Clear filters
  • E. Pastorczak, K. Pernal, Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions, J. Chem. Theory Comput. 14(7), 3493-3503, 2018
  • K. Pernal, Electron Correlation from the Adiabatic Connection for Multireference Wave Functions, Phys. Rev. Lett. 120(1), 013001, 2018
  • E. Pastorczak, J. Shen, M. Hapka, P. Piecuch, K. Pernal, Intricacies of van der Waals Interactions in Systems with Elongated Bonds Revealed by Electron-Groups Embedding and High-Level Coupled-Cluster Approaches, J. Chem. Theory Comput. 13(11), 5404-5419, 2017
  • M. Piris, K. Pernal, Comment on “Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices”, Phys. Rev. A 96(4), 046501, 2017
  • K. Pernal, Correlation energy from random phase approximations: A reduced density matrices perspective, Int. J. Quantum Chem. 118(1), e25462, 2017
  • K. Chatterjee, E. Pastorczak, K. Jawulski, K. Pernal, A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction, J. Chem. Phys. 144(24), 244111, 2016
  • E. Pastorczak, K. Pernal, A road to a multiconfigurational ensemble density functional theory without ghost interactions, Int. J. Quantum Chem. 116(11), 880-889, 2016
  • K. Pernal, N. I. Gidopoulos, E. Pastorczak, Excitation Energies of Molecules from Ensemble Density Functional Theory, Advances in Quantum Chemistry, Elsevier, pp. 199-229, 2016
  • K. Pernal, Reduced density matrix embedding. General formalism and inter-domain correlation functional, Phys. Chem. Chem. Phys. 18(31), 21111-21121, 2016
  • K. Pernal, Turning reduced density matrix theory into a practical tool for studying the Mott transition, New J. Phys. 17(11), 111001, 2015
  • K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Péter R. Surján, Springer Berlin Heidelberg, ISBN:978-36-624982-4-8,978-36-624982-5-5, pp. 219-227, September 2015
  • K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Theor. Chem. Acc. 134(10), 118, 2015
  • E. Pastorczak, K. Pernal, ERPA–APSG: a computationally efficient geminal-based method for accurate description of chemical systems, Phys. Chem. Chem. Phys. 17(14), 8622-8626, 2015
  • K. Pernal, K. Giesbertz, Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT), Density-Functional Methods for Excited States, Springer International Publishing, ISBN:978-33-192208-0-2,978-33-192208-1-9, pp. 125-183, 2015
  • K. Pernal, Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation, J. Chem. Theory Comput. 10(10), 4332-4341, 2014
  • K. Pernal, K. Chatterjee, P. Kowalski, Erratum: “How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches” [J. Chem. Phys. 140, 014101 (2014)], J. Chem. Phys. 140(18), 189901, 2014
  • E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, J. Chem. Phys. 140(18), 18A514, 2014
  • K. Pernal, K. Chatterjee, P. Kowalski, How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches, J. Chem. Phys. 140(1), 014101, 2014
  • E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, The Journal of Chemical Physics 140(18), 2014
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
  • K. Pernal, The equivalence of the Piris Natural Orbital Functional 5 (PNOF5) and the antisymmetrized product of strongly orthogonal geminal theory, Comput. Theor. Chem. 1003, 127-129, 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Range-separated ensemble variational method of obtaining excitation energies of molecules , 15th International Conference on Density Functional Theory and its Applications, Durham, UK, 09-13 Sep 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
  • K. Chatterjee, K. Pernal, Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices, J. Chem. Phys. 137(20), 204109, 2012
  • K. Pernal, Excitation energies from range-separated time-dependent density and density matrix functional theory, J. Chem. Phys. 136(18), 184105, 2012
