Publikacje i konferencje
Filtry
-
M. Piris, K. Pernal, Comment on “Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices”, Phys. Rev. A 96(4), 046501, 2017
-
K. Pernal, Correlation energy from random phase approximations: A reduced density matrices perspective, Int. J. Quantum Chem. 118(1), e25462, 2017
-
E. Pastorczak, C. Corminboeuf, Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions, J. Chem. Phys. 146(12), 120901, 2017
-
K. Chatterjee, E. Pastorczak, K. Jawulski, K. Pernal, A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction, J. Chem. Phys. 144(24), 244111, 2016
-
E. Pastorczak, K. Pernal, A road to a multiconfigurational ensemble density functional theory without ghost interactions, Int. J. Quantum Chem. 116(11), 880-889, 2016
-
K. Pernal, Reduced density matrix embedding. General formalism and inter-domain correlation functional, Phys. Chem. Chem. Phys. 18(31), 21111-21121, 2016
-
E. Pastorczak, A. Prlj, J. F. Gonthier, C. Corminboeuf, Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction, J. Chem. Phys. 143(22), 224107, 2015
-
K. Pernal, Turning reduced density matrix theory into a practical tool for studying the Mott transition, New J. Phys. 17(11), 111001, 2015
-
K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Theor. Chem. Acc. 134(10), 118, 2015
-
E. Pastorczak, K. Pernal, ERPA–APSG: a computationally efficient geminal-based method for accurate description of chemical systems, Phys. Chem. Chem. Phys. 17(14), 8622-8626, 2015
-
K. Pernal, Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation, J. Chem. Theory Comput. 10(10), 4332-4341, 2014
-
K. Pernal, K. Chatterjee, P. Kowalski, Erratum: “How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches” [J. Chem. Phys. 140, 014101 (2014)], J. Chem. Phys. 140(18), 189901, 2014
-
E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, J. Chem. Phys. 140(18), 18A514, 2014
-
K. Pernal, K. Chatterjee, P. Kowalski, How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches, J. Chem. Phys. 140(1), 014101, 2014
-
E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, The Journal of Chemical Physics 140(18), 2014
-
E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
-
K. Pernal, The equivalence of the Piris Natural Orbital Functional 5 (PNOF5) and the antisymmetrized product of strongly orthogonal geminal theory, Comput. Theor. Chem. 1003, 127-129, 2013
-
E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
-
K. Chatterjee, K. Pernal, Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices, J. Chem. Phys. 137(20), 204109, 2012
-
K. Pernal, Excitation energies from range-separated time-dependent density and density matrix functional theory, J. Chem. Phys. 136(18), 184105, 2012
Wyświetlaj