Clear filters
  • M. Matoušek, K. Pernal, F. Pavošević, L. Veis, Variational Quantum Eigensolver Boosted by Adiabatic Connection, J. Phys. Chem. A 128(3), 687-698, 2024
  • R. Zuzak, M. Kumar, O. Stoica, D. Soler‐Polo, J. Brabec, K. Pernal, L. Veis, R. Blieck, A. M. Echavarren, P. Jelínek, S. Godlewski, On‐Surface Synthesis and Determination of the Open‐Shell Singlet Ground State of Tridecacene, Angew. Chem. Int. Ed., 2024
  • D. Drwal, M. Matoušek, P. Golub, A. Tucholska, M. Hapka, J. Brabec, L. Veis, K. Pernal, Role of Spin Polarization and Dynamic Correlation in Singlet–Triplet Gap Inversion of Heptazine Derivatives, J. Chem. Theory Comput., 2023
  • M. Hapka, A. Krzemińska-Kowalska, M. Modrzejewski, M. Przybytek, K. Pernal, Efficient Calculation of the Dispersion Energy for Multireference Systems with Cholesky Decomposition: Application to Excited-State Interactions, J. Phys. Chem. Lett., 6895-6903, 2023
  • K. Pernal, Ł. Kołodziejczyk, R. J. J. Riobóo, J. Prywer, Experimental–computational approach to investigate elastic properties of struvite, J. Chem. Phys. 158(24), 244501, 2023
  • E. Posenitskiy, V. G. Chilkuri, A. Ammar, M. Hapka, K. Pernal, R. Shinde, E. J. L. Borda, C. Filippi, K. Nakano, O. Kohulák, S. Sorella, P. de O. Castro, W. Jalby, P. L. Ríos, A. Alavi, A. Scemama, TREXIO: A file format and library for quantum chemistry, J. Chem. Phys. 158(17), 174801, 2023
  • M. Matoušek, M. Hapka, L. Veis, K. Pernal, Toward more accurate adiabatic connection approach for multireference wavefunctions, J. Chem. Phys. 158(5), 054105, 2023
  • P. Beran, K. Pernal, F. Pavošević, L. Veis, Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding, J. Phys. Chem. Lett. 14(3), 716-722, 2023
  • O. Gritsenko, M. R. Jangrouei, K. Pernal, Generalized exciton with a noninteger particle and hole charge as an excitation order, Polish Quantum Chemistry from Kołos to Now, Elsevier, ISBN:978-04-431859-4-6, pp. 191-207, 2023
  • T. Korona, M. Hapka, K. Pernal, K. Patkowski, How to make symmetry-adapted perturbation theory more accurate?, Polish Quantum Chemistry from Kołos to Now, Elsevier, ISBN:978-04-431859-4-6, pp. 37-72, 2023
  • K. Biswas, M. Urbani, A. Sánchez-Grande, D. Soler-Polo, K. Lauwaet, A. Matěj, P. Mutombo, L. Veis, J. Brabec, K. Pernal, J. M. Gallego, R. Miranda, D. Écija, P. Jelínek, T. Torres, J. I. Urgel, Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers, J. Am. Chem. Soc. 144(28), 12725-12731, 2022
  • M. Hapka, K. Pernal, H. J. A. Jensen, An efficient implementation of time-dependent linear-response theory for strongly orthogonal geminal wave function models, J. Chem. Phys. 156(17), 174102, 2022
  • D. Drwal, P. Beran, M. Hapka, M. Modrzejewski, A. Sokół, L. Veis, K. Pernal, Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet–Triplet Gaps of Biradicals, J. Phys. Chem. Lett. 13(20), 4570-4578, 2022
  • M. R. Jangrouei, A. Krzemińska-Kowalska, M. Hapka, E. Pastorczak, K. Pernal, Dispersion Interactions in Exciton-Localized States. Theory and Applications to π–π* and n−π* Excited States, J. Chem. Theory Comput. 18(6), 3497-3511, 2022
  • P. Kowalski, A. Krzemińska-Kowalska, K. Pernal, E. Pastorczak, Dispersion Interactions between Molecules in and out of Equilibrium Geometry: Visualization and Analysis, J. Phys. Chem. A 126(7), 1312-1319, 2022
  • A. M. Teale, T. Helgaker, A. Savin, C. Adamo, B. Aradi, A. V. Arbuznikov, P. W. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cancès, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. D. Proft, J. F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. I. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. A. Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. M. Köster, L. Kronik, A. I. Krylov, S. Kvaal, A. Laestadius, M. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T. Maitra, F. Neese, J. P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. R. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. B. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. Wesołowski, X. Xu, W. Yang, DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science, Phys. Chem. Chem. Phys. 24(47), 28700-28781, 2022