  • D. R. Rohr, K. Pernal, Open-shell reduced density matrix functional theory, J. Chem. Phys. 135(7), 074104, 2011
  • D. R. Rohr, J. Toulouse, K. Pernal, Combining density-functional theory and density-matrix-functional theory, Phys. Rev. A 82(5), 052502, 2010
  • K. Pernal, Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas, Phys. Rev. A 81(5), 052511, 2010
  • K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless Density Functional Theory, Phys. Rev. Lett. 103(26), 263201, 2009
  • R. Podeszwa, K. Pernal, K. Patkowski, K. Szalewicz, Extension of the Hartree−Fock Plus Dispersion Method by First-Order Correlation Effects, J. Phys. Chem. Lett. 1(2), 550-555, 2009
  • K. Giesbertz, K. Pernal, O. Gritsenko, E. J. Baerends, Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems, J. Chem. Phys. 130(11), 114104, 2009
  • K. Pernal, K. Szalewicz, Third-order dispersion energy from response functions, J. Chem. Phys. 130(3), 034103, 2009
  • K. Pernal, T. Wesołowski, Orbital-free effective embedding potential: Density-matrix functional theory case, Int. J. Quantum Chem. 109(11), 2520-2525, 2009
  • K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless density functional theory, Phys. Rev. Lett. 103 s.263201-1, – 1263201-4, 2009
  • K. Giesbertz, K. Pernal, O. Gritsenko, E. J. Baerends, Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems, J. Chem. Phys. 130 s.114104-1–114104-16, 2009
  • K. Pernal, T. Wesołowski, Orbital-Free Effective Embedding Potential: Density-Matrix Functional Theory Case, Int. J. Quantum Chem. 109, 2520-2525, 2009
  • K. Pernal, K. Szalewicz, Third-order dispersion energy from response functions, J. Chem. Phys. 130 s.034103-1, – 034103-7, 2009
  • D. R. Rohr, K. Pernal, O. Gritsenko, E. J. Baerends, A density matrix functional with occupation number driven treatment of dynamical and nondynamical correlation, J. Chem. Phys. 129(16), 164105, 2008
  • E. Cancès, K. Pernal, Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations, J. Chem. Phys. 128(13), 134108, 2008
  • K. Pernal, K. Giesbertz, O. Gritsenko, E. J. Baerends, Adiabatic approximation of time-dependent density matrix functional response theory, J. Chem. Phys. 127(21), 214101, 2007
  • K. Pernal, O. Gritsenko, E. J. Baerends, Time-dependent density-matrix-functional theory, Phys. Rev. A 75(1), 012506, 2007
  • K. Pernal, J. Cioslowski, Frequency-dependent response properties and excitation energies from one-electron density matrix functionals, Phys. Chem. Chem. Phys. 9(45), 5956, 2007
  • J. Cioslowski, K. Pernal, Unoccupied natural orbitals in two-electron Coulombic systems, Chem. Phys. Lett. 430(1-3), 188-190, 2006
  • J. Cioslowski, K. Pernal, Wigner molecules: The strong-correlation limit of the three-electron harmonium, J. Chem. Phys. 125(6), 064106, 2006
  • K. Pernal, E. J. Baerends, Coupled-perturbed density-matrix functional theory equations. Application to static polarizabilities, J. Chem. Phys. 124(1), 014102, 2006
  • K. Pernal, J. Cioslowski, Ionization potentials from the extended Koopmans’ theorem applied to density matrix functional theory, Chem. Phys. Lett. 412(1-3), 71-75, 2005
  • K. Pernal, Effective Potential for Natural Spin Orbitals, Phys. Rev. Lett. 94(23), 233002, 2005
  • M. Kohout, K. Pernal, F. R. Wagner, Y. Grin, Electron localizability indicator for correlated wavefunctions. II Antiparallel-spin pairs, Theor. Chem. Acc. 113(5), 287-293, 2005
  • O. Gritsenko, K. Pernal, E. J. Baerends, An improved density matrix functional by physically motivated repulsive corrections, J. Chem. Phys. 122(20), 204102, 2005
  • J. Cioslowski, K. Pernal, Local-density-matrix approximation: Exact asymptotic results for a high-density homogeneous electron gas, pp. 113103, March 2005