRs From C Code
	3.3.6 ID Locations
	3.3.7 Bit Instructions
	3.3.8 EEPROM Access
	3.3.8.1 The __EEPROM_DATA() macro
	3.3.8.2 EEPROM Access Functions
	3.3.8.3 EEPROM Access Macros

	3.3.9 Baseline PIC MCU Special Instructions
	3.3.9.1 The OPTION instruction
	3.3.9.2 The TRIS instructions
	3.3.9.3 Oscillator calibration constants

	3.4 Supported Data Types and Variables
	3.4.1 Integer Data Types
	3.4.1.1 Bit Data Types and Variables

	3.4.2 Floating-Point Data Types
	3.4.3 Structures and Unions
	3.4.3.1 Structure and Union Qualifiers
	3.4.3.2 Bit-fields in Structures

	3.4.4 Pointer Types
	3.4.4.1 Combining Type Qualifiers and Pointers
	3.4.4.2 Data Pointers
	3.4.4.3 Function Pointers
	3.4.4.4 Special Pointer Targets

	3.4.5 Constant Types and Formats
	3.4.6 Standard Type Qualifiers
	3.4.6.1 Const Type Qualifier
	3.4.6.2 Volatile Type Qualifier

	3.4.7 Special Type Qualifiers
	3.4.7.1 Persistent Type Qualifier
	3.4.7.2 Near Type Qualifier
	3.4.7.3 Bank0, Bank1, Bank2 and Bank3 Type Qualifiers

	3.5 Memory Allocation and Access
	3.5.1 Address Spaces
	3.5.2 Variables in Data Space Memory
	3.5.2.1 Non-auto Variable Allocation
	3.5.2.2 Auto Variable Allocation and access
	3.5.2.3 Auto Variable Size Limits

	3.5.3 Variables in Program Space
	3.5.3.1 Size Limitations of const Variables
	3.5.3.2 Changing the Default Allocation

	3.5.4 Absolute Variables
	3.5.4.1 Absolute Variables in Data Memory
	3.5.4.2 Absolute Objects in Program Memory

	3.5.5 Variables in Registers
	3.5.6 Dynamic Memory Allocation
	3.5.7 Memory Models

	3.6 Operators and Statements
	3.6.1 Integral Promotion
	3.6.2 Rotation

	3.7 Register Usage
	3.8 Functions
	3.8.1 Function Specifiers
	3.8.2 Allocation of Function Code
	3.8.3 Changing the Default Function Allocation
	3.8.4 Function Size Limits
	3.8.5 Function Parameters
	3.8.6 Function Return Values
	3.8.7 Calling Functions
	3.8.7.1 Bank Selection within Functions

	3.9 Interrupts
	3.9.1 Writing an Interrupt Service Routine
	3.9.2 Specifying the Interrupt Vector
	3.9.3 Context Switching
	3.9.3.1 Context Saving on Interrupts
	3.9.3.2 Context Restoration

	3.9.4 Enabling Interrupts
	3.9.5 Function Duplication
	3.9.5.1 Disabling Duplication

	3.10 Psects
	3.10.1 Compiler-generated Psects
	3.10.1.1 Program space psects
	3.10.1.2 Data Space Psects

	3.11 Main, Runtime startup and reset
	3.11.1 Runtime Startup Code
	3.11.1.1 Initialization of Objects
	3.11.1.2 Clearing Objects
	3.11.1.3 STATUS Register Preservation

	3.11.2 The Powerup Routine

	3.12 Library Routines
	3.12.0.1 Using Library Routines
	3.12.1 The printf Routine

	3.13 Mixing C and AssemblY Code
	3.13.1 Integrating Assembly Language Modules
	3.13.2 #asm, #endasm and asm()
	3.13.3 Accessing C objects from within Assembly Code
	3.13.3.1 Equivalent Assembly Symbols
	3.13.3.2 Accessing Registers from Assembly Code

	3.13.4 Interaction between Assembly and C Code
	3.13.4.1 Absolute Psects
	3.13.4.2 Undefined Symbols

	3.14 Optimizations
	3.15 Preprocessing
	3.15.1 Preprocessor Directives
	3.15.2 Predefined Macros
	3.15.3 Pragma Directives
	3.15.3.1 The #pragma inline Directive
	3.15.3.2 The #pragma interrupt_level Directive
	3.15.3.3 The #pragma pack Directive
	3.15.3.4 The #pragma printf_check Directive
	3.15.3.5 The #pragma psect Directive
	3.15.3.6 The #pragma regsused Directive
	3.15.3.7 The #pragma switch Directive
	3.15.3.8 The #pragma warning Directive

	3.16 Linking Programs
	3.16.1 Replacing Library Modules
	3.16.2 Signature Checking
	3.16.3 Linker-Defined Symbols
	Chapter 4. Macro Assembler
	4.1 Assembler Usage
	4.2 Options

