Publikacje i konferencje
Filtry
-
K. Chatterjee, K. Pernal, Excitation energies from time-dependent generalized valence bond method, Theor. Chem. Acc. 134(10), 118, 2015
-
E. Pastorczak, K. Pernal, ERPA–APSG: a computationally efficient geminal-based method for accurate description of chemical systems, Phys. Chem. Chem. Phys. 17(14), 8622-8626, 2015
-
K. Pernal, Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation, J. Chem. Theory Comput. 10(10), 4332-4341, 2014
-
K. Pernal, K. Chatterjee, P. Kowalski, Erratum: “How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches” [J. Chem. Phys. 140, 014101 (2014)], J. Chem. Phys. 140(18), 189901, 2014
-
E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, J. Chem. Phys. 140(18), 18A514, 2014
-
K. Pernal, K. Chatterjee, P. Kowalski, How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches, J. Chem. Phys. 140(1), 014101, 2014
-
E. Pastorczak, K. Pernal, Ensemble density variational methods with self- and ghost-interaction-corrected functionals, The Journal of Chemical Physics 140(18), 2014
-
E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
-
K. Pernal, The equivalence of the Piris Natural Orbital Functional 5 (PNOF5) and the antisymmetrized product of strongly orthogonal geminal theory, Comput. Theor. Chem. 1003, 127-129, 2013
-
E. Pastorczak, N. I. Gidopoulos, K. Pernal, Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle, Phys. Rev. A 87(6), 062501, 2013
-
K. Chatterjee, K. Pernal, Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices, J. Chem. Phys. 137(20), 204109, 2012
-
K. Pernal, Excitation energies from range-separated time-dependent density and density matrix functional theory, J. Chem. Phys. 136(18), 184105, 2012
-
D. R. Rohr, K. Pernal, Open-shell reduced density matrix functional theory, J. Chem. Phys. 135(7), 074104, 2011
-
D. R. Rohr, J. Toulouse, K. Pernal, Combining density-functional theory and density-matrix-functional theory, Phys. Rev. A 82(5), 052502, 2010
-
K. Pernal, Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas, Phys. Rev. A 81(5), 052511, 2010
-
K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless Density Functional Theory, Phys. Rev. Lett. 103(26), 263201, 2009
-
R. Podeszwa, K. Pernal, K. Patkowski, K. Szalewicz, Extension of the Hartree−Fock Plus Dispersion Method by First-Order Correlation Effects, J. Phys. Chem. Lett. 1(2), 550-555, 2009
-
K. Giesbertz, K. Pernal, O. Gritsenko, E. J. Baerends, Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems, J. Chem. Phys. 130(11), 114104, 2009
-
K. Pernal, K. Szalewicz, Third-order dispersion energy from response functions, J. Chem. Phys. 130(3), 034103, 2009
-
K. Pernal, T. Wesołowski, Orbital-free effective embedding potential: Density-matrix functional theory case, Int. J. Quantum Chem. 109(11), 2520-2525, 2009
Wyświetlaj