Clear filters
  • P. A. Guńka, M. Hapka, M. Hanfland, G. Chalasinski, J. Zachara, Toward Heterolytic Bond Dissociation of Dihydrogen: The Study of Hydrogen in Arsenolite under High Pressure, J. Phys. Chem. C 123(27), 16868-16872, 2019
  • O. Gritsenko, R. van Meer, K. Pernal, Electron correlation energy with a combined complete active space and corrected density-functional approach in a small basis versus the reference complete basis set limit: A close agreement, Chem. Phys. Lett. 716, 227-230, 2019
  • O. Gritsenko, R. van Meer, K. Pernal, Electron correlation energy with a combined complete active space and corrected density-functional approach in a small basis versus the reference complete basis set limit: A close agreement, Chem. Phys. Lett. 716, 227–230, 2019
  • K. Jarzembska, M. Hapka, R. Kamiński, W. Bury, S. Kutniewska, D. Szarejko, M. M. Szczesniak, On the Nature of Luminescence Thermochromism of Multinuclear Copper(I) Benzoate Complexes in the Crystalline State, Crystals 9(1), 36, 2019
  • A. Jarota, E. Pastorczak, W. Tawfik, B. Xue, R. Kania, H. Abramczyk, T. Kobayashi, Exploring the ultrafast dynamics of a diarylethene derivative using sub-10 fs laser pulses, Phys. Chem. Chem. Phys. 21(1), 192-204, 2019
  • M. Hapka, M. Przybytek, K. Pernal, Second-Order Dispersion Energy Based on Multireference Description of Monomers, J. Chem. Theory Comput. 15(2), 1016-1027, 2018
  • O. Gritsenko, R. van Meer, K. Pernal, Efficient evaluation of electron correlation along the bond-dissociation coordinate in the ground and excited ionic states with dynamic correlation suppression and enhancement functions of the on-top pair density, Phys. Rev. A 98(6), 062510, 2018
  • K. Pernal, Exact and approximate adiabatic connection formulae for the correlation energy in multireference ground and excited states, J. Chem. Phys. 149(20), 204101, 2018
  • E. Pastorczak, K. Pernal, Molecular interactions in electron-groups embedding generalized valence bond picture, Theor. Chem. Acc. 137(12), 172, 2018
  • Á. Margócsy, P. Kowalski, K. Pernal, Á. Szabados, Multiple bond breaking with APSG-based correlation methods: comparison of two approaches, Theor. Chem. Acc. 137(11), 159, 2018
  • E. Pastorczak, K. Pernal, Electronic Excited States from the Adiabatic-Connection Formalism with Complete Active Space Wave Functions, J. Phys. Chem. Lett. 9(18), 5534-5538, 2018
  • E. Pastorczak, K. Pernal, Correlation Energy from the Adiabatic Connection Formalism for Complete Active Space Wave Functions, J. Chem. Theory Comput. 14(7), 3493-3503, 2018
  • P. A. Guńka, M. Hapka, M. Hanfland, M. Dranka, G. Chalasinski, J. Zachara, How and Why Does Helium Permeate Nonporous Arsenolite Under High Pressure?, Chemphyschem 19(7), 857-864, 2018
  • K. Pernal, Electron Correlation from the Adiabatic Connection for Multireference Wave Functions, Phys. Rev. Lett. 120(1), 013001, 2018
  • E. Pastorczak, J. Shen, M. Hapka, P. Piecuch, K. Pernal, Intricacies of van der Waals Interactions in Systems with Elongated Bonds Revealed by Electron-Groups Embedding and High-Level Coupled-Cluster Approaches, J. Chem. Theory Comput. 13(11), 5404-5419, 2017
  • M. Piris, K. Pernal, Comment on “Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices”, Phys. Rev. A 96(4), 046501, 2017
  • M. Hapka, Ł. Rajchel, M. Modrzejewski, R. Schäffer, G. Chalasinski, M. M. Szczesniak, The nature of three-body interactions in DFT: Exchange and polarization effects, J. Chem. Phys. 147(8), 084106, 2017
  • K. Pernal, Correlation energy from random phase approximations: A reduced density matrices perspective, Int. J. Quantum Chem. 118(1), e25462, 2017
  • E. Pastorczak, C. Corminboeuf, Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions, J. Chem. Phys. 146(12), 120901, 2017
  • J. Kłos, M. Hapka, G. Chalasinski, P. Halvick, T. Stoecklin, Theoretical study of the buffer-gas cooling and trapping of CrH(X<sup>6</sup>Σ<sup>+</sup>) by<sup>3</sup>He atoms, J. Chem. Phys. 145(21), 214305, 2016
  • K. Jachymski, M. Hapka, J. Jankunas, A. Osterwalder, Experimental and Theoretical Studies of Low‐Energy Penning Ionization of NH <sub>3</sub> , CH <sub>3</sub> F, and CHF <sub>3</sub>, Chemphyschem 17(22), 3776-3782, 2016
  • S. Yourdkhani, M. Chojecki, M. Hapka, T. Korona, Interaction of Boron–Nitrogen Doped Benzene Isomers with Water, J. Phys. Chem. A 120(31), 6287-6302, 2016
  • M. Modrzejewski, M. Hapka, G. Chalasinski, M. M. Szczesniak, Employing Range Separation on the meta-GGA Rung: New Functional Suitable for Both Covalent and Noncovalent Interactions, pp. 3662-3673, July 2016