	4.2.1 -A: Generate Assembly File
	4.2.2 -C: Produce Cross Reference File
	4.2.3 -C: Specify Chip Info File
	4.2.4 -E: Specify Error Format/File
	4.2.5 -F: Specify Page Length
	4.2.6 -H: Print Hexadecimal Constant
	4.2.7 -I: List Macro Expansions
	4.2.8 -L: Generate an Assembly Listing
	4.2.9 -O: Optimize assembly
	4.2.10 -O: Specify Output File
	4.2.11 -T: Specify Listing Page Width
	4.2.12 -V: Produce Assembly Debug Information
	4.2.13 -VER:Specify Version Information
	4.2.14 -X: Strip Local Symbols
	4.2.15 --CHIP: Specify Device Name
	4.2.16 --DISL: Disable Messages
	4.2.17 --EDF: Set Message File Path
	4.2.18 --EMAX: Specify Maximum Number of Errors
	4.2.19 --OPT: Specify Optimization Type
	4.2.20 --VER: Print Version Number
	4.3 HI-TECH C Assembly Language

	4.3.1 Assembler Format Deviations
	4.3.2 Statement Formats
	4.3.3 Characters
	4.3.4 Comments
	4.3.5 Constants
	4.3.6 Identifiers
	4.3.7 Expressions
	4.3.8 Program Sections
	4.3.9 Assembler Directives
	4.3.10 Assembler Controls
	4.4 Assembly List Files

	4.4.1 General Format
	4.4.2 Pointer Reference Graph
	4.4.3 Call Graph
	Chapter 5. Linker
	5.1 Introduction
	5.2 Operation

	5.2.1 -Aclass =low-high,...
	5.2.2 -Cx
	5.2.3 -Dclass=delta
	5.2.4 -Dsymfile
	5.2.5 -Eerrfile
	5.2.6 -F
	5.2.7 -Gspec
	5.2.8 -Hsymfile
	5.2.9 -H+symfile
	5.2.10 -I
	5.2.11 -Jerrcount
	5.2.12 -K
	5.2.13 -L
	5.2.14 -LM
	5.2.15 -Mmapfile
	5.2.16 -N, -Ns and-Nc
	5.2.17 -Ooutfile
	5.2.18 -Pspec
	5.2.19 -Qprocessor
	5.2.20 -S
	5.2.21 -Sclass =limit[,bound]
	5.2.22 -Usymbol
	5.2.23 -Vavmap
	5.2.24 -Wnum
	5.2.25 -X
	5.2.26 -Z
	5.2.27 --DISL=message numbers Disable Messages
	5.2.28 --EDF=message file: Set Message File Path
	5.2.29 --EMAX=number: Specify Maximum Number of Errors
	5.2.30 --NORLF: Do Not Relocate List File
	5.2.31 --VER: Print Version Number
	5.3 Relocation and Psects
	5.4 Map Files

	5.4.1 Generation
	5.4.2 Contents
	Chapter 6. Utilities
	6.1 Introduction
	6.2 Librarian

	6.2.1 The Library Format
	6.2.2 Using the Librarian
	6.2.3 Supplying Arguments
	6.2.4 Ordering of Libraries
	6.2.5 Error Messages
	6.3 Objtohex

	6.3.1 Checksum Specifications
	6.4 Cref

	6.4.1 -Fprefix
	6.4.2 -Hheading
	6.4.3 -Llen
	6.4.4 -Ooutfile
	6.4.5 -Pwidth
	6.4.6 -Sstoplist
	6.4.7 -Xprefix
	6.4.8 --EDF=message file: Set Message File Path
	6.4.9 --EMAX=number: Specify Maximum Number of Errors
	6.4.10 --MSGDISABLE=message numbers Disable Messages
	6.4.11 --VER: Print Version Number
	6.5 Cromwell

	6.5.1 -Pname[,architecture]
	6.5.2 -N
	6.5.3 -D
	6.5.4 -C
	6.5.5 -F
	6.5.6 -Okey
	6.5.7 -Ikey
	6.5.8 -L
	6.5.9 -E
	6.5.10 -B
	6.5.11 -M
	6.5.12 -V
	6.5.13 --EDF=message file: Set Message File Path
	6.5.14 --EMAX=number: Specify Maximum Number of Errors
	6.5.15 --MSGDISABLE=message numbers Disable Messages
	6.5.16 --VER: Print Version Number
	6.6 HEXMATE

	6.6.1 HEXMATE Command Line Options
	Chapter 7. Library Functions
	Chapter 8. Error and Warning Messages

	Appendix A. Implementation-Defined Behavior
	A.1 Translation (G.3.1)

	A.1.1 How a diagnostic is identified (5.1.1.3)
	A.2 Environment (G.3.2)

	A.2.1 The semantics of arguments to main (5.1.2.2.1)
	A.3 Identifiers (G.3.3)

	A.3.1 The number of significant initial characters (beyond 31) in an identifier without external linkage (6.1.2)
	A.3.2 The number of significant initial characters (beyond 6) in an identifier with external linkage (6.1.2)
	A.3.3 Whether case distinctions are significant in an identifier with external linkage (6.1.2)
	A.4 Characters (G.3.4)