  • P. Beran, M. Matoušek, M. Hapka, K. Pernal, L. Veis, Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection, pp. 7575-7585, November 2021
  • M. Hapka, M. Przybytek, K. Pernal, Symmetry-Adapted Perturbation Theory Based on Multiconfigurational Wave Function Description of Monomers, pp. 5538-5555, August 2021
  • K. Pernal, M. Hapka, Range‐separated multiconfigurational density functional theory methods, pp. e1566, August 2021
  • M. R. Jangrouei, K. Pernal, O. Gritsenko, On-top description of the effect of excitation on electron correlation with quasiparticles, Phys. Rev. A 104(2), 022804, 2021
  • K. Pernal, M. Hapka, In pursuit of universality, pp. 520-521, May 2021
  • D. Drwal, E. Pastorczak, K. Pernal, Excited states in the adiabatic connection fluctuation-dissipation theory: Recovering missing correlation energy from the negative part of the density response spectrum, J. Chem. Phys. 154(16), 164102, 2021
  • W. Jedwabny, E. Dyguda-Kazimierowicz, K. Pernal, K. Szalewicz, K. Patkowski, Extension of an Atom–Atom Dispersion Function to Halogen Bonds and Its Use for Rational Design of Drugs and Biocatalysts, J. Phys. Chem. A 125(8), 1787-1799, 2021
  • M. R. Jangrouei, K. Pernal, O. Gritsenko, Universal on-top description of electron correlation in the ground and excited many-electron states with correlon quasiparticles, Phys. Rev. A 102(5), 052829, 2020
  • D. Sidorczuk, M. Kozanecki, B. Civalleri, K. Pernal, J. Prywer, Structural and Optical Properties of Struvite. Elucidating Structure of Infrared Spectrum in High Frequency Range, J. Phys. Chem. A 124(42), 8668-8678, 2020
  • M. Hapka, A. Krzemińska, K. Pernal, How Much Dispersion Energy Is Included in the Multiconfigurational Interaction Energy?, pp. 6280-6293, September 2020
  • M. Hapka, K. Pernal, O. Gritsenko, Local Enhancement of Dynamic Correlation in Excited States: Fresh Perspective on Ionicity and Development of Correlation Density Functional Approximation Based on the On-Top Pair Density, J. Phys. Chem. Lett. 11(15), 5883-5889, 2020
  • E. Maradzike, M. Hapka, K. Pernal, A. E. DePrince, Reduced Density Matrix-Driven Complete Active Apace Self-Consistent Field Corrected for Dynamic Correlation from the Adiabatic Connection, J. Theor. Comput. Chem. 16(7), 4351-4360, 2020
  • M. Hapka, K. Pernal, O. Gritsenko, Molecular multibond dissociation with small complete active space augmented by correlation density functionals, J. Chem. Phys. 152(20), 204118, 2020
  • M. Hapka, E. Pastorczak, A. Krzemińska-Kowalska, K. Pernal, Long-range-corrected multiconfiguration density functional with the on-top pair density, J. Chem. Phys. 152(9), 094102, 2020
  • K. Pernal, O. Gritsenko, Embracing local suppression and enhancement of dynamic correlation effects in a CASΠDFT method for efficient description of excited states, Faraday Discuss. 224, 333-347, 2020
  • E. Fromager, N. I. Gidopoulos, P. Gori-Giorgi, T. Helgaker, P.-F. Loos, T. Malcomson, K. Pernal, A. Savin, D. G. Truhlar, M. Wibowo, W. Yang, Strong correlation in density functional theory: general discussion, Faraday Discuss. 224, 373-381, 2020
  • J. G. Brandenburg, K. Burke, B. Civalleri, D. J. Cole, G. Csányi, G. David, N. I. Gidopoulos, D. Gowland, T. Helgaker, M. F. Herbst, B. Hourahine, T. J. P. Irons, C. R. Jacob, P.-F. Loos, N. Mehta, M. R. Mulay, J. Neugebauer, K. Pernal, A. Pribram-Jones, P. Romaniello, M. R. Ryder, A. Savin, D. Sirbu, C.-K. Skylaris, D. G. Truhlar, J. Wetherell, W. Yang, Challenges for large scale simulation: general discussion, Faraday Discuss. 224, 309-332, 2020