  • J. Jankunas, K. Jachymski, M. Hapka, A. Osterwalder, Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF<sub>3</sub>, J. Chem. Phys. 144(22), 221102, 2016
  • K. Chatterjee, E. Pastorczak, K. Jawulski, K. Pernal, A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction, J. Chem. Phys. 144(24), 244111, 2016
  • E. Pastorczak, K. Pernal, A road to a multiconfigurational ensemble density functional theory without ghost interactions, Int. J. Quantum Chem. 116(11), 880-889, 2016
  • K. Pernal, N. I. Gidopoulos, E. Pastorczak, Excitation Energies of Molecules from Ensemble Density Functional Theory, Advances in Quantum Chemistry, Elsevier, pp. 199-229, 2016
  • K. Pernal, Reduced density matrix embedding. General formalism and inter-domain correlation functional, Phys. Chem. Chem. Phys. 18(31), 21111-21121, 2016
  • E. Pastorczak, A. Prlj, J. F. Gonthier, C. Corminboeuf, Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction, J. Chem. Phys. 143(22), 224107, 2015
  • K. Pernal, Turning reduced density matrix theory into a practical tool for studying the Mott transition, New J. Phys. 17(11), 111001, 2015
  • K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Péter R. Surján, Springer Berlin Heidelberg, ISBN:978-36-624982-4-8,978-36-624982-5-5, pp. 219-227, September 2015
  • K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Theor. Chem. Acc. 134(10), 118, 2015
  • J. Jankunas, K. Jachymski, M. Hapka, A. Osterwalder, Observation of orbiting resonances in He(<sup>3</sup>S<sub>1</sub>) + NH<sub>3</sub>Penning ionization, J. Chem. Phys. 142(16), 164305, 2015
  • M. Hapka, M. Dranka, K. Orłowska, G. Chalasinski, M. M. Szczesniak, J. Zachara, Noncovalent interactions determine the conformation of aurophilic complexes with 2-mercapto-4-methyl-5-thiazoleacetic acid ligands, pp. 13641-13650, 2015
  • E. Pastorczak, K. Pernal, ERPA–APSG: a computationally efficient geminal-based method for accurate description of chemical systems, Phys. Chem. Chem. Phys. 17(14), 8622-8626, 2015
  • K. Pernal, K. Giesbertz, Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT), Density-Functional Methods for Excited States, Springer International Publishing, ISBN:978-33-192208-0-2,978-33-192208-1-9, pp. 125-183, 2015
  • M. Hapka, Ł. Rajchel, M. Modrzejewski, G. Chalasinski, M. M. Szczesniak, Tuned range-separated hybrid functionals in the symmetry-adapted perturbation theory, J. Chem. Phys. 141(13), 134120, 2014
  • K. Pernal, Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation, J. Chem. Theory Comput. 10(10), 4332-4341, 2014
  • J. Jankunas, B. Bertsche, K. Jachymski, M. Hapka, A. Osterwalder, Dynamics of gas phase Ne<sup>*</sup> + NH<sub>3</sub> and Ne<sup>*</sup> + ND<sub>3</sub> Penning ionisation at low temperatures, J. Chem. Phys. 140(24), 244302, 2014
  • J. V. Koppen, M. Hapka, M. Modrzejewski, M. M. Szczesniak, G. Chalasinski, Density functional theory approach to gold-ligand interactions: Separating true effects from artifacts, J. Chem. Phys. 140(24), 244313, 2014
  • K. Pernal, K. Chatterjee, P. Kowalski, Erratum: “How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches” [J. Chem. Phys. 140, 014101 (2014)], J. Chem. Phys. 140(18), 189901, 2014
  • E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, J. Chem. Phys. 140(18), 18A514, 2014
  • K. Pernal, K. Chatterjee, P. Kowalski, How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches, J. Chem. Phys. 140(1), 014101, 2014
  • E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, The Journal of Chemical Physics 140(18), 2014
  • M. Hapka, J. Kłos, T. Korona, G. Chalasinski, Theoretical Studies of Potential Energy Surface and Bound States of the Strongly Bound He(<sup>1</sup>S)–BeO (<sup>1</sup>Σ<sup>+</sup>) Complex, J. Phys. Chem. A 117(30), 6657-6663, 2013
  • M. Hapka, G. Chalasinski, J. Kłos, P. S. Żuchowski, First-principle interaction potentials for metastable He(<sup>3</sup>S) and Ne(<sup>3</sup>P) with closed-shell molecules: Application to Penning-ionizing systems, J. Chem. Phys. 139(1), 014307, 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
  • K. Pernal, The equivalence of the Piris Natural Orbital Functional 5 (PNOF5) and the antisymmetrized product of strongly orthogonal geminal theory, Comput. Theor. Chem. 1003, 127-129, 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Range-separated ensemble variational method of obtaining excitation energies of molecules , 15th International Conference on Density Functional Theory and its Applications, Durham, UK, 09-13 Sep 2013
  • E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013