	A.4.1 The members of the source and execution character sets, except as explicitly specified in the Standard (5.2.1)
	A.4.2 The shift states used for the encoding of multibyte characters (5.2.1.2)
	A.4.3 The number of bits in a character in the execution character set (5.2.4.2.1)
	A.4.4 The mapping of members of the source character set (in character and string literals) to members of the execution character set (6.1.3.4)
	A.4.5 The value of an integer character constant that contains a character or escape sequence not represented in the basic execution character set or the extended character set for a wide character constant (6.1.3.4)
	A.4.6 The value of an integer character constant that contains more than one character or a wide character constant that contains more than one multibyte character (3.1.3.4)
	A.4.7 Whether a plain char has the same range of values as signed char or unsigned char (6.2.1.1)
	A.5 Integers (G.3.5)

	A.5.1 The representations and sets of values of the various types of integers (6.1.2.5)
	A.5.2 The result of converting an integer to a shorter signed integer, or the result of converting an unsigned integer to a signed integer of equal length, if the value cannot be represented (6.2.1.2)
	A.5.3 The results of bitwise operations on signed integers (6.3)
	A.5.4 The sign of the remainder on integer division (6.3.5)
	A.5.5 The result of a right shift of a negative-valued signed integral type (6.3.7)
	A.6 Floating-Point (G.3.6)

	A.6.1 The representations and sets of values of the various types of floating-point numbers (6.1.2.5)
	A.6.2 The direction of truncation when an integral number is converted to a floating-point number that cannot exactly represent the original value (6.2.1.3)
	A.6.3 The direction of truncation or rounding when a floating-point number is converted to a narrower floating-point number (6.2.1.4)
	A.7 Arrays and Pointers (G.3.7)

	A.7.1 The type of integer required to hold the maximum size of an array; that is, the type of the sizeof operator, size_t (6.3.3.4, 7.1.1)
	A.7.2 The result of casting a pointer to an integer, or vice versa (6.3.4)
	A.7.3 The type of integer required to hold the difference between two s to members of the same array, ptrdiff_t (6.3.6, 7.1.1)
	A.8 Registers (G.3.8)

	A.8.1 The extent to which objects can actually be placed in registers by use of the register storage-class specifier (6.5.1)
	A.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9)

	A.9.1 A member of a union object is accessed using a member of a different type (6.3.2.3)
	A.9.2 The padding and alignment of members of structures (6.5.2.1)
	A.9.3 Whether a plain int bit-field is treated as a signed int bit-field or as an unsigned int bit-field (6.5.2.1)
	A.9.4 The order of allocation of bit-fields within an int (6.5.2.1)
	A.9.5 Whether a bit-field can straddle a storage-unit boundary (6.5.2.1)
	A.9.6 The integer type chosen to represent the values of an enumeration type (6.5.2.2)
	A.10 Qualifiers (G.3.10)

	A.10.1 What constitutes an access to an object that has volatile-qualified type (6.5.5.3)
	A.11 Declarators (G.3.11)

	A.11.1 The maximum number of declarators that may modify an arithmetic, structure, or union type (6.5.4)
	A.12 Statements (G.3.12)

	A.12.1 The maximum number of case values in a switch statement (6.6.4.2)
	A.13 Preprocessing Directives (G.3.13)

	A.13.1 Whether the value of a single-character character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set (6.8.1)
	A.13.2 Whether such a character constant may have a negative value (6.8.1)
	A.13.3 The method for locating includable source files (6.8.2)
	A.13.4 The support of quoted names for includable source files (6.8.2)
	A.13.5 The mapping of source file character sequences (6.8.2)
	A.13.6 The behavior on each recognized #pragma directive (6.8.6)
	A.13.7 The definitions for __DATE__ and __TIME__ when, respectively, the date and time of translation are not available (6.8.8)
	A.14 Library Functions (G.3.14)

	A.14.1 The null constant to which the macro NULL expands (7.1.6)
	A.14.2 The diagnostic printed by and the termination behavior of the assert function (7.2)
	A.14.3 The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, and isupper functions (7.3.1)
	A.14.4 The values returned by the mathematics functions on domain errors (7.5.1)
	A.14.5 Whether the mathematics functions set the integer expression errno to the value of the macro ERANGE on underflow range errors (7.5.1)
	A.14.6 Whether a domain error occurs or zero is returned when the fmod function has a second argument of zero (7.5.6.4)
	A.14.7 The set of signals for the signal function (7.7.1.1)
	A.14.8 The output for %p conversion in the fprintf function (7.9.6.1)
	A.14.9 The local time zone and Daylight Saving Time (7.12.1)
	Index
	Corporate Office
	Atlanta
	Boston
	Chicago
	Cleveland
	Fax: 216-447-0643
	Dallas
	Detroit
	Kokomo
	Toronto
	Fax: 852-2401-3431
	Australia - Sydney
	China - Beijing
	China - Shanghai
	India - Bangalore
	Korea - Daegu
	Korea - Seoul
	Singapore
	Taiwan - Taipei
	Fax: 43-7242-2244-393
	Denmark - Copenhagen
	France - Paris
	Germany - Munich
	Italy - Milan
	Spain - Madrid
	UK - Wokingham
	Worldwide Sales and Service