  • J. G. Brandenburg, K. Burke, A. Cancio, J. Erhard, E. Fromager, A. Ghosal, N. I. Gidopoulos, P. Gori-Giorgi, T. Helgaker, B. Hourahine, C. R. Jacob, D. Kooi, N. T. Maitra, M. R. Mulay, K. Pernal, A. Pribram-Jones, L. Reining, P. Romaniello, M. R. Ryder, A. Savin, C.-K. Skylaris, A. M. Teale, D. J. Tozer, D. G. Truhlar, W. Yang, New density-functional approximations and beyond: general discussion, Faraday Discuss. 224, 166-200, 2020
  • J. G. Brandenburg, K. Burke, E. Fromager, M. Gatti, S. Giarrusso, N. I. Gidopoulos, P. Gori-Giorgi, D. Gowland, T. Helgaker, M. J. P. Hodgson, L. Lacombe, G. Levi, P.-F. Loos, N. T. Maitra, E. M. Morais, N. Mehta, F. Monti, M. R. Mulay, K. Pernal, L. Reining, P. Romaniello, M. R. Ryder, A. Savin, D. Sirbu, A. M. Teale, A. J. W. Thom, D. G. Truhlar, J. Wetherell, W. Yang, New approaches to study excited states in density functional theory: general discussion, Faraday Discuss. 224, 483-508, 2020
  • D. Sidorczuk, M. Kozanecki, B. Civalleri, K. Pernal, J. Prywer, Structural and Optical Properties of Struvite. Elucidating Structure of Infrared Spectrum in High Frequency Range, J. Phys. Chem. A 124, 8668–8678, 2020
  • M. Hapka, M. Przybytek, K. Pernal, Second-Order Exchange-Dispersion Energy Based on a Multireference Description of Monomers, J. Chem. Theory Comput. 15(12), 6712-6723, 2019
  • K. Pernal, O. Gritsenko, R. van Meer, Reproducing benchmark potential energy curves of molecular bond dissociation with small complete active space aided with density and density-matrix functional corrections, J. Chem. Phys. 151(16), 164122, 2019
  • E. Pastorczak, M. Hapka, L. Veis, K. Pernal, Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical, J. Phys. Chem. Lett. 10(16), 4668-4674, 2019
  • O. Gritsenko, K. Pernal, Approximating one-matrix functionals without generalized Pauli constraints, Phys. Rev. A 100(1), 012509, 2019
  • O. Gritsenko, K. Pernal, Complete active space and corrected density functional theories helping each other to describe vertical electronic π → π* excitations in prototype multiple-bonded molecules, J. Chem. Phys. 151(2), 024111, 2019
  • E. Pastorczak, H. J. A. Jensen, P. Kowalski, K. Pernal, Generalized Valence Bond Perfect-Pairing Made Versatile Through Electron-Pairs Embedding, J. Chem. Theory Comput. 15(8), 4430-4439, 2019
  • O. Gritsenko, R. van Meer, K. Pernal, Electron correlation energy with a combined complete active space and corrected density-functional approach in a small basis versus the reference complete basis set limit: A close agreement, Chem. Phys. Lett. 716, 227-230, 2019
  • O. Gritsenko, R. van Meer, K. Pernal, Electron correlation energy with a combined complete active space and corrected density-functional approach in a small basis versus the reference complete basis set limit: A close agreement, Chem. Phys. Lett. 716, 227–230, 2019
  • M. Hapka, M. Przybytek, K. Pernal, Second-Order Dispersion Energy Based on Multireference Description of Monomers, J. Chem. Theory Comput. 15(2), 1016-1027, 2018
  • O. Gritsenko, R. van Meer, K. Pernal, Efficient evaluation of electron correlation along the bond-dissociation coordinate in the ground and excited ionic states with dynamic correlation suppression and enhancement functions of the on-top pair density, Phys. Rev. A 98(6), 062510, 2018
  • K. Pernal, Exact and approximate adiabatic connection formulae for the correlation energy in multireference ground and excited states, J. Chem. Phys. 149(20), 204101, 2018
  • E. Pastorczak, K. Pernal, Molecular interactions in electron-groups embedding generalized valence bond picture, Theor. Chem. Acc. 137(12), 172, 2018
  • Á. Margócsy, P. Kowalski, K. Pernal, Á. Szabados, Multiple bond breaking with APSG-based correlation methods: comparison of two approaches, Theor. Chem. Acc. 137(11), 159, 2018
  • E. Pastorczak, K. Pernal, Electronic Excited States from the Adiabatic-Connection Formalism with Complete Active Space Wave Functions, J. Phys. Chem. Lett. 9(18), 5534-5538, 2018
  • E. Pastorczak, K. Pernal, Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions, J. Chem. Theory Comput. 14(7), 3493-3503, 2018
  • K. Pernal, Electron Correlation from the Adiabatic Connection for Multireference Wave Functions, Phys. Rev. Lett. 120(1), 013001, 2018
  • E. Pastorczak, J. Shen, M. Hapka, P. Piecuch, K. Pernal, Intricacies of van der Waals Interactions in Systems with Elongated Bonds Revealed by Electron-Groups Embedding and High-Level Coupled-Cluster Approaches, J. Chem. Theory Comput. 13(11), 5404-5419, 2017
  • M. Piris, K. Pernal, Comment on “Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices”, Phys. Rev. A 96(4), 046501, 2017
  • K. Pernal, Correlation energy from random phase approximations: A reduced density matrices perspective, Int. J. Quantum Chem. 118(1), e25462, 2017
  • K. Chatterjee, E. Pastorczak, K. Jawulski, K. Pernal, A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction, J. Chem. Phys. 144(24), 244111, 2016
  • E. Pastorczak, K. Pernal, A road to a multiconfigurational ensemble density functional theory without ghost interactions, Int. J. Quantum Chem. 116(11), 880-889, 2016
  • K. Pernal, N. I. Gidopoulos, E. Pastorczak, Excitation Energies of Molecules from Ensemble Density Functional Theory, Advances in Quantum Chemistry, Elsevier, pp. 199-229, 2016
  • K. Pernal, Reduced density matrix embedding. General formalism and inter-domain correlation functional, Phys. Chem. Chem. Phys. 18(31), 21111-21121, 2016
  • K. Pernal, Turning reduced density matrix theory into a practical tool for studying the Mott transition, New J. Phys. 17(11), 111001, 2015
  • K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Péter R. Surján, Springer Berlin Heidelberg, ISBN:978-36-624982-4-8,978-36-624982-5-5, pp. 219-227, September 2015
  • K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Theor. Chem. Acc. 134(10), 118, 2015
  • E. Pastorczak, K. Pernal, ERPA–APSG: a computationally efficient geminal-based method for accurate description of chemical systems, Phys. Chem. Chem. Phys. 17(14), 8622-8626, 2015
  • K. Pernal, K. Giesbertz, Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT), Density-Functional Methods for Excited States, Springer International Publishing, ISBN:978-33-192208-0-2,978-33-192208-1-9, pp. 125-183, 2015
  • K. Pernal, Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation, J. Chem. Theory Comput. 10(10), 4332-4341, 2014
  • K. Pernal, K. Chatterjee, P. Kowalski, Erratum: “How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches” [J. Chem. Phys. 140, 014101 (2014)], J. Chem. Phys. 140(18), 189901, 2014
  • E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, J. Chem. Phys. 140(18), 18A514, 2014
  • K. Pernal, K. Chatterjee, P. Kowalski, How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches, J. Chem. Phys. 140(1), 014101, 2014
  • E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, The Journal of Chemical Physics 140(18), 2014
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
  • K. Pernal, The equivalence of the Piris Natural Orbital Functional 5 (PNOF5) and the antisymmetrized product of strongly orthogonal geminal theory, Comput. Theor. Chem. 1003, 127-129, 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Range-separated ensemble variational method of obtaining excitation energies of molecules , 15th International Conference on Density Functional Theory and its Applications, Durham, UK, 09-13 Sep 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
  • K. Chatterjee, K. Pernal, Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices, J. Chem. Phys. 137(20), 204109, 2012
  • K. Pernal, Excitation energies from range-separated time-dependent density and density matrix functional theory, J. Chem. Phys. 136(18), 184105, 2012
  • D. R. Rohr, K. Pernal, Open-shell reduced density matrix functional theory, J. Chem. Phys. 135(7), 074104, 2011
  • D. R. Rohr, J. Toulouse, K. Pernal, Combining density-functional theory and density-matrix-functional theory, Phys. Rev. A 82(5), 052502, 2010
  • K. Pernal, Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas, Phys. Rev. A 81(5), 052511, 2010
  • K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless Density Functional Theory, Phys. Rev. Lett. 103(26), 263201, 2009
  • R. Podeszwa, K. Pernal, K. Patkowski, K. Szalewicz, Extension of the Hartree−Fock Plus Dispersion Method by First-Order Correlation Effects, J. Phys. Chem. Lett. 1(2), 550-555, 2009
  • K. Giesbertz, K. Pernal, O. Gritsenko, E. J. Baerends, Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems, J. Chem. Phys. 130(11), 114104, 2009
  • K. Pernal, K. Szalewicz, Third-order dispersion energy from response functions, J. Chem. Phys. 130(3), 034103, 2009
  • K. Pernal, T. Wesołowski, Orbital-free effective embedding potential: Density-matrix functional theory case, Int. J. Quantum Chem. 109(11), 2520-2525, 2009
  • K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless density functional theory, Phys. Rev. Lett. 103 s.263201-1, – 1263201-4, 2009
  • K. Giesbertz, K. Pernal, O. Gritsenko, E. J. Baerends, Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems, J. Chem. Phys. 130 s.114104-1–114104-16, 2009
  • K. Pernal, T. Wesołowski, Orbital-Free Effective Embedding Potential: Density-Matrix Functional Theory Case, Int. J. Quantum Chem. 109, 2520-2525, 2009
  • K. Pernal, K. Szalewicz, Third-order dispersion energy from response functions, J. Chem. Phys. 130 s.034103-1, – 034103-7, 2009
  • D. R. Rohr, K. Pernal, O. Gritsenko, E. J. Baerends, A density matrix functional with occupation number driven treatment of dynamical and nondynamical correlation, J. Chem. Phys. 129(16), 164105, 2008
  • E. Cancès, K. Pernal, Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations, J. Chem. Phys. 128(13), 134108, 2008
  • K. Pernal, K. Giesbertz, O. Gritsenko, E. J. Baerends, Adiabatic approximation of time-dependent density matrix functional response theory, J. Chem. Phys. 127(21), 214101, 2007
  • K. Pernal, O. Gritsenko, E. J. Baerends, Time-dependent density-matrix-functional theory, Phys. Rev. A 75(1), 012506, 2007
  • K. Pernal, J. Cioslowski, Frequency-dependent response properties and excitation energies from one-electron density matrix functionals, Phys. Chem. Chem. Phys. 9(45), 5956, 2007
  • J. Cioslowski, K. Pernal, Unoccupied natural orbitals in two-electron Coulombic systems, Chem. Phys. Lett. 430(1-3), 188-190, 2006
  • J. Cioslowski, K. Pernal, Wigner molecules: The strong-correlation limit of the three-electron harmonium, J. Chem. Phys. 125(6), 064106, 2006
  • K. Pernal, E. J. Baerends, Coupled-perturbed density-matrix functional theory equations. Application to static polarizabilities, J. Chem. Phys. 124(1), 014102, 2006
  • K. Pernal, J. Cioslowski, Ionization potentials from the extended Koopmans’ theorem applied to density matrix functional theory, Chem. Phys. Lett. 412(1-3), 71-75, 2005
  • K. Pernal, Effective Potential for Natural Spin Orbitals, Phys. Rev. Lett. 94(23), 233002, 2005
  • M. Kohout, K. Pernal, F. R. Wagner, Y. Grin, Electron localizability indicator for correlated wavefunctions. II Antiparallel-spin pairs, Theor. Chem. Acc. 113(5), 287-293, 2005
  • O. Gritsenko, K. Pernal, E. J. Baerends, An improved density matrix functional by physically motivated repulsive corrections, J. Chem. Phys. 122(20), 204102, 2005
  • J. Cioslowski, K. Pernal, Local-density-matrix approximation: Exact asymptotic results for a high-density homogeneous electron gas, pp. 113103, March 2005
  • M. Kohout, K. Pernal, F. R. Wagner, Y. Grin, Electron localizability indicator for correlated wavefunctions. I. Parallel-spin pairs, Theor. Chem. Acc. 112(5-6), 453-459, 2004
  • J. Cioslowski, K. Pernal, Size versus volume extensivity of a new class of density matrix functionals, J. Chem. Phys. 120(22), 10364-10367, 2004
  • K. Pernal, J. Cioslowski, Phase dilemma in density matrix functional theory, J. Chem. Phys. 120(13), 5987-5992, 2004
  • J. Cioslowski, K. Pernal, M. Buchowiecki, Approximate one-matrix functionals for the electron–electron repulsion energy from geminal theories, J. Chem. Phys. 119(13), 6443-6447, 2003
  • P. Ziesche, K. Pernal, F. Tasnádi, New sum rules relating the 1-body momentum distribution of the homogeneous electron gas to the Kimball–Overhauser 2-body wave functions (geminals) of its pair density, Physica Status Solidi (B): Basic Research 239(1), 185-192, 2003
  • M. Taut, K. Pernal, J. Cioslowski, V. Staemmler, Three electrons in a harmonic oscillator potential: Pairs versus single particles, J. Chem. Phys. 118(11), 4861-4871, 2003
  • J. Cioslowski, N. Rao, K. Pernal, D. Moncrieff, Endohedral motions inside capped single-walled carbon nanotubes, J. Chem. Phys. 118(10), 4456-4462, 2003
  • J. Cioslowski, K. Pernal, P. Ziesche, Systematic construction of approximate one-matrix functionals for the electron-electron repulsion energy, J. Chem. Phys. 117(21), 9560-9566, 2002
  • J. Cioslowski, K. Pernal, Variational density matrix functional theory calculations with the lowest-order Yasuda functional, J. Chem. Phys. 117(1), 67-71, 2002
  • J. Cioslowski, K. Pernal, Density matrix functional theory of weak intermolecular interactions, J. Chem. Phys. 116(12), 4802, 2002
  • J. Cioslowski, P. Ziesche, K. Pernal, Description of a high-density homogeneous electron gas with the Yasuda density matrix functional, J. Chem. Phys. 115(19), 8725-8730, 2001
  • J. Cioslowski, K. Pernal, Response properties and stability conditions in density matrix functional theory, J. Chem. Phys. 115(13), 5784-5790, 2001
  • W. Bartczak, K. Pernal, Potential traps for an excess electron in liquid water: the trap lifetime distributions, pp. 891-900, October 2001
  • W. Bartczak, J. Kroh, M. Zapalowski, K. Pernal, Computer simulation of water and concentrated ionic solutions. Potential fluctuations and electron localization, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 359(1785), 1593-1609, 2001
  • J. Cioslowski, N. Rao, A. SZARECKA, K. Pernal, Theoretical thermochemistry of the C<sub>60</sub>F<sub>18</sub>, C<sub>60</sub>F<sub>36</sub>, and C<sub>60</sub>F<sub>48</sub>fluorofullerenes, Mol. Phys. 99(14), 1229-1232, 2001
  • J. Cioslowski, P. Ziesche, K. Pernal, On the exactness of simple natural spin-orbital functionals for a high-density homogeneous electron gas, pp. 205105, April 2001
  • K. Pernal, J. Cioslowski, On the validity of the extended Koopmans’ theorem, J. Chem. Phys. 114(10), 4359, 2001
  • W. Bartczak, K. Pernal, Potential traps for an excess electron in liquid water. Geometry, energy distributions and lifetime, Computers and Chemistry 24(3-4), 469-482, 2000
  • J. Cioslowski, K. Pernal, Description of a homogeneous electron gas with simple functionals of the one-particle density matrix, Phys. Rev. A 61(3), 034503, 2000
  • J. Cioslowski, K. Pernal, Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas, J. Chem. Phys. 111(8), 3396-3400, 1